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ABSTRACT

In the previous EUSIPCO 2004 paper, we have shown that
certain types of sequences can be ordered such that the new
sequence is a minimum-phase one. We also pointed out that
this property is not valid for all real sequences. In this pa-
per we prove that the set of points from the N-dimensional
real or complex set having this characteristic is a non-empty
open set. Moreover, we illustrate some new features of the
sequences that can be ordered as minimum-phase sequences.

1. INTRODUCTION

During last decades there has been a great interest in devel-
oping special techniques for compression of data. For many
types of archiving the amount of data needed for storage has
been dramatically reduced. However, it may happen that for
certain information the outcome is not so effective. It would
be interested to design compression methods where the rate
of compression is not very sensitive on the type of data. For
instance, whether data belong from real or complex sets, only
half of Fourier transform information should be needed.

One can find many signal processing applications which
deal with signal reconstruction based on modulus or phase
of the Fourier transform. In such situation the reconstruction
of a complex sequence can be possible when we know in ad-
vance that its corresponding z-transform is a minimum-phase
function or maximum-phase function [1]. The conventional
reconstruction algorithms implies application of the Hilbert
transform to the log-magnitude or phase of Fourier transform
to provide the unknown component [2, 3]. An alternative
approach consists in deriving iterative algorithms for recon-
structing a minimum-phase or maximum-phase signal from
the phase or magnitude of the Fourier transform [4].

Although clockwise or trigonometric order is mostly pre-
ferred [5], one can find applications dealing with sets of
complex numbers where there is no preliminary request to
pick the complex samples in clockwise or trigonometric or-
der [6]. This means that one may select the succession of
the complex samples, and the resulting sequence would be
minimum-phase one. In this way the given set can be re-
trieved using only half of the information and can be used
latter on for the primary goal [7]. It may happen also that
any arrangement of a complex set into a sequence will not
provide a minimum-phase sequence. Indeed, we have exam-
ined in [8] whether any finite set of real or complex numbers
can be ordered such that the new corresponding complex se-
quence is a minimum-phase one and we have obtained that
this property is not valid for all sequences.
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The goal of this paper is to prove that the set having this
characteristic is a non-empty open set in the N-dimensional
real or complex set. Moreover, we shall add new sets of se-
quences that can be ordered as minimum-phase sequences.
This paper is organized as follows. First we present the
framework of our study (Section 2). Then we shall prove
the main results mentioned above (Section 3). Finally we
shall recall previous results and we relate them to our topic
by some examples (Section 4).

2. FRAMEWORK

To proceed we need to specify some notations and repre-
sentations. A sequence will be denoted by {x(n)}, o3
and the set will be designated by its usual symbol
{x(0),x(1),...,x(M)}. The n-th sample of the sequence will
be written as x(n). Also (x(0),x(1),...,x(M)) will be a point
from RM*! or CM+1,

The z-transform of {x(n)}, g7 is:

M
X(z) =x(0)+x(1)z ' +-- - +x(M) (1—z,27 "),
p:l
‘ (D
where z, = r,e/%, p=1,2,..., M are the zeros of X(z).

The Fourier transform of {x(n)},_g7; is given by:

X (e/?) = H (1— r,,e/e"e_j“’).

( |z oo —)C
For N = M + 1 the discrete Fourier transform of the given
sequence {x(n)},_g77 is:

= [x(0) +x(1)z!

where k =0,N — 1.

Since the length of the sequence is finite and M + 1 =
N, X (k) are exactly the samples of the Fourier transform
X (e/®):

)'Z(k):x(e/“’nwz%, k=0,1,....N—1,
and no frequency aliasing occurs when we reconstruct

X (e/®) from spectrum samples X (k) [9]. It follows that z-
transform and Fourier transform can be found from the DFT
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samples:
N-1 INZU[N=D o,
X(@) =} xmz"=5 Y | Y X(e v | "
n:o n=0 | k=0
]a) - —jon__ 1 RS 127kn —jon
X(e Z n)e X(k)e v |e .
n=0 N n=0 | k=0

Thus it is suggesting that a change in the way we pick
the samples x(n) (by modifying the succession) may af-
fect the X(z)’s pole-zeros configuration, and consequently
if X(z) is minimum phase or non-minimum phase function
or maximum-phase function. Nevertheless, our interest is to
identify the minimum-phase sequences or maximum-phase
sequences, since, in their case, from:

X(k) =X ()X ()

the ambiguity of zero allocation is not anymore present [10].
In the following we shall focuss on minimum-phase se-
quences.

3. MAIN RESULTS

Definition 1. Let {x(0),x(1),...,x(M)} be a finite complex
valued set. The set is said to have ordering minimum-phase
(OMP) property if there exists a permutation

of this set such that ¥ (z) = y(0) +y(1)z ! +--- +y(M)z ™
is a minimum-phase function.

The point (x(0),x(1),...,x(M)) from R¥*! or CM+! is
said to have OMP property if the set {x(0),x(1),...,x(M)}
has OMP property.

We have the main following theorem:

Theorem 1. The set of all points from RM*1 (or CM+1) hay-
ing OMP property is an open set.

The proof of Theorem 1 is based on the well known the-
orem that the zeros of a polynomial function are continuous
functions of the coefficients of the polynomial [11].

Theorem 2. Let

P

fR)=ao+aiz+-+ad =a, [[(z—2))", an#0,
j=1

F(z) =(ao+ &)+ (a1 +&)z+-+

(an-1+8& 1) " +a,"
and let

0<r<minlg—zj, j=12,...k—Lk+1,....p. (2)
There exists a positive number € such that, if |&| < € for
i=0,1,...,n—1, then F(z) has precisely my zeros in the

circle Cy, with center at z; and radius ry.

Before proceeding to prove Theorem 1, we introduce two
lemmas.

Lemma 1. Let

Yi(z) = y(0) +y(1)z '+ 4 y(M — 1)z MV py(m)z ™
O[T -2 )™, y(0)#0
j=1
Ya(z2) = [p(0) + &) + (1) + &1z +---+

V(M = 1) + 8]z M 4 [yp(M) + Sy,
with 0 < |0| < [y(0)],
il j=12, k=

NANE)

There exists a positive number 8 such that, if |5;| < 6 for
i=0,1,...,M, then Y>(z) has precisely m)_zeros in the circle
C;, with center at zj_ and radius r;.

0<r, <minlzg,— Lk+1,...

Proof: In Theorem 2 we replace

e nby M,
® a, by y(0);
® a; by y(M —k)/y(0)
and g by
Sy-1y(0) — Soy(M — k)

Y(0)[(0) + &]

Let denote by Z;, p and r; the corresponding values for
zj, p and ri. There exists a positive number € such that, if
|&i| < € fori=0,1,...,n—1, then F(z) has precisely m
zeros in the circle C; with center at zj and radius r;. But

n() = 20 %

M
will have also precisely 7 zeros in the circle C; with center
at zj and radius rj, whenever

Sy (0) — doy(M — k)
‘ YO)(0) + &) ’<8

is satisfied. Indeed, there exists

_ . y(0)] = [o[l[y(0)]
0= )+ max @)
such that if & < 0, then
’5M 1(0) — Soy(M ‘< 18[[[y(0)[ + |y(M —k)|]
y(0)[y(0) + ] — (0)[¥(0) + ]|

_ OO = [S0l] [y(O)]+[y(M — k)|

¥(0)[ +max|y(k)|  [y(0)+ ol[y(0)] =€
which satisfies the above mentioned condition.
0
Lemma 2 . Consider the point (y(0),y(1),...,y(M)) from

RM+L (o CMHL) such that
Y(2) =y(0)+y(1)z "+ +y()z ™

is a minimum-phase function. Then there exists a neigh-
borhood U of the point (y(0),y(1),...,y(M)) and any
point (¥'(0),y'(1),...,y (M)) € U provides a minimum-
phase function

Y'(2)

=y (0)+y Dz 4y (M)z™M.
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Proof: If Y(z) is a minimum-phase function, then all zeros
are inside the unit circle. To prove our result, we just apply
Lemma 1, by selecting

r, = min{|z; — 2;],0.99 min, _; |z — 7|},
4
=12 k=1 k1, p

Then there exists a positive number § such that, if |5;| < &
fori=0,1,...,M, then

Ya(z) = [y(0) + &) + [y(1) + 8]z ' +---+

(M = 1)+ 8y—1]a~ M=V + [y(M) + Su)c™ = Y'(2),

has precisely m), zeros in the circle C; with center at z; and
radius r,. We further note from (4), that all zeros of Y’(z)
are inside the unit circle. Also (y/(0),y'(1),...,y'(M)) € U,
where U is the closed ball with center (y(0),y(1),...,y(M))
and radius 6.

Now we shall prove Theorem 1.
For any point (x(0),x(1),...,x(M)) from RM*! (or
CM*1) having OMP property, there exists a permutation

_(x(0) x(1) ... x(M)
7 —(y<o> (1) y<M>)

such that Y(z) = y(0) +y()z7 ' + -+ +y(M)z™ is a
minimum-phase function. Using Lemma 2, there should be
an entire neighborhood U of the point (y(0),y(1),...,y(M))
such that any point (y'(0),y'(1),...,y'(M)) € U provides
a minimum-phase function Y’(z) = y'(0) +y/(1)z "' +--- +
Y (M)

Consider now the set V = 2-L(U). 1t is an
open set, as preimage of an open set through a bi-
jection.  Since (y(0),y(1),...,y(M)) € U, then V is
an neighborhood of (x(0),x(1),...,x(M)). Any point
(x'(0),X'(1),...,X(M)) € V has OMP property as there exist
the point (y'(0),y'(1),...,¥ (M)) € U and the permutation

such that Y'(z) = y/(0) +y'(D)z 7' + -+ Y (M)z™ is a
minimum-phase function.

Thus we have proven that the set of all points from RM+!
(or CM+1) having OMP property is an open set.

Remark 1. In our proof, we need to have y(0) # O for the
minimum-phase function ¥ (z). We just note that if y(0) =0,
then Y (eo) = 0, thus Y (z) is not a minimum-phase function.

Other useful results will come in the sequel.

Proposition 1. The set of all points from RM+1 (or CM+1)
having OMP property is non empty.

Proof: Let a be such that |a| < 1 and consider the set:

M! M2
{17 n—11% 2214 s -

Mk MM
+tom—i4 s - uid }

Then

X(z)=1+ 71!“};[11)!612_1 + 72!(131/112)!6122_2+...

o et g = (ke Y

has M zeros inside the unit circle.
|

Conversely, its complement (the set who has not OMP
property) is closed and may be empty. In view of next propo-
sition, this is not the case.

Proposition 2. Whenever x(0) +x(1)+---+x(M) =0, the
set {x(n)|n=0,M} has not OMP property.

Proof: Indeed, in this situation, for any permutation we have
Y (1) = 0. In such case {y(n) },_g77 is a non-minimum phase
sequence. This is always possible if the center of the gravity
of the set {x(0),x(1),...,x(M)} is selected as the origin of
the axes.

Remark 2.

a. Sometimes we can have x(0) — x(1) + --- +
(—1)Mx(M) = 0, and the set {x(n)ln = 0,M} has
OMP property. This can be possible, for instance
if {x(0),x(1):x(2)} = {~1/4,3/4,1} and ¥(0) = L.
y(1) = —1/4,5(2) = 3/4.

b. Any set {x(0),x(1)} with |x(0)| # |x(1)| has OMP prop-
erty. Indeed, x(0) 4+ x(1)z~" and x(1) +x(0)z~! should
have reciprocal zeros, located inside and outside the unit
circle.

c. If0 € {x(0),x(1),...,x(M)}, there may appear some am-
biguities about the number of zeros inside the unit cir-
cle, especially when, after permutation, the leading coef-
ficient is zero. However, if Y (z) = y(0) +y(1)z ' +--- +
y(M —1)z7M*1 + 077 has M — 1 zeros inside unit cir-
cle, then it is a minimum-phase function. Consequently,
in such case {x(0),x(1),...,x(M)} has OMP property.

4. EXAMPLES OF ORDERING SEQUENCES INTO
MINIMUM-PHASE SEQUENCES

Previous work has shown that [8]:

Proposition 3. Any set of real, positive and distinct numbers
{x(0),x(1),...,x(M)} has OMP property.

Proposition 4 . For any set of real numbers {x(i)|i = 0,2},
there is a choice of ordering them such that the correspond-
ing new sequence is a minimum-phase one.

Similar statements as Proposition 4 cannot be found so
easily for other values of M > 2. For M = 3 it can be shown
that the answer is positive only in special cases. Actually we
have proven:

Proposition 5 . For any set of real numbers {x(i)|i =
0,3}, which differ in modulus and satisfying both
x(0)x(1)x(2)x(3) > 0 and x(0) +x(1) +x(2) +x(3) # 0,
there is a choice of ordering them such that the correspond-
ing new sequence is a minimum-phase one.
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Simulations have shown that for M = 3 we can find sit-
uations that no ordering of real sequences will produce a
minimum-phase sequence. One example is presented in [8].
Our simulations also verify that the sequences where any
kind of ordering fails consists of samples with an odd num-
ber of plus and minus signs. In such situation, a special case
appears when the sum of the numbers is zero, when the zeros
may lie outside the unit disk or on the unit circle. It fol-
lows also that for M > 3 one can find sequences that no or-
dering will provide a minimum-phase sequence. Indeed, we
have numerically verified that for every M = 4 to 9, the set

{-1,-2,-3,...,—M, M+ 1} has not OMP property. Also
from M = 10 to 12, we have performed random permutations
of the set {—1,—-2,-3,...,—M, M + 1}, and no minimum-

phase sequence has been detected.

One may ask whether any set of complex numbers has
OMP property. The answer is negative (Table 1). Simu-
lations and detailed analysis can show that for characteriz-
ing sets of three complex numbers we should consider not
only their modulus, but also the localization of one complex
number with respect to the interior/exterior bisector of the
other two. However, we can determine a certain case when
three complex numbers can be ordered as minimum-phase
sequence.

Lemma 3. Consider the second order complex polynomial

P(z)=ap+aiz ' +az %

1. If laz| > |ao|, then P(z) is non minimum-phase function.

2. If|a1|+|az2| < |ao|, then P(2) is minimum-phase function.

3. If |az] < |ao| and |a1| > |ag| + |az|, then P(z) is non
minimum-phase function.

Proof: For the beginning let us focus on the Schur-Cohn
conditions for P(z) (Appendix A.2) and let us consider
ay/ag = plejel and a/ag = pzejez, where p; >0, i =1,2.
The Schur-Cohn conditions can be written as follows:

\a2| < \a0|; |60a1 —a251| < \a0|2 — |a2\2

or

p2<1; |p1e/® —pipre/ @~ <1 -p2. (5

The last inequality is valid whenever:

1-p2\?
1+p§—< pfz)

2py

cos(20; — 6;) >

(6)

Let us denote by

1-p2\ 2
1+p22—( pfz)

E(p1, =
(p1,p2) 207
We have
2
E(pr.pa) +1= 5o} —(1-p2)] =
2
%(Pl +p2—1)(p1 —p2+1);
2
E(pr.p2) —1 = GHEE[p} — (14p2)?] =

B (pi+pa+ 1) (pr—p2— 1)
2020 P1+p2 P1—p2 .

Consequently, if p» < 1,

e whenever p; +p> — 1 <0, then E(p;,p2) < —1;

e whenever p; —p — 1 > 0, then E(py1,p2) > 1.

1. If |az| > |ao|, then first condition from (5) is not satisfied.
It follows that P(z) is non minimum-phase function.

2. If |ai| + |az] < |aol, then |az| < |ao| also. It follows that
p2 < 1 and p; +pr < 1. For any 6y, 6,, relationship (6)
is satisfied. Thus P(z) is minimum-phase function.

3. If |az| < |ao| and |a;| > |ao| + |az|, then p2 < 1 and p; >
1+ p>. For any 6y, 6,, relationship (6) is not satisfied.
Thus P(z) is non minimum-phase function.

This ends the proof of Lemma 3.

0

Proposition 6 . Any  set of numbers

{x(0),x(1),x(2)}, which satisfies
max{|x(0)|, |x(1)|,|x(2)|} > median{|x(0)[, x(1)|, |x(2)}

complex

+min{|x(0)[, |x(1)], [x(2)[} o
has OMP property.

Proof: To prove Proposition 6, we start by assuming that
the set has been ordered in {y(0),y(1),y(2)} such that:

¥(0)| > max{[y(1)|,|y(2)[},

thus the condition from the statement of Proposition 6 is
¥(O)] > [y(1)] + [y(2)]. Besides [y(2)] < [y(0)| and we re-
trieve Case 2) of Lemma 3. Consequently Y (z) is minimum-
phase function.

Thus any set of complex numbers within statement con-
ditions, has OMP property.

0

The second statement of Lemma 3 is a special case of
Cohn’s theorem ([11], pp. 130), reformulated here as fol-
lows:

Theorem 3 . If |ag| > |an| + |an—1| + ... + |a
a7 Y+ +anz " has exactly n zeros.

, then ag +

This result can provide us real or complex sets having OMP
property of any length. This development is similar with
Proposition 6.

One of the properties of minimum-phase systems [12] is
the theorem concerning energy conservation (Appendix B).
It should be noted that by reordering we keep the energy of
the sequence, however the magnitude of the Fourier trans-
form can be easily changed. Thus the condition for a certain
sequence {x(n) },,_g37 to have its energy concentrated around
origin such that:

x(0)| > ()] > -+ > [x(M)] > 0 ®)

and the property to be minimum-phase sequence are not
equivalent. However for real positive sequences the equiva-
lence holds, as a consequence of Enestrom-Kakeya theorem
[13].

To conclude this section, we have proven that there are
cases when a set can be ordered into a minimum-phase se-
quence. However, we cannot guarantee this property for all
real or complex sequences. Moreover, in addition to the situ-
ations mentioned by Proposition 2, one can find sets without
OMP property when M > 2 for complex sequences and if
M > 3 for real sequences.
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L O [ y@M [ y@ 21 l 2 [ fal [ TJeof |
3+2] | 3+3.5] | 4+2] | -0.8068 + 1.1315] | -0.4240-0.7854] || 1.3897 | 0.8925
3+2] | 4+2] | 3+3.5] | -0.8463 - 1.0315] | -0.3845+ 0.8777] || 1.3343 | 0.9582

3+3.5] | 3+2] | 4+2j || -0.2097-0.9955] | -0.5433 + 0.7837j || 1.0173 | 0.9536
3+35) | 4+2] | 3+2j || -0.4188-0.9559] | -0.4754 + 0.5794) || 1.0436 | 0.7495
4+2] | 3+2) | 3+3.5] || -0.5974-0.8618] | -0.2026 + 0.9618] || 1.0487 | 0.9830
4+2) | 3+3.5) | 3+2) || -0.5323 + 0.9859] | -0.4177-0.5859] || 1.1204 | 0.7196

Table 1: The set {x(0),x(1),x(2)} = {3+2/,3+3.5j,4+2,} has not OMP property.

5. CONCLUSIONS

In this paper we have focussed on the issue of ordering of a
sequence into a minimum-phase sequence. We have proven
that the set of points from the N-dimensional real or complex
set having this characteristic is a non-empty open set. More-
over, we clarify some features of the sequences that can be
ordered as minimum-phase sequences.

Related issues deserve to be investigated. Using Schur-
Con recursions and all possible permutations, one can find if
a set has OMP property and can also find the corresponding
minimum-phase sequence, derived from the given sequence.
However, this may be computational expensive and other fast
methods would be highly appreciated.

A. SCHUR-COHN STABILITY TEST

A.1 Schur-Cohn recursion

Let Aj(z) be a complex polynomial of order M in z~!:

Au(z) = (XM(O)+(XM(1)Z_1 +~--+OCM(M)Z_M, o (0) = 1.

All the zeros of Ap(z) lie inside the unit circle if and only if
|| < 1,form=M,M—1,--- 1, where [14]:

ki = G (m); Bu(z) =z Al (1),

Am(Z) — kmBp, (Z)

Amfl(Z): 1—‘]( |2
m

A.2 Second order polynomial

For a second order complex polynomial in z~!, the Schur-
Cohn recursion is the following one:

ky=05(2); Ba(z) = a5 (2)+ o (1)z " + 0 (0)z 2,

o) - e2)e3(1) -
1-l(2)) ’
and all the zeros lie inside the closed unit disk if and only if

(1) —m(2)os(1)
1| (2)[?

Ar (Z) —koB»y (Z)

A= P

—1-

|l (2)| < 1; <1. 9)

B. ENERGY CONCENTRATION THEOREM

Theorem 4 . If the systems H(z) (non-minimum phase) and
H,(2) (minimum-phase) have the same magnitude response
and their response to the same input are g(n) and y(n), re-
spectively, then for any ny,

o

Zoo|y<n>|2 > Y le(n)P- (10)

n=0
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