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ABSTRACT
In this paper we revise the concept of time invariance of a
system, using exclusively a time domain approach. To this
aim, we adopt a group theoretical formulation which let us
recognize that the concept of time invariance is truly confined
to a few possible cases. This depends on the fact that, for a
general multirate linear system, the shift invariance property
depends not only on the kernel, but also on the input and
output domains. We illustrate the concept with an example of
application in onedimensional domains, indicating that our
definition has a useful impact in the analysis and synthesis
of multirate linear systems. Furthermore, the proposed ap-
proach permits to extend the concept of system invariance to
multidimensional domains.

1. INTRODUCTION

In this paper we present a unified framework for the repre-
sentation of time invariance in linear systems (LSs). Several
papers in the past addressed the problem of time invariance,
most of them dealing with periodical invariance, also called
periodical variance. For standard references on linear time
varying systems, see [1] [2] [3].

Usually, the definition of a periodical system focuses on
the case of equal input and output domains, i.e. single rate
systems [1] [2] [4]. In this case, in fact, the periodical in-
variance of a system has a counterpart into the periodicity of
the system impulse response [1] [2] or of the kernel [3] [4].
According to [4], the definition of periodical invariance is
possible even in the case of multidimensional discrete linear
systems with equal outer domains. The early work [3] in-
troduced a complete state model of periodically time varying
systems, deriving also the spectral representation of multi-
rate filters where the input sampling rate is p times larger
than the output sampling rate. But, in the most general case
of different outer domains, i.e. multirate systems, the defi-
nition of shift invariance depends on both the input and the
output domain.

Recently, the authors of [5][6] related the periodical in-
variance of a multirate system to the ratio of the input and
output sample rates. They introduced the concept of (m,n)-
shift invariance, exploiting the reasoning that if the input se-
quence is delayed by n samples, then the output sequence
will be delayed by m samples.

The main contribution of this work is to provide a uni-
fied definition of shift invariance which works in the most
general case. In particular, we do not assume any a priori
decomposition of the system in order to introduce the con-
cept of periodicity and invariance. An appealing feature of

such a definition is that the concept of invariance for a mul-
tirate system can be extended naturally to multidimensional
systems [7]. Also, the periodical invariance can be expressed
exclusively in the time domain, through kernel’s properties.

In particular we use a group theoretic approach [7][8],
where the signal domain is always a subgroup of Rm: this
is the key assumption leading to a unified definition of shift
invariance in terms of input/output domains only and to a
representation-independent approach. For example, the pro-
posed development applies also to the continuous domain,
and is not limited to discrete groups [3][5]. Thus, this notion
of shift invariance adapts to a larger class of systems.

2. BASIC DEFINITIONS

In what follows, the fundamental assumption we need is that
the signal domain L is an Abelian group. Hence, a signal on
L, denoted by s(t), t ∈ L, is a complex function defined on
the group L.

For every s(t), t ∈ L, it is possible to introduce the linear
operator

Hs =
∫

L

dt s(t) , (1)

with the shift invariance property
∫

L

dt s(t) =
∫

L

dt s(t − t0) , ∀t0 ∈ L , (2)

which happens to be a general property of the Haar integral.
The strict mathematical formulation [9] requires that the

integral appearing in (1) is the Haar integral and the sig-
nal domain a locally compact Abelian group. However, for
the most cases encountered in practice, such a general topo-
logical formulation is far beyond a fairly general descrip-
tion and can be specialized to the cases of interest. They
are represented by the real domain R, the discrete domain
Z(T ) = {nT |n ∈ Z}, and their multidimensional counter-
parts, that is Rm and lattices L. In the following, some pre-
liminary definitions are given, according to [4].

2.1 Lattices, cells and discrete signals

Definition 1 A lattice L in Rm of rank m is a set of the form
L =

{
Ln

∣
∣ n ∈ Zm

}
, where L is a non–singular m×m real

matrix, called a basis of L.
The basis L is not unique: indeed, if E is any matrix of

integers such that |detE| = 1, then LE generates the same
lattice L. Moreover, all the bases of L can be written in this
form, so that the quantity d(L) = |detL| is specific of the
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lattice L [4]. If J and K are lattices with J a sublattice of K

(J⊂K), then d(J) is an integer multiple of d(K). The integer
(K : J) = d(J)/d(K) is called the index of J in K. In the
following we assume that the mD lattices belong to the class
Lm of the sublattices of a same “superlattice” of the form
Z(T1)× ·· ·×Z(Tm), where Z(T ) = {nT |n ∈ Z}. Then, the
bases can be written in the form diag(T1, · · · ,Tm)A, where
A is an integer matrix and the diagonal matrix can take into
account physical dimensions (time spacing, horizontal and
vertical spacings, etc.).

We shall illustrate the concept in 1D and 2D. In the 1D
case, the general lattice of L1 has the form Z(T ), where
T > 0 represents the time spacing of the signal. In the 2D
case, we find convenient to express lattices of L2 in the form
Zi

a(T1,T2), corresponding to the upper diagonal basis

L =

[

T1 0
0 T2

][

a i
0 1

]

i,a ∈ Z, 0 ≤ i < a. (3)

So, e.g., Z1
2(T1,T2) is a quincunx lattice and Z2

4(T1,T2) is a
hexagonal lattice. These lattices are illustrated in Fig.1.

T1

T2

10T1

10T2

J = Z1
2(T1,T2)

t1

t2

T1

T2

10T1

10T2

K = Z2
4(T1,T2)

t1

t2

Fig. 1 − Examples of 2D lattices of R2.

Let G be a lattice and let J be a sublattice of G. A coset of
J in G is a shifted version of J, J+c = { j+c | j ∈ J}, c ∈ G.
Two cosets J+c and J+d may be distinct or coincident, and
the coincidence occurs iff c−d ∈ J.

Definition 2 A subset C of G is called a (discrete) cell of G

modulo J, and here denoted by [G/J), if the cosets J + c,
c ∈ C represent a partition of G, that is (J + c)∩ (J + d) =

/0 , c 6= d and
⋃

c∈C

(J+ c) = G.

Given a lattice L, the reciprocal lattice is defined by
L? = { f ∈ Rm| f t ∈ Z, t ∈ L}, where f t = f1t1 + · · ·+ fmtm
is the inner product of f = ( f1, · · · , fm) and t = (t1, · · · , tm)
(for simplicity we avoid the notation f ′t). If L is a basis of
L, then a basis of L? is given by the inverse transpose of L.
Hence the relation d(L?)d(L) = 1. Note that for two lattices
J and K, if J ⊂ K, then J? ⊃ K?. For a given cell C = [K/J)
it is possible to define the reciprocal cell as C? = [J?/K?),
which has the same cardinality as C.

A mD discrete signal on L, denoted by s(t), t ∈ L, is a
complex function defined on the mD lattice L. The density
of the lattice given by µ(L) = 1/d(L) will be called the rate
of the signal. For every s(t), t ∈ L, the linear operator in (1)
has the same properties as the Lebesgue integral on the real
line and becomes

∫

L

dt s(t)
∆
= d(L) ∑

t∈L

s(t). (4)

3. TIME INVARIANCE

3.1 Shift Invariance

In order to describe the concept of time invariance, we use
the shift operator, applied to a signal s(t), t ∈ L as S

L
ps(t) =

s(t − p), p ∈ L. Notice that, since L is assumed to be an
Abelian group, it results

S
L
p1+p2 = S

L
p1S

L
p2 = S

L
p2S

L
p1 = S

L
p2+p1 , ∀p1, p2 ∈ L. (5)

Also, the shift operator only deals with shifts belonging to the
signal domain. Thus, for example, the shift S

Z(T/2)
T/2 applies

to y(t), t ∈ Z(T/2) whereas a T/2 shift does not apply to
x(t), t ∈ Z(T ).

Let L be a system having input and output signals, x(u)
and y(t), defined on the domains J and K respectively, briefly
a J → K system. We can state the shift invariance of L with
respect to p when J and K have a common group operation,
that is they must be subgroups of a same group L and L S

J
p =

S
K
p L, p ∈ J∩K. But, since the shift operator only deals

with shifts belonging to the signal domain, the shift makes
sense only if p ∈ J and p ∈ K: we say that p ∈ J∩K is a
compatibility condition.

Given a J → K system L, we define its subset of invari-
ance as the set P of those p such that shift invariance applies.
Notice that 0 ∈ P for any system L. Also, if P is the subset
of invariance of a LS, then P is always an Abelian group and,
more specifically, P ⊂ J∩K.

The above definition holds for a general system. In the
case of a linear system Lh, the I/O relationship is specified by
the kernel h(t,u) through the following unified representation

Lh : y(t) =
∫

J

duh(t,u)x(u) , t ∈ K , (6)

where the integral has been introduced before.
In the case of a linear system the set of invariance is fully

specified in terms of the kernel, since from (6) it follows

Theorem 1. A J → K system with kernel h(t,u) is shift
invariant on P if and only if

h(t + p,u+ p) = h(t,u) , ∀ p ∈ P . (7)

The above statement represents a straightforward gener-
alization of the analogous condition in the case of equal do-
mains [3][4].

3.2 Classification

From the above, it follows that the general periodicity of a
linear system is constrained by

O ⊆ P ⊆ J∩K , (8)

with O , {0} representing the trivial group. Based on (8),
we can introduce a corresponding classification for the in-
variance of a general linear system L.
• P = O: time-varying system (TV)
• O ⊂ P ⊆ J∩K: periodically invariant (PI)
• P = J∩K: quasi-invariant (QI)
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• P = J: strictly invariant (SI).
We call periodically invariant those systems denoted pe-

riodically variant in literature (see for example [1][5]). This
choice is dictated by the analogy with the definition of strict
invariant system, which is obtained as a limit case when the
periodicity coincides with the input domain. Anyway, our
definition leads to a subtle distinction between the various
classes of invariant systems listed above. In particular, the
invariance displays a hierarchy of inclusion with respect to
the periodicities. In fact, for time-varying systems it holds
P = {0}, whereas the strict invariance is possible only in the
case P = J ⊂ K and, furthermore, single-rate SIL systems
can be obtained if P = J = K.

As for strictly invariant systems, the kernel collapses into
a single argument function, as shown by the following.
Theorem 2. The kernel h(t,u) of a QILS can be written in
the form

h(t,u) = g(t −u).

The proof of this fact can be found in [7]. In the case of a
QILS, the function g(·) is called the impulse response of the
system and is defined on E = J+K

∆
= { j +k | j ∈ J,k ∈ K}.

3.3 Basic QIL and PIL systems

In the class of QILSs a further classification can be achieved,
depending on domain orderings, giving
1) ordinary filters, when J = K (single-rate systems E = J),
2) up-samplers, when J ⊂ K (two-rate systems E = K),
3) down-samplers, when J ⊃ K (two-rate systems E = J).
Any other QILS can be synthesized starting from these three
components, which we shortly describe in the following.

An ordinary filter on J with impulse response g(v), v ∈ J

is a single-rate system governed by the I/O relationship

y(t) =
∫

J

dug(t −u)x(u) = g∗ x(t) , t ∈ J . (9)

Eq. (9) represents a convolution of two signals and has the
same properties as the standard convolution on the real line,
e.g. the identity element is the Dirac’s delta function if J = R

and, in the case of discrete domains,

δJ(t) =

{

1/d(J) t = 0
0 t 6= 0 t ∈ J . (10)

In a J → K up-sampler, since J ⊂ K, the impulse re-
sponse, defined on K, becomes δK(v) and the I/O relation-
ship becomes y(t) = A0 x(t) if t ∈ J, A0 = d(J)/d(K) and 0
otherwise. Up-sampling retains a fixed multiple of the input
signal values at every point t that J and K have in common
and inserts zeros in the rest of the output domain K.

On the contrary, in a J → K down-sampler, since J ⊃
K, the impulse response is δJ(u), u ∈ J and the following
I/O relationship is achieved: y(t) = x(t), t ∈ K, i.e, the input
signal is restricted to the output domain.

Observe that filters and up-samplers are strictly invariant
systems, whereas down-samplers are QILSs.

In the broader class of PILSs, instead, other basic com-
ponents can be defined, such as modulators, with J = K,
which multiply the input signal by a periodic carrier. A mod-
ulator with carrier γ(t), t ∈ J with periodicity P ⊂ J has
I/O relationship y(t) = γ(t)x(t), t ∈ J and kernel given by
h(t,u) = γ(t)δJ(t −u), t,u ∈ J [10].

4. COMPARISON WITH PREVIOUS DEFINITIONS

In this section we compare the notion of shift invariance of
literature with the definition introduced here. In the case of
single rate systems, i.e. J = K, we already mentioned that
shift invariance condition (7) includes also the traditional
concept of periodically varying system, as given in [3][4].
Some authors, i.e. [1] [2], define linear periodically time-
varying systems, with period M, through the I/O relationship

y(n) = ∑
m

an(m)x(n−m) (11)

where an(m) = an+M(m), ∀m,n. But, it is easy to show that
such a definition is equivalent to (7) for single rate systems.

Finally, according to the definition of [5][6], a multirate
linear system L is (m,n)-shift invariant, when

h(k +m, l +n) = h(k, l) , ∀k, l ∈ Z. (12)

The definition in (12) is apparently more general than (7),
since it relies on a different definition of shift invariance

L S
Z
n = S

Z
m L . (13)

In what follows we prove that, in the case of linear systems,
our definition is equivalent to (13). Preliminarily, we observe
that if L is a (m,n)-shift invariant linear system and it is also
(m′,n′)-shift invariant, then m/n = m′/n′. In fact, a (m,n)-
shift invariant system is also (km,kn)-shift invariant:

LS
Z

kn = S
Z
mLS

Z

(k−1)n = S
Z
2mL S

Z

(k−2)n = . . . = S
Z

km L (14)

Thus, if we assume that L is both (m,n) and (m′,n′)-shift
invariant, then, from (14) it is also (n′m,nn′) and (nm′,nn′)
shift invariant, so that n′m = nm′. Also, let m0 and n0 are
coprime and m0/n0 = m/n, then, for any other pair (m,n)
such that L is (m,n)-shift invariant, there exist integer k such
that (m,n) = (km0,kn0). Now, let L have kernel h(r,s), and
consider the Z(T1) → Z(T2) multirate linear system L̃, with
kernel h(rT2,sT1): apart from a linear transformation of the
time domain, L̃ has the same I/O relationship of the original
system. If we choose T1 and T2 so that m0/n0 = T1/T2, we
recognize that L̃ is time invariant over set

P = { p | p = nT1 = mT2, L is (m,n)− shift invariant}.
In general, P ⊂ Z(T1)∩ Z(T2): if m and n are coprime,

the set P = Z(T1)∩Z(T2) and the system is a QILS.
Formally, we proved that

Theorem 3. For every (m,n)-shift invariant multirate lin-
ear system L there exists a linear transformation of the time
domain such that the resulting Z(T1) → Z(T2) multirate lin-
ear system i) has the same I/O relationship as L and ii) it is
shift-invariant on P ⊂ Z(T1)∩Z(T2).

We remark that the above result states that the overall
class of (m,n) shift invariant systems can be captured by our
definition through an affine transformation (rotation) accord-
ing to the ratio m/n. We believe that a major advantage of the
definition presented here is that it fits naturally the multidi-
mensional domain, because it relies only on the concepts of
sum and intersection of time domains, whereas (m,n)-shift
invariance is inherently related to the 1-dimensional case. In
the next section we show that the interest to this novel defi-
nition is not limited to the theoretical aspect of the problem,
but, using our definition of shift invariance, we can obtain
efficient decompositions and analysis of multirate linear sys-
tems.
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2↑-
Z

x -

Ψ0(·)
-

Ψ1(·)
-

3↓- -
Z

y

-

6

Fig. 2 − Structure of a (4,6)–periodic system with output switch.

5. APPLICATION TO LSTV SYSTEMS

We derive an example of decomposition of a general mul-
tirate linear system, which shows that the notion of shift in-
variance introduced in this paper is effective. Notice that sev-
eral related works in literature [5] [6] focused on equivalent
structures to represent general multirate linear systems. We
provide an all time domain relationship between the compo-
nents involved, which, if we would not leverage the frame-
work presented before, would represent a much more com-
plicated task even for the simple example reported here.

In particular, we consider a (4,6)-shift invariant system,
which can be represented as a linear switched time varying
(LSTV) system [6], as depicted in Fig.2. The switch collects
6 consecutive samples from each branch, and then connects
to the next subsystem. The corresponding multirate system
we examine first in this example is a Z(2) → Z(3) PIL sys-
tem with kernel h(·, ·) and assigned periodicity P = Z(12) ⊂
Z(6) = Z(2)∩Z(3) = P0. Later, we will show that the de-
composition can be further specialized in case the multirate
system is a Z(2) → Z(3) QILS (P = P0).

In the first step, let us decompose the output domain Z(3)
according to the cosets of Z(12) in Z(3), as t = t0 + a, t ∈
Z(3), t0 ∈ Z(12) and a ∈ [Z(3)/Z(12)) = {0,3,6,9}. Hence,
the I/O relationship can be written as

y(t0 +a) =
∫

Z(2)
du h(t0 +a,u)x(u) =

=
∫

Z(2)
du qa(t0 +a−u)x(u),

(15)

where

qa(u) = h(a,a−u) , a ∈ [Z(3)/Z(12)) , u ∈ Z(2). (16)

The final expression in (15) means that the components
y(t0 +a) of the output signal can be obtained through a bank
of filters on Z(2) and a bank of Z(2)→ Z(12) down-samplers
[2]. Finally, the output signal y(t) is recovered from its com-
ponents which must be up-sampled Z(12) → Z(3), properly
delayed and summed as shown in Fig.3. Note that the last

q0(·)- ↓- ↑- -

q3(·)- ↓- ↑- z−3- -

q6(·)- ↓- ↑- z−6- -

q9(·)-

Z(2)

↓-

Z(2)

↑-

Z(12)

z−9-

Z(3)

-

Z(3)

Σ
1/4

- -
Z(3)

y(t)-
Z(2)

x(u)

Fig. 3 − Output decomposition of a Z(2) → Z(3) PILS.

multiplier is justified to compensate the up-sampling opera-
tion Z(12) → Z(3).

For each branch of the architecture, we further refine
our analysis using standard noble identities as depicted in
Fig. 4 for the a-th branch. Briefly, each Z(2) → Z(12)
down-sampler is split into the cascade of two down-samplers
Z(2) → Z(6) and Z(6) → Z(12), and, analogously, a similar
decomposition holds also for the Z(12) → Z(3) up-sampler.

Notice that this is a crucial step, since we report the de-
composition to the thickest possible periodicity, i.e. Z(6).

Hence, at step 3), we can replace the cascade of Z(6) →
Z(12) down-sampler and Z(6) → Z(12) up-sampler with a
modulator having carrier γ(v), v∈ Z(6), which represents the
indicating function of Z(12). At step 4), the modulator and
the Z(6) → Z(3) up-sampler are reversed in order, leading
to an up-sampled version of the modulator carrier. Step 5)
uses a noble identity to bring the system in the Z(1) domain,
which happens to result from the sum Z(2)+ Z(3). At step
5), we also move the modulator after the delay element, re-
sulting in a modified carrier γa(t) = 1 if t = a+t0, t0 ∈ Z(12),
a ∈ [Z(3)/Z(12)), and zero otherwise. At step 6), we apply

qa(·)-
Z(2)

↓-
Z(2)

︸ ︷︷ ︸

↑-
Z(12)

z−a-
Z(3)

-
Z(3)

↓

︷ ︸︸ ︷

↓-
Z(6)

︸ ︷︷ ︸

↑-
Z(12)

↑-
Z(6)

qa(·)-
Z(2)

↓-
Z(2)

×

6γ(v)

-
Z(6)

↑-
Z(6)

z−a-
Z(3)

-
Z(3)

qa(·)-
Z(2)

↓-
Z(2)

↑-
Z(6)

×

6γ(t)

-
Z(3)

z−a-
Z(3)

-
Z(3)

qa(·)-
Z(2)

↑-
Z(2)

↓-
Z(1)

z−a-
Z(3)

×

6γa(t)

-
Z(3)

-
Z(3)

↑-
Z(2)

q̃a(·)-
Z(1)

z−a-
Z(1)

↓-
Z(1)

×

6γa(t)

-
Z(3)

-
Z(3)

↑-
Z(2)

q̄a(·)-
Z(1)

×

6γa(w)

-
Z(1)

↓-
Z(1)

-
Z(3)

1)

2)

3)

4)

5)

6)

7)

Fig. 4 − Reduction of the a–th branch.

another noble identity to reverse in order the filter qa(·) and
the successive up-sampler. In addition, we reverse in order
the Z(1) → Z(3) down-sampler and the delay element.

In the end, we obtain the structure in 7), where the modu-
lator function is an up-sampled version of that defined at step
5). Furthermore, each q̃a(w) is the Z(2) → Z(1) up-sampled
version of qa(·), whereas q̄a(w) = q̃a(w− a). Now, we can
use (16) and provide the explicit form of q̄a(w), which can
be easily expressed in terms of the original kernel

q̄a(w) =
{2h(a,2a−w) if w ∈ Z(2)

0 otherwise

The overall final scheme is depicted in Fig.5.
At this point we can relate our final scheme to that of

Fig. 2. In particular, the output switch can be replaced by
a bank of modulators having modulating functions Γ0(w) =
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q̄0(·)- ×

6γ0(w)

- -

q̄3(·)- ×

6γ3(w)

- -

q̄6(·)- ×

6γ6(w)

- -

q̄9(·)-

Z(1)

×

6γ9(w)

-

Z(1)

-

Σ
1/4

- ↓-
Z(1)

-
Z(3)

↑-
Z(2)

-
Z(1)

Fig. 5 − Final scheme.

∑5
k=0 γ(w− k), w ∈ Z(1) and Γ6(w) = Γ0(w−6) and a sum-

mation element. In fact, it is sufficient to note that func-
tion Γ0(w) annihilates the output of lower two branches of
our scheme and Γ6(w) annihilates the output of upper two
branches, respectively (Fig. 6). Thus, the scheme of Fig. 2
can be obtained from our decomposition, letting Ψ0(w) =
γ0 q̄0(w)+ γ3 q̄1(w) and Ψ1(w) = γ6 q̄2(w)+ γ9 q̄3(w).

Noticeably, we gained a simple, all time domain relation
between the original kernel and the components of the initial
LSTV model: to the best of the authors’ knowledge, such
relationship was not derived before in literature.

Finally, in the case P = P0, the system is a QILS: apply-
ing the above decomposition, the overall scheme reduces to a
unique branch, simplifying the design complexity. Moreover,
the down-sampler/up-sampler cascade performed at step 2) is
no longer needed, so that γa(·) modulators disappear.

Ψ1(·)
-

Z(1)

×

6Γ6(w)
Z(1)

Σ
U

�

1/4
- ↓-

Z(1)
-

Z(3)

Ψ0(·)
- ×

6Γ0(w)

-

↑-
Z(2)

-
Z(1)

Fig. 6 − Equivalence with (mp,mq)–invariant architecture [5].

Differently from existing literature, our definition of time
invariance applies naturally to multirate multidimensional
systems. Conversely, the definition of (m,n)–shift invari-
ance is limited to 1-dimensional systems. In particular, the
proposed classification holds whenever the involved domains
are Abelian groups. In the following we list some examples
where the above framework can be applied in the multidi-
mensional case.

The first example of application in the 2-dimensional
case is the line interlace pattern used in television scan-
ning [11][7]. In this context it is customary to apply
up/downsampling between different and possibly non or-
thogonal 2-dimensional domains to obtain conversions be-
tween different TV standards: as previously shown, this kind
of operation can be associated with QIL systems. Dealing
with multidimensional systems, in [10] a new basic com-
ponent, the exponential modulator, has been introduced. It
allows to deal with the broad class of PIL systems, which
ultimately is the more general class for multirate systems.
For instance, exponential modulators were adopted in [12]
to propose a multidimensional approach to Orthogonal Fre-
quency Division Multiplexing (OFDM), starting from a ba-
sic architecture and obtaining efficient implementations. The
schemes obtained in [12] fall in the general class of PILSs.

6. CONCLUSIONS

The concept of shift-invariance in multirate systems was pre-
sented in this paper following a fully time-domain approach,
based on a group theoretic definition of signal domain [4][7].
The unified notation leads to a compact and effective descrip-
tion of invariance, which promises significant results in the
analysis and synthesis of linear systems. Through a simple
example, we showed that such definition brings an unam-
biguous and efficient decomposition and synthesis of multi-
rate systems. Remarkably, the proposed approach applies to
the time invariance of multirate multidimensional systems.
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