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ABSTRACT
Fractional Brownian motions (fBm) provide important mod-
els for a wide range of physical phenomena whose empiri-
cal spectra obey power laws of fractional order. Extensions
of fBm to higher dimension has become increasingly impor-
tant. In this paper we study isotropic d-dimensional fBm in
the framework of inhomogeneous random fields, and we de-
rive exact expressions for the dual-wavenumber spectrum of
fractional Brownian fields (fBf). Based on the spectral cor-
relation structure of fBf we develop an algorithm for synthe-
sizing fBf. The proposed algorithm is accurate and allow us
to generate fractional Brownian motions of arbitrary dimen-
sion.

1. INTRODUCTION

Fractional Brownian motion in one dimension was intro-
duced by Kolmogorov in 1940 and studied in the seminal
paper [10] by Mandelbrot and Van Ness in 1968. It is a use-
ful non-stationary model for certain fractal and long-range
dependent processes of interest in physics, biology, finance,
and telecommunications [9, 15, 24], and it is the only self-
similar Gaussian process with stationary increments.

In the last few years, image processing using fractal mod-
els has represented an active research area stimulated by
the plethora of applications [2] such as infographics [16],
geophysics [9, 10], turbulence [1], satellite imagery, texture
modeling, classification and segmentation [7, 8]. See [17]
for a comprehensive tutorial on image processing using mul-
tidimensional fractal models. Natural phenomena are widely
presumed to be statistical self-similar. As a consequence,
natural images tend to be scale invariant – seeing an object
from ten meters or one meter will result in very similar im-
ages transmitted by our visual system [11, 19], and in [23] it
is shown that fractal processes provide a good model of the
correlation structure of a large class of images.

Due to its wide applicability, simulation of synthetic fBm
has drawn a lot of attention. Although it is possible to gen-
erate exact discrete-time realizations of fBm, many approx-
imate methods have been proposed as alternatives to exact
simulation. See [3] and references therein for extensive treat-
ments of various methods for synthesizing fBm. Among the
approximate simulation methods, spectral techniques, e.g.
[20, 26], have become increasingly popular. The spectral
methods is based on the spectral properties of fBm and gen-
erates a process that has a spectral density S( f ) ∝ f 2H+1.
The synthesized process is first generated in the frequency-
domain followed by a transformation to the time domain.

However, this power law behavior of fBm in the frequency
domain is a time averaged spectrum [5], and the construc-
tion of a process based entirely on this time averaged power
spectrum would imply that the resulting process is an ap-
proximation to true fBm. This problem is circumvented in
the spectral method by Yin [26] by simulating the station-
ary increments of fBm instead, and then the increments are
integrated to form the fBm process.

It is known that non-stationary random processes have
correlations between the different frequency components in
the spectral domain, and that these frequency correlations
are the reason for the non-stationary behavior [6, 21, 25].
In [12, 13] the spectral correlations of fBm was derived and
explored, and it was shown that fBm has a very distinctive
spectral correlation structure.

In this paper we derive the spectral correlation structure
of multidimensional fractional Brownian motions or frac-
tional Brownian fields, and we develop a spectral synthesizer
which accounts for that particular spectral correlation struc-
ture of fBf.

2. MULTIDIMENSIONAL FBM

An isotropic fractional Brownian field (fBf) or Lévy frac-
tional Brownian field of dimension d ∈ N, is the Gaussian
zero-mean field BH(x), x ∈ Rd , with temporal correlation
function [17, 18]

RBH (x,t) = E{BH(x)BH(x− t)} (1)

=
VH

2
(
‖x‖2H +‖x− t‖2H −‖t‖2H)

, (2)

where 0 < H < 1 is the Hurst parameter, ‖·‖ is the Euclidean
norm in Rd , E{·} is the statistical expectation operator, and

VH =
21−d−2H

πd/2H
Γ(1−H)

Γ(d/2+H)
. (3)

Here x = (x1, . . . ,xd)T and t = (t1, . . . , td)T are two d-
dimensional vectors, xi ∈ R, and T is the vector transpose.

The fractional Brownian field is an inhomogenous ran-
dom field and therefore has the following spectral represen-
tation,

BH(x) =
∫

π

−π

· · ·
∫

π

−π

e jkT xdZ(k), (4)

where k is a d-dimensional wavenumber vector which mea-
sures spatial frequency or wavenumber, and dZ(k) is the
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complex valued non-orthogonal infinitesimal Fourier gener-
ator (or generalized Fourier transform) with the following
incremental spectral covariance

(2π)2d E{dZ(k)dZ∗(k−v)}= SBH (v,k)dvdk. (5)

The spectral correlation function SBH (v,k) is called the
dual-wavenumber spectrum, and this quantity describes the
essential feature of inhomogenous random fields, namely
that there is correlation between the different wavenum-
ber components of dZ(k). Conversely, a homogenous ran-
dom field would have SBH (v,k) = S0(k)δ (k−v), for some
non-negative function S0(k), and δ (k) denotes Dirac’s delta
function. The function S0(k) is the conventional wavenum-
ber spectrum, or power spectrum for d = 1. Thus, it is
clear that for a homogenous random process, the wavenum-
ber spectrum is a second order statistical quantity that con-
tains all relevant spectral information. However, for in-
homogenous random fields, the spectral behavior is much
more complicated due to the correlations between the differ-
ent wavenumber components. Hence, the dual-wavenumber
spectrum must be considered when analyzing inhomogenous
random fields. According to Eq. (4), we may think of BH(x)
as a superposition of complex oscillations exp

(
jkT x

)
with

complex infinitesimal random amplitudes dZ(k) that are sta-
tistically correlated for different wavenumbers.

The temporal correlation function RBH (x,t) is the multi-
dimensional inverse Fourier transform of SBH (v,k) [14],

RBH (x,t) =
∫

∞

−∞

· · ·
∫

∞

∞

SBH (v,k)e j(vT x−kT t) dvdk
(2π)2d , (6)

where the spatial vector x and wavenumber vector, k are
global variables, while the spatial vector t and the wavenum-
ber vector v are local variables.

In order to gain further insight into the inhomogenous
characteristics of fBf, we may derive the dual-wavenumber
spectrum of fBf by Fourier transforming RBH (x,t) with re-
spect to the temporal variables x and t. However, the Fourier
transform of Eq. (6) does not exist in the ordinary sense,
since the integral

∫
∞

−∞
e jkT x‖t‖α dt is divergent. By the use

of Hadamard’s finite part, however, one may formulate the
integral transform in the sense of distribution theory [4, p.
364], to obtain the following dual-wavenumber spectrum for
fBf,

SBH (v,k) = 2π

[
‖k‖−(2H+1)

δ (v)

−‖k‖−(2H+1)
δ (v+k)−‖v|−(2H+1)

δ (k)
]
. (7)

The two-dimensional dual-frequency spectrum SBH (v,k) was
developed for 1D fractional Brownian motion in [12, 13],
and it was shown that this spectrum provides us with a new
way of interpreting the non-stationary behavior of fBm. The
same interpretations is also valid for SBH (v,k). For the
one-dimensional case we can formulate the following inter-
pretation of the dual-frequency spectrum. The frequency
correlation is real valued, and it is represented as a line
spectrum with spectral support on three discrete lines. For
v = 0 we have the stationary manifold, so the spectrum
SBH (0,k)dk = E

{
|dZ(k)|2

}
= 2π|k|−(2H+1)dk is the con-

ventional stationary power spectrum. Stationary random pro-

cesses would have a contribution along this line only. How-
ever, since fBm is a non-stationary random process, the dual-
frequency spectrum SBH (v,k) will have non-zero contribu-
tions also outside the stationary manifold. For k = 0, we
have that SBH (v,0)dv = E{dZ(0)dZ∗(v)}= 2π|v|−(2H+1)dν

is the correlation of the DC component of the Fourier gener-
ator with all other frequency components of the Fourier gen-
erator. For v =−k 6= 0, SBH (−k,k)dk = E{dZ(k)dZ∗(0)}=
2π|k|−(2H+1)dk is also a manifestation of the correlation be-
tween the DC component of the Fourier generator, and the
Fourier generator for all other frequencies k. Thus, the two
lines have the same interpretation, namely that the DC com-
ponent of the Fourier generator is correlated with all other
frequency components of the Fourier generator. Both of
these lines are clearly outside the stationary manifold, and
they give rise to the non-stationary behavior of fBm. Thus,
we see that by only considering the power spectrum of fBm,
crucial information regarding the correlation structure in the
frequency domain is lost.

3. SPECTRAL SYNTHESIS OF FBF

The underlying idea of the spectral synthesis method in this
section is that a prescription of the correct spectral correla-
tion of the increment field dZ(k) in Eq. (4), will give rise
to a fractional Brownian field BH(x) with 0 < H < 1. Thus,
by generating samples from the dZ(k) process with the spec-
tral correlation structure of Eq. (7), we can use the spectral
representation in Eq. (4) to construct the inhomogenous field
BH(x).

We will organize the development of the filtering process
to generate dZ(k) in the following way. First, we construct a
complex 2× 1 vector containing the infinitesimal stochastic
Fourier generators for the DC component and all the other
wavenumbers

dZ(k) =
[

dZ(0)
dZ(k)

]
, k > 0. (8)

Then we obtain the second-order covariance matrix

R(k)dk = E
{

dZ(k)dZH(k)
}

=
[

SBH (0,0) SBH (−k,k)
S∗BH

(−k,k) SBH (0,k)

]
dk

(2π)d . (9)

From Eq. (9) we can, as shown in [22], build the Fourier fil-
tering diagram shown in Fig. 1. This filter reproduces dZ(k)
with the correct spectral correlation structure. We see that
to generate the increment process dZ(k) of fBf we first gen-
erate the infinitesimal Fourier generator of the white noise
process, dW (k), where

E
{
|dW (k)|2

}
=

dk
(2π)d . (10)

and dW (k) is the infinitesimal Fourier generator of the
d-dimensional homogeneous Gaussian random field W (x).
Then the process dW (k) is scaled and combined such that
the correlations of dZ(k) are given by Eq. (7). From the
Fourier filter diagram shown in Fig. 1 we see that to obtain
dZ(0) we scale dW (0) with a factor

√
SBH (0,0), i.e.,

dZ(0) =
√

SBH (0,0)dW (0). (11)
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To obtain dZ(k), k 6= 0 we see that dW (k) and dW (0) are
scaled and combined in the following way,

dZ(k) =
SBH (0,k)√

SBH (0,0)
dW (0) (12)

+
√

SBH (0,k)

[
1−

S2
BH

(−k,k)
SBH (0,0)SBH (0,k)

]1/2

dW (k).

Finally, we build the process BH(t) from the spectral repre-
sentation in Eq. (4).

dW (0)

dW (k) dZ(k)

dZ(0)

√
SBH

(0,0)

SBH
(−k,k)

√
SBH

(0,0)

√
SBH

(0,k)

(
1 −

S2

BH
(−k,k)

SBH
(0,0)SBH

(0,k)

)1/2

Figure 1: Filtering diagram for synthesis of fBf.

To realize this filtering diagram we need to discretize the
spectral processes dZ(k) and dW (k). To discretize dW (k)
we integrate it over a frequency d-dimensional cube of size
Ωn

dW (kn) =
∫

Ωn

dW (k), n = 0, . . . ,N−1, (13)

with variance

VardW (kn) =
∫

Ωn

dω = |ΩN |=
(2π)d

N
. (14)

Now, the Fourier generator dW (k) is an orthogonal com-
plex valued Gaussian field, so the discretized random field
dW (kn) can be generated from a complex Gaussian distribu-
tion (NC ), i.e., dW (kn) ∼ NC [0,(2π)d/N]. Next, to gener-
ate the dZ(kn) (n 6= 0), which is the discrete version of the
increment process of fBf, we sample the functions SBH (0,k)
and SBH (−k,k) for the wavenumbers kin = 2πn/N, i =
1, . . . ,d, and combine them along with dW (kn) as prescribed
by Eq. (12). Since

SBH (0,0) = lim
k→0

1
‖k‖2H+1 → ∞, (15)

we approximate the variance of the DC component of the
increment process to fBf with a large but finite positive con-
stant C2. Regardless of the value of C, the covariance of
dZ(k) is given by Eq. (9), with S(0,0) replaced by C2. Thus,
even for finite C, the correlation of dZ(k), and the cross-
correlation of dZ(0) and dZ(k), are correct. Only the scale
of dZ(0) is approximated. A discretized version of the filter-
ing diagram in Fig. 1 is shown in Fig. 2.

Finally, to generate the discrete fBf BH [x] we take the
real part of an inverse discrete Fourier transform of the dis-
crete incremental process dZ(kn), n = 0, . . . ,N−1.

In Fig. 3 we have implemented the spectral synthesizer
in Fig. 2 for one-dimension, i.e. d = 1, and show synthetic
fBm samples generated for different values of the Hurst pa-
rameter H. The same sample seed for the realizations of

dW (0) dZ(0)

√
SBH

(0,kn)

(
1 −

S2

BH
(−kn,kn)

SBH
(0,0)SBH

(0,kn)

)1/2

SBH
(−kn,kn)

√
SBH

(0,0)

√
SBH

(0,0)

dW (kn) dZ(kn)

Figure 2: Filtering diagram for synthesis of discrete fBf.

the white noise increment process was used for the differ-
ent values of H. The parameters were N = 1024, and C = N.
For H = 1/2, shown in the middle panel, we have ordinary
Brownian motion. In the top panel we have generated fBm
samples for H = 0.1, and in the lower panel we have gener-
ated fBm samples for H = 0.8. We see that all the sample
paths have the same structural shape, but for small values of
H the sample path fluctuates more than ordinary Brownian
motions. For larger values for H we observe that the sample
path is smoother than Brownian motion.

The increment of fBm is defined as [26]

WH(x) = BH(x+∆x)−BH(x), x ≥ 0 (16)

and WH(x) is called fractional Gaussian noise (fGn). Since
the autocovariance function characterizes a stationary Gaus-
sian random process uniquely, insight into the performance
of the spectral synthesizer can be obtained by comparing the
estimated autocovariance function from the increments of the
synthesized fBm data with the desired autocovariance [3].
The autocovariance function of WH(t) is given by [3, 18, 26]

RWH (τ) =
VH

2
(
|τ +1|2H + |τ −1|2H −2|τ|2H)

. (17)

In Fig. 4 we show a comparison between the true autocovari-
ance function RWH (τ) of fGn, and the empirical sample auto-
covariance function R̂WH (τ) obtained from synthesized fBm
for various values of H. Solid lines show RWH (τ) and dashed
lines show R̂WH (τ). The estimated autocovariance function
is obtained by Monte Carlo simulations where M = 100 re-
alizations of length N = 214 was used for each value of H.
Fig. 4a shows the performance of the spectral synthesizer in
terms of accuracy for H = 0.1. We observe a close fit be-
tween the estimate R̂WH (τ) and the true value RWH (τ). The
match between the sample autocovariance and the desired
function is not exact, but the realizations are good approx-
imations to fBm. This applies in general for all H < 1/2
for this spectral synthesizer. Fig. 4b show the performance
of the spectral synthesizer in terms of accuracy for H = 0.8,
and we see that we have a very good match between the es-
timate R̂WH (τ) and the true value RWH (τ). This applies in
general for all H > 1/2. Thus, in the long-range dependent
regime of fBm this spectral synthesizer produce accurate re-
alizations of fBm.

In Fig. 5 we have implemented the spectral synthesizer
in Fig. 2 for two dimensions, i.e. d = 2, and show synthetic
fBf samples generated for different values of H. The param-
eters were N = 512 and C = N2. In the upper panel we have
generated an image using H = 0.1, in the middle we used
H = 0.5, and in the lower panel we used H = 0.8. The inter-
pretation of the Hurst parameter for images is related to the
”roughness“of the fBf [17]. Small values of H yield rougher
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Figure 3: Synthetic fBm sample paths for (a) H = 0.1, (b)
H = 0.5, and (c) H = 0.8. Here N = 1024 and C = N.

textures, and when H approaches 1, the smoother the corre-
sponding texture. This effect for various values of H can be
observed in Fig. 5

The degree of accuracy can be controlled by changing
the frequency resolution of the stochastic Fourier generator
dW (kn). By increasing N we increase the accuracy of the
synthesizer. The self-similarity property of fBm can be used
to obtain a sample on an arbitrary equispaced grid. Numer-
ical simulations show that the accuracy of the synthesizer
also depends on the C parameter which represents the stan-
dard deviation of dZ̃(0). When C → ∞ we see from Eq.
(12) that the correlation between the DC component and
all the other frequency components vanish, and the synthe-
sizer converge to a spectral filter with wavenumber response
G(k) = ‖k‖1−H−d/2 discussed in [17, 18]. Simulations show
that C = Nd yields good results.

0 5 10 15 20
−0.5

0

0.5

1

τ

R
W

H

(τ
)

True ACF
Estimated ACF

(a)
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1

τ
R

W
H

(τ
)

True ACF
Estimated ACF

(b)

Figure 4: Comparison between the theoretical autocovari-
ance function (ACF) of fGn and estimated autocovariance
function from synthesized fGn data for (a) H = 0.1 and (b)
H = 0.8.

4. CONCLUSION

In this paper we derived the dual-wavenumber spectrum for
multidimensional fractional Brownian fields. This spectrum
shows that fBf has a distinct spectral correlation structure,
and the inhomogeneous property of fBf is caused by the par-
ticular correlation structure of this spectrum. We developed
a filter based spectral synthesizer of multidimensional frac-
tional Brownian motion. The accuracy of the synthesizer in-
creases with increasing spectral resolution. However, as op-
posed to other spectral synthesizers, this synthesizer explic-
itly takes advantage of the inhomogeneous correlation struc-
ture of the stochastic Fourier generator of fBf. Also, the re-
sulting process does not have a periodic behavior. Since the
method applies the inverse Fast Fourier Transform, samples
can be generated very fast with a high degree of accuracy.
In contrast to some other methods for synthesizing fBm this
method is not recursive, and it does not proceed in stages for
increasing resolution.
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