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ABSTRACT

In this paper we present a streamlined framework for adaptive fil-
ters within which all major adaptive filter algorithms can be seen as
special cases. The framework involves three ingredients: 1) A pre-
conditioned Wiener Hopf Equation, 2) Its simplest possible itera-
tive solution through the Richardson iteration, and 3) An estimation
strategy for the autocorrelation matrix, the cross correlation vector
and a preconditioning matrix. This results in a unified adaptive filter
theory characterized by simplicity, elegance and economy of ideas
suitable for an educational setting in which the similarities and dif-
ferences between the many different adaptive filter algorithms are
stressed.

1. INTRODUCTION

Adaptive filter theory is an important area in digital signal process-
ing with many important applications having been researched for
more than four decades. No doubt, adaptive filtering can be consid-
ered a mature subject.

All adaptive filter algorithms share the same common goals:
1) Rapid convergence to an accurate solution of the Wiener-Hopf
equation in a stationary environment, 2) Good tracking of the time
varying Wiener solution in non stationary environments, and 3)
Small filter coefficient deviations from the Wiener solution in a sta-
tionary environment after convergence. All these objectives shall
be satisfied with algorithms characterized by the lowest possible
computational complexity. Nevertheless, and in spite of the com-
monality in goals, the theory of adaptive filters is characterized by
a multitude of algorithms whose derivations, both as originally pre-
sented and as presented in contemporary graduate level textbooks,
rely on a large number ideas that are often perceived by students
as somewhat unrelated. Typically, each adaptive filter algorithm is
developed from a particular optimization problem whose iterative
or direct minimization gives rise to the algorithm. This approach
obscures the relationships, commonalities and differences, between
the numerous adaptive algorithms available today.

From an educational point of view, a more coherent approach
relying on a minimum set of ideas directly related to the objective of
finding/tracking the Wiener solution, having significant intuitive ap-
peal, and clearly revealing similarities and differences between the
algorithms, would be highly desirable. Such a coherent approach
will be presented in this paper. In the fall of 2005 a well received
graduate level course on adaptive filter theory adopting this coher-
ent approach was offered at the University of Stavanger.

The main ingredients, – to be presented in sequence below, in
our coherent approach to adaptive filtering are: 1) A Preconditioned
Wiener Hopf Equation (PCWH), 2) A simple iteration for the solu-
tion of this equation, and 3) Reasonable and intuitively meaningful
estimation strategies for the random quantities involved in the iter-
ation. As we will see, all common adaptive filters are derived quite
economically.

2. THE PRECONDITIONED WIENER HOPF EQUATION
AND ITS ITERATIVE SOLUTION

The Wiener-Hopf equation is given by [1]:

Rxxht = rxd, (1)

whereht is theM×1 vector of filter coefficients constituting what
we refer to as the true Wiener solution,Rxx is the autocorrelation
matrix of the filter input signal,Rxx = E{x(n)xT(n)}. E{} is the
expectation operator, and

x(n) = [x(n),x(n−1), . . . ,x(n−M +1)]T (2)

is the column vector of random variables corresponding to signal
x(n) at various time instants.rxd is the cross correlation vector de-
fined byrxd = E{x(n)d(n)}1. d(n) is commonly referred to as the
desired signal.

Applying Richardson’s method [2], the simplest of all station-
ary iterative linear equation solvers [3], to Eq. 1 we get the iteration

h(n+1) = h(n)+ µ[rxd−Rxxh(n)], (3)

whereµ is some suitably chosen constant. Note that at this point,
the indexn is just an iteration index not necessarily related to any
signal time index. Defining the filter coefficient deviation at itera-
tion n asε(n) = ht −h(n), the iteration is expressed as

ε(n+1) = (I−µRxx)ε(n). (4)

We remark that this is the type of recursion analyzed in standard
treatments of the behavior of the expected coefficient deviation in
the Least Mean Square (LMS) algorithm. From these treatments
and also from elementary numerical linear algebra it is well known
that that convergence is assured when0 < µ < 2/λmax, whereλmax
is the maximum eigenvalue ofRxx. Also, convergence slows down
as the eigenvalue spread, or the ratioλmax

λmin
, increases. The main

problem can be seen as the lack of free parameters in the iteration
enabling us to exercise control over the convergence speed. For this
purpose, we employ thepreconditioningparadigm from numerical
linear algebra [3].

The Preconditioned Wiener Hopf Equation (PCWH) can be
stated as

CRxxht = Crxd, (5)

whereC is some invertible matrix called thepreconditioner. Obvi-
ously the Wiener Hopf equation and its preconditioned version have
the same solution. Applying Richardson’s method to Eq. 5, we get

h(n+1) = h(n)+ µC[rxd−Rxxh(n)], (6)

which, when formulated in terms of the coefficient deviation, gives

ε(n+1) = (I−µCRxx)ε(n). (7)

Now CRxx plays the same role in Eq. 7 asRxx does in Eq. 4.
Thus, selectingC as an approximate inverse ofRxx, we can lower
the eigenvalue spread significantly, and consequently improve the
convergence speed dramatically relative to the case when no pre-
conditioner is employed. Of course, the introduction of the pre-
conditioner should not increase the computational demands unduly.
The preconditioning paradigm has enjoyed great popularity recently
among numerical analysts working on the iterative solution of large
sets of linear equations [4]. In the next section we demonstrate the
relevance of preconditioning to adaptive filtering.

1As is common, we do not use any notation to distinguish the cases when
x(n) is to be interpreted as a random vector and when it is to be interpreted
as a vector of signal samples.
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3. FROM ITERATIVE EQUATION SOLVERS TO
ADAPTIVE FILTERS

Standard textbook derivations of the LMS algorithm applies the
method of steepest descent toE{e2(n)} resulting in the same re-
cursion as stated in Eq. 3 above. The LMS algorithm is obtained
by substituting instantaneous estimates for the involved auto- and
cross-correlations:Rxx → x(n)xT(n) and rxx → x(n)d(n). From
this, it is not a giant intellectual leap to take the Richardson iter-
ation for the preconditioned Wiener Hopf equation, Eq. 6, as the
starting point and substituting reasonable estimates forRxx,C and
rxd. Denoting these estimates byRxx(n),C(n) andrxd(n) we get

h(n+1) = h(n)+ µC(n)[rxd(n)−Rxx(n)h(n)]. (8)

It is important to realize thatany reasonable estimateof the men-
tioned quantities will give us an adaptive filter.

Defining the signal matrixX(n) as

X(n) = [x(n),x(n−1), . . . ,x(n−L+1)], (9)

and the vector of desired signal samples through

d(n) = [d(n),d(n−1), . . . ,d(n−L+1)]T , (10)

it is obvious that

E{X(n)XT(n)}= L ·Rxx (11)

and
E{X(n)d(n)}= L · rxd. (12)

Thus,
Rxx(n) = X(n)XT(n) (13)

and
rxd(n) = X(n)d(n) (14)

are reasonable estimates forRxx andrxx
2. Using these estimates in

Eq. 8, we have what we sometimes refer to as our generic adaptive
filter:

h(n+1) = h(n)+ µC(n)X(n)e(n), (15)

wheree(n) = d(n)−XT(n)h(n). SettingL = 1, we get what has
previously been referred to as instantaneous estimates. The selec-
tion of C(n) requires a bit more care and is treated in the next sub-
section.

4. THREE PRECONDITIONING STRATEGIES

From the above it is evident that the closerC(n) is to an inverse
of an estimated autocorrelation matrix the better. Of course, the
estimateRxx(n) = X(n)XT(n) is not necessarily invertible. In fact
for L < M the estimate is rank deficient and definitely not invertible.
For L > M, Rxx(n) will be invertible for reasonable input signals.
We suggest three intuitively reasonable strategies for the selection
of C(n):
ConstantC(n): SettingC(n) arbitrarily to the identity matrix, we

get the LMS algorithm when we setL = 1 in the definitions of
Rxx(n) andrxd(n) above. If we have some a priori knowledge
of autocorrelation matrices to be encountered in an application,
this information can be employed in the determination of a suit-
ableC. This was successfully explored in [5, 6], whereC was
chosen as a circulant matrix in order to preserve the low com-
putational complexity of the standard LMS.

C(n) related to Rxx(n): SinceRxx(n) may not be directly invert-
ible, we settle for the next best option, theregularizedinverse
of Rxx(n):

C(n) = {εI+Rxx(n)}−1, (16)

whereε is some suitably chosen constant.

2Actually these are scaled estimates, but the scaling factor is not impor-
tant here.

Independently determinedC(n): There is no law preventing us
from forming another estimate ofRxx whose invertibility we
ensure by design. For example,Rxx(n) with L > M will do
the job. To distinguish the estimate ofRxx used in finding
C(n) from the one used directly in the iteration of Eq. 8, we
shall term the formerR̃xx(n) and also explicitly identify the
signal matrices involved through the tilde-notation, i.e. we set
R̃xx(n) = X̃(n)X̃T(n). Another example of such an estimate is
the exponentially weighted estimate:

R̃xx(n) =
n

∑
i=0

λ n−ix(i)xT(i), (17)

where0 << λ < 1.

5. EXAMPLES

We have already seen that the simplest possible selection of the es-
timates involved in Eq. 8:Rxx(n) = x(n)xT(n), rxd(n) = x(n)d(n),
and C(n) = I, gives us the LMS algorithm. In this section we
show how intuitively plausible alternative selections forRxx(n),
rxd(n), andC(n) quite expediently yield all major adaptive filter
algorithms. The results, clearly indicating similarities and differ-
ences between the various algorithms, are collected in Table 1.

5.1 C(n) directly related to Rxx(n)

SubstitutingRxx(n) andrxd(n) according to Eqs. 13 and 14, select-
ing the preconditioner according to the second strategy of the previ-
ous section, i.e.C(n) = {εI+Rxx(n)}−1, in our generic iteration,
Eq. 8, we get

h(n+1) = h(n)+ µ{εI+X(n)XT(n)}−1X(n)e(n). (18)

We assumeL < M. Applying the matrix inversion lemma [1], we
realize that

{εI+X(n)XT(n)}−1X(n) = X(n){εI+XT(n)X(n)}−1. (19)

Using this, the recursion of Eq. 18 can be stated as

h(n+1) = h(n)+ µX(n){εI+XT(n)X(n)}−1e(n), (20)

which we immediately recognize as theAffine Projection Algorithm
(APA) that has been employed successfully in many practical ap-
plications. SettingL = 1, we establish theNormalized Least Mean
Square(NLMS) algorithm.

5.2 Independently determinedC(n)

Using instantaneous estimates, i.e. settingL = 1 in Rxx(n) and
rxd(n) as given by Eqs. 13 and 14, in combination with the third
strategy above for selectingC(n), we get

h(n+1) = h(n)+ R̃−1
xx (n)x(n)e(n). (21)

Using the estimate for̃R(n) given by Eq. 17, we get the ordinary
exponentially weighted RLS algorithm, whereas settingR̃xx(n) =
X̃(n)X̃T(n) results in a sliding window version.

Given an autocorrelation matrixRxx, it is well known that ifU
is its eigenvalue matrix, thenUTRxxU is diagonal. It is observed
that for many input signals encountered in practice, a suitably cho-
sen fixed orthogonal transform matrix,T, – a prominent example
is the Discrete Cosine Transform (DCT) matrix, willapproximately
diagonalizeRxx. Thus, we haveRxx≈T ·diag[TTRxxT] ·TT , and
consequently

R−1
xx ≈T{diag[TTRxxT]}−1TT . (22)

This directly motivates the following estimated preconditioner:

C(n) = T{diag[TTX̃(n)X̃T(n)T]}−1TT , (23)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



where theM nonzero elements ofdiag[TTX̃(n)X̃T(n)}T] are seen
to be running (scaled) averages of transform coefficient powers.
Substituting the preconditioner of Eq. 23, still usingRxx(n) and
rxd(n) with L = 1, into Eq. 8, we get

h(n+1) = h(n)+ µT{diag[TTX̃(n)X̃T(n)T]}−1TTx(n)e(n).
(24)

Expressing this in terms of transformed quantities,β (n) = TTh(n)
andxT(n) = TTx(n), we get, by premultiplying Eq. 24 byTT :

β (n+1) = β (n)+ µ{diag[TTX̃(n)X̃T(n)T]}−1xT(n)e(n). (25)

Both Eqs. 24 and 25 are what is commonly referred to asTransform
Domain Adaptive Filters(TDAF).

5.3 An interesting generalization

If we look back at Eqs. 13 and 14 one might ask if more gen-
eral estimates forRxx(n) and rxx(n) can be formulated. Clearly,
E{X(n)TTTXT(n)} = M ·Rxx, whenT is an orthogonalM×M
matrix and the horizontal dimension ofX(n) is chosen to beL =
M. Let us now accept the premise that theL×N matrix F =
[ f

0
, f

1
, f

N−1
], where f

i
is the unit pulse response of thei’th anal-

ysis channel of anN channel orthogonal, critically sampled prefect
reconstruction analysis/synthesis filter bank system, can be consid-
ered a generalization of a square orthogonal matrix. With this, one
might speculate ifE{X(n)FFTXT(n)} is given by some scalar
timesRxx. Before proceeding we note that it is common to set the
length of the channel filters in filter bank systems equal to an integer
times the number of channels, i.e.L = P ·N. Using the fact that fil-
ter bank matrices, as described here, satisfy∑P−1−l

i=0 FiF
T
i+l = δ (l)I

for l = 0,1, . . . ,P−1 where theFi ’s are theP submatrices of size
N×N constitutingF [7], it is straight forward, but quite tedious,
to show that indeedE{X(n)FFTXT(n)}= N ·Rxx. Similarly, we
can show thatE{X(n)FFTd(n)} = N · rxd. Assuming that our es-
timates are updated everyN’th input sample, the relevant estimates
for the autocorrelation matrix and the cross correlation vector be-
come

Rxx(k) = X(kN)FFTXT(kN), (26)

and
rxd(k) = X(kN)FFTd(kN). (27)

The preconditioner of choice according to the strategy of Eq. 16, is

C(k) = {εI+X(kN)FFTXT(kN)}−1. (28)

Substituting these quantities into our generic iteration, Eq. 8, we get

h(k+1) = h(k)+ µ{εI+X(kN)FFTXT(kN)}−1X(kN)FeF (k),
(29)

whereeF (k) = FT [d(kN)−XT(kN)h(k)]. Now, applying the ma-
trix inversion lemma in exactly the same fashion as we did when
going from Eq. 18 to Eq. 20, we arrive at

h(k+1) = h(k)+ µX(kN)F{εI+FTXT(kN)X(kN)F}−1eF (k).
(30)

The elements in rowj of FTXT(kN) are identified asM consecu-
tive subband signal samples from subband no.j in the above men-
tioned filter bank system. Similarly, columni of X(kN)F are seen
to be consecutive subband signal samples from subband no.i. For
well designed filter banks, it is known that sample cross correlations
of signals from different subbands are very low [8]. Thus, setting

FTXT(kN)X(kN)F≈ diag{FTXT(kN)X(kN)F}, (31)

is justifiable. Defining theN×N matrixΛ(k) by

Λ2(k) = diag{FTXT(kN)X(kN)F}, (32)

where we identify the diagonal elements as subband signal energies
for the various filter bank channels, our final recursion becomes

h(k+1) = h(k)+ µX(kN)F{εI+Λ2(k)}−1eF (k). (33)

This recursion is seen to be identical to the subband adaptive filter
of Pradhan and Reddy [9]. This adaptive filter, sometimes referred
to as thePradhan Reddy Subband Adaptive Filter(PRSAF), was
independently derived also in [10, 11].

5.4 Alternate form of the generic adaptive filter

We have previously referred to Eq. 15 as our generic adaptive fil-
ter. When we used the preconditioning strategy of Eq. 16, as we
did in the derivation of APA and PRSAF, we employed the matrix
inversion lemma, see Eq. 19, in arriving at the final recursion. In
the APA derivation we might introduce the matrix

W(n) = {εI+XT(n)X(n)}−1, (34)

in which case Eq. 19 can be written as

C(n)X(n) = X(n)W(n). (35)

From this one might argue that in some cases, a suitable alternate
form of the generic adaptive filter of Eq. 15 should be stated as:

h(n+1) = h(n)+X(n)W(n)e(n). (36)

In the PRSAF derivation we could similarly introduce aWF (k)
matrix

WF (k) = {εI+diag[FTXT(kN)X(kN)F]}−1, (37)

leading, when accepting the diagonal approximation of Eq. 31, to

C(k)X(kN)F = X(kN)FWF (k), (38)

which gives the generic adaptive filter in the form

h(k+1) = h(k)+X(kN)FWF (k)eF (k). (39)

This can be considered as a further generalization of Eq. 36.

6. SUMMARY AND CONCLUSION

In this paper we have presented a streamlined framework for adap-
tive filters. We have seen that all major adaptive filter algorithms:
LMS, NLMS, APA, RLS, TDAF, and PRSAF are all easily derived
in a unified way. The differences between the various algorithms are
clearly identified as differences in the selection of a preconditioner
and the way in which the autocorrelation matrix and cross corre-
lation vector estimates are formed. In Table 1, we have collected
the results of our developments related to the generic recursion of
Eq. 8. A further benefit of our streamlined approach is the possibil-
ity of doing performance analysis on our general recursions rather
than for each and every algorithm.
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