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ABSTRACT 
Heart Rate Variability (HRV) analysis is a non-invasive tool 
for assessing the autonomic nervous system and specifically 
it is a measurement of the interaction between sympathetic 
and parasympathetic activity in autonomic functioning. In 
recent years, HRV signal is mostly noted for automated  
arrhythmia detection and classification. In this paper, we 
have used a neural network classifier to automatic         
classification of cardiac arrhythmias into five classes. HRV 
signal is used as the basic signal and linear and nonlinear 
parameters extracted from it are used to train a neural   
network classifier. The proposed approach is tested using the 
MIT-BIH arrhythmia database  and satisfactory results were 
obtained with an accuracy level of 99.38%.  

1. INTRODUCTION 

One of the methods which is mostly noted by specialists, for 
assessing the heart activity and discrimination of cardiac 
abnormalities, is called Heart Rate Variability (HRV). HRV 
is a nonlinear and nonstationary signal that represents the 
autonomic activity and its influence on the cardiovascular 
system. Hence, measurement of heart rate variations and 
computerized analysis of it is a non-invasive tool for       
assessing the autonomic nervous system and cardiovascular 
autonomic regulation . Furthermore, it could give us       
information about heart deficiency at the present or in the 
future.  
     An automated method for the classification of cardiac 
arrhythmias is proposed based on linear and non-linear 
analysis of HRV. Time and frequency domain measures in 
heart rate variability analysis are less successful in the    
classification of multiple rhythm changes. With the help of 
measures from non-linear dynamics we can quantify some 
of the complex structures in heart rate time series [1].  
Therefore, we have used a combination of linear and      
non-linear parameters. These features are used as input in an 
artificial neural network (ANN), which classifies each    
segment into one of the arrhythmia classes. 

2. MATERIALS AND METHODS 

In this paper, we explore the HRV signal as the basic signal 
to classify cardiac arrhythmias into five classes : normal 
sinus rhythm (NSR), premature ventricular contraction 

(PVC), atrial fibrillation (AF), ventricular fibrillation (VF) 
and and 2° heart block (BII). 

The HRV arrhythmia data, obtained using the ECG data 
from the MIT-BIH Arrhythmia Database which was digitized 
at a sampling rate of 360Hz. Moreover, due to the lack of the 
VF data in the MIT-BIH arrhythmia database, the Creighton 
University Ventricular Tachyarrhythmia Database was     
resampled at 360 Hz and then used for the VF arrhythmia 
class. 

Our analysis is carried out in three stages. First a       
preprocessing procedure is used to extract tachograms from 
the ECGs. In this stage we have used Tompkins algorithm [2] 
for detection of R peaks. The tachograms are segmented into  
small segments. Each segment contains 32 RR-intervals and 
is characterized using the MIT-BIH arrhythmia database an-
notation. In the second stage, time and frequency domain and 
nonlinear methods are applied to extract corresponding fea-
tures. In the third stage the extracted features are used to train 
a neural network classifier. 

Next materials and methods are described. Then the   
different steps of the proposed algorithm are explained.   
Finally results obtained on the MIT-BIH arrhythmia database 
are presented.   

3. FEATURE EXTRACTION  

The methods for HRV analysis can be divided into linear 
(time and frequency domain) and nonlinear methods. 
In this work, we explored a combination of linear and 
nonlinear features. 

3.1 Time domain analysis 
The time domain methods are the simplest to perform and 
various parameters can be extracted by time domain analysis 
of the segments [3]. We utilized five time domain parameters 
as follows: 

Mean:  Mean of all RR intervals in each segment 
Rmssd: Root mean square successive difference of       

intervals in each segment  
SDNN: Standard deviation of the RR intervals in each 

segment 
SDSD: Standard deviation of differences between       

adjacent RR intervals in each segment 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



pNN50: Number of successive difference of intervals 
which differ by more than 50 ms divided by the total number 
of all RR intervals in each segment 

3.2 Frequency domain analysis 
Time domain methods are computationally simple but lack 
the ability to discriminate between sympathetic and para-
sympathetic contributions of HRV [4].  Spectral analysis is 
the most popular linear technique used in the analysis of 
HRV signals [5]. Spectral power in the high frequency (HF) 
(0.15-0.4 Hz) band reflects respiratory sinus arrhythmia 
(RSA) and thus cardiac vagal activity. Low frequency (LF) 
(0.04-0.15 Hz) power is related to baroreceptor control and 
is mediated by both vagal and sympathetic systems [3,5]. 
We used one frequency domain parameter which is 

LF/HF: Ratio between LF and HF band powers 

3.3 Nonlinear analysis 
A complex system like cardiovascular system can not be 
linear in nature and by considering it as a nonlinear system 
can lead to better understanding of the system dynamics. We 
utilized five nonlinear parameters in this work as follows: 
 
3.3.1. SD1/SD2 
A relatively recent tool for HRV analysis is the Poincaré 
plot, which does not require the HRV signal to be stationary 
[6]. Poincaré plot is a graphical representation of the       
correlation between successive RR intervals, i.e. plot of 

)1( +nRR  as a function of )(nRR  as described in Figure 
1. The Poincaré plot may be analyzed quantitatively by   
calculating the standard deviations of the distances of the 

)(iRR  to the lines xy =  and mRRxy *2+−= , 

where mRR   is the mean of all )(iRR . The standard     

deviations are referred to as 1SD  and 2SD , respectively. 

1SD  related to the fast beat-to-beat variability in the data, 

and 2SD  described the longer-term variability of )(iRR . 

The ratio  21 / SDSD  may also be computed to describe the 
relation between these components [7]. 
 
3.3.2. ApEn 
Approximate entropy (ApEn) is a regularity statistic that 
quantifies the unpredictability of fluctuations in a time    
series. ApEn reflects the likelihood that similar patterns of 
observations will not be followed by additional similar   
observations. A time series containing many repetitive    
patterns has a relatively small ApEn and a less predictable 
(i.e., more complex) process has a higher ApEn [8]. We have 
used the method proposed in [9] for calculating the ApEn 
where m (pattern length) set to 2 and r (criterion of        
similarity) set to 20% of the standard deviation of the    
segment, as proposed in [10]. 
 
3.3.3. SpEn 
Spectral entropy (SpEn) quantifies the spectral complexity 
of the time series [11]. Application of Shannon’s channel 

entropy gives an estimate of the spectral entropy of the  
process,   where entropy is given by 
 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

f f
f p

pH 1log                                 (1) 

 
where fp  is the PDF (probability density function) value at 

frequency f  [5]. 
Heuristically, the entropy is enterpreted as a measure of 

uncertainty about the event at f . Thus entropy can be used 
as a measure of system complexity. The spectral entropy H  
describes the complexity of the HRV [5]. 
 
3.3.4. LLE 
Lyapunov exponent is simply a measure of how fast two 
initially nearby points on a trajectory will diverge from each 
other as the system evolves, thus giving information about 
the system’s dependence on initial conditions [12]. A     
positive Lyapunov exponent is a strong indicator of chaos 
[13,14]. Even though an m  dimensional system has m  
Lyapunov exponents, in most applications it is sufficient to 
compose only largest Lyapunov exponent (LLE). 

The average largest Lyapunov exponent is calculated as 
follows. First, a starting point is selected in the reconstructed 
phase space and all the points which are closer to this point 
than a predetermined distance, ε ,are found. Then the      
average value of the distances between the trajectory of the 
initial point and the trajectories of the neighboring points are 
calculated as the system evolves. The slope of the line      
obtained by plotting the logarithms of these average values 
versus time gives the LLE. To remove the dependence of 
calculated values on the starting point, the procedure is    
repeated for different starting points and the average is taken 
as the average LLE [15]. 
 
3.3.5. DFA 
The detrended fluctuation analysis (DFA) is used to quantify 
the fractal scaling properties of short interval R-R interval 
signals. This technique is a  modification of the root-mean-
square analysis of random walks applied to nonstationary 
signals [16].  

The root-mean-square fluctuation of an integrated and 
detrended time series is measured at different observation 
windows and plotted against the size of the observation   
window on a log-log scale [4]. 

First, the R-R time series (of total length N) is integrated 
using the equation: 

 ∑
=

−=
k

i
avgRRiRRy(k)

1
))((                       (2) 

 
where )(ky  is the kth value of the integrated series, )(iRR  

is the ith inter beat interval and avgRR  is the average inter 
beat interval over the entire series.  
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                                              (a)                                                                                          (b) 

Figure 1. Poincaré plot of (a) normal subject (b) heart rate with AF 
 

Then, the integrated time series is devided into windows 
of equal length, n. In each window of length n, a least-
squares line is fitted to the R-R interval data (representing the 
trend in that window). The y coordinate of the straight line 
segments are denoted by )(kyn . Next, we detrend the   

integrated time series, )(kyn , in each window. The root-
mean-square fluctuation of this integrated and detrended  
series is calculated using the equation: 
 

∑
=

−=
N

k
n kyky

N
nF

1

2)]()([1)(   .                    (3) 

 
This computation is repeated over all time scales     

(window sizes) to obtain the relationship between )(nF  and 
window size n (i.e., the number of beats in a window that is 
the size of the window of the observation). Typically, )(nF  
will increase with window size. The fluctuation in small 
windows related to the fluctuations can be characterized by a 
scaling exponent (selfsimilarity factor), α , representing the 
slope of the line relating log )(nF  to log n [4].  

4. NEURAL NETWORK CLASSIFIER 

Artificial neural networks (ANNs) are biologically inspired 
networks that are useful in application areas such as pattern 
recognition, classification etc.. The decision making process 
of the ANN is holistic, based on the features of input       
patterns, and is suitable for classification of biomedical data. 
Typically, multilayer feed forward neural networks can be 
trained as non-linear classifiers using the generalized back 
propagation algorithm [5,17].  

The features extracted from linear and nonlinear analysis 
are used to train a back propagation neural network. The  
chosen architecture of the neural network contains: 11 inputs, 
one hidden layer with 20 neurons and 5 outputs, being a real 
number in the interval [0,1]. The position of the maximum of 
the outputs of neural network indicates the membership with 

the appropriate class. The training of the neural network ends 
if the sum of the square errors for all segments is less than 
0.01 or the maximum number of training epochs is reached 
(2000 epochs). The number of data set used for training and 
testing of the neural network classifier and the results for 
each class are listed in Table2. 

5. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed classifier, three 
measures are used and defined as follows: 

 

100(%) ×
+

=
FNTP

TPySensitivit                        (4) 

100(%) ×
+

=
FPTN

TNySpecificit                        (5) 

100
)(

)(
×

+++
+

=
FPTNFNTP

TNTPAccuracy       (6) 

 
where TP, TN, FP, and FN stand for true positive, true   
negative, false positive and false negative, respectively. If 
for example a segment of HRV with the VF arrhythmia is 
classified as the VF, then it is said that the segment is     
classified TP. On the other hand if a non-VF segment is clas-
sified as non-VF, then it is said that the segment is classified 
TN. Any non-VF segment which is classified a VF segment 
by mistake will produce a FP, while any VF segment which 
is classified a non-VF segment by mistake will produce a 
FN result. 

For the evaluation of proposed classifier, a total of 1317 
segments, which are obtained on the MIT-BIH arrhythmia 
database, were used and it consisted of 835 NSR segments, 
57 PVC segments, 322 AF segments, 78 VF segments and 25 
BII segments. Table1 shows the results of classification of 
test data for each class. The implementation was               
experimented on a variety of datasets and results presented in 
Table1 and Table2 represent the average performances. 
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Table 1. Results from the classification algorithm 
NSR PVC AF VF BII

NSR 280 0 0 0 0 
PVC 0 17.1 1.7 0 0.2 
AF 0.1 3.6 104.2 0 0.1 
VF 0 0 1 24.8 0.2 
BII 0 0 0 0 10 

 
Table 2. Sensitivity, specificity, and accuracy for each class 

(units,%) 
Accuracy Specificity Sensitivity # of Train 

& Test 
segments 

Arrhythmia 
Classes 

99.98 
98.76 
98.53 
99.73 
99.89 

99.94 
99.15 
99.19 
100 

99.88 

100 
90 

96.48 
95.38 
100 

555,280 
38,19 

214,108 
52,26 
15,10 

NSR 
PVC 
AF  
VF 
BII 

99.38 99.63 96.37 Average 

6. DISCUSSION AND CONCLUSIONS 

In this paper, the neural network classifier is presented as 
diagnostic tool to aid the physician in the analysis of heart 
diseases. The neural network classifier was fed by the    
combination of linear and non-linear parameters derived 
from the HRV signal. 

The proposed NN classifier showed satisfactory         
performances in discriminating five types of arrhythmia. The 
accuracy of discrimination of NSR, PVC, AF, VF and BII 
were 99.98%, 98.76%, 98.53%, 99.73%, and 99.89%,      
respectively. It is noted that the percentage of NSR segments 
in the dataset is high, but this is close to reality as ECG    
recordings have high percentages of normal beats. 

The results show that the proposed method is effective 
for classification of cardiac arrhythmias, with an acceptable 
high accuracy. It is evident that the combination of the linear 
and nonlinear features together with the employed classifier 
is very effective.  

The main advantage of the method, compared to other 
approaches in the literature is that it is completely based on 
RR-interval signal which can be extracted with high accuracy 
even for noisy or complicated ECG recordings, while the 
extraction of all other ECG features or any other type of ECG 
analysis is seriously affected by noise.  

 As a salient result, we can conclude that the HRV signal 
can be used as a reliable indicator of different kinds of heart 
diseases.  

REFERENCES 

[1] N. Wessel, A. Voss, J. Kurths, A. Witt, and KJ Osterziel, 
"24 Hour Heart Rate Variability Analysis Based on New 
Methods of Non-Linear Dynamics," IEEE, 
Comp.Cardio., pp. 693-696, 1995. 

[2] J. Pan,and WJ. Tompkins, "A Real Time QRS Detection 
Algorithm," IEEE.Trans.Biom.Eng., vol.32,  pp. 230-236, 
1985. 

[3] Task force of the European society of cardiology and the 
North American society of pacing and electrophysiology. 
"Heart rate variability – standards of   measurements 
,physiological interpretation,and clinical use," Eur.Hear 
J., vol.17, pp.354-381, 1996.  

[4] R.U. Acharya, N. Kannathal,and S.M. Krishnan      
"Comprehensive analysis of cardiac health using heart 
rate signals," Physiol.Meas.vol. 25, pp. 1139-1151, 2004. 

[5] R.U. Acharya, A. Kumar, P.S. Bhat, C.M.Lim, S.S.    
Iyengar , N. Kannathal,and S.M. Krishnan,               
"Classification of cardiac abnormalities using heart rate 
signals," Med.Biol.Eng.Comp., vol.42, pp.288-293, 2004. 

[6] J.L.A. Carvalho et.al, "Development of a Matlab        
Software for Analysis of Heart Rate Variability," 
Proc.ICSP02, pp. 1488-1491, 2002. 

[7] M. Tulppo, T.H. Makikallio, T.E.S. Takala, and K.H.  
Seppanen, "Quantiative Beat-to-Beat Analysis of Heart 
Rate Dynamics During Exercise," Am.J.Physiol.,vol.71, 
pp.H244-52, 1996. 

[8] KLL Ho, GB Moody, CK Peng, JE Mietus, MG Larson, 
D Levy,and AL. Goldberger, "Predicting Survival in 
Heart Failure Case and Control Subjects by Use of Fully 
Automated Methods for Deriving Nonlinear and        
Conventional Indices of Heart Rate Dynamics,"          
Circulation 1997(August),96(3),pp.842-48, 1997. 

[9] S.M. Pincus, "Approximate Entropy as a Measure of  
System Complexity," Proc. Natl Acad Sci. USA,vol. 88, 
pp. 2297–2301,1991.   

[10] S.M. Pincus,and A.L. Goldberger, "Physiological Time 
Series Analysis: What Does Regularity Quantify?," 
Am.J.Physiol.,vol. 266,pp.H1643-1656, 1994. 

[11] I.A. Rezek, and S.J. Roberts, "Stochastic Complexity 
Measures for Physiological Signal Analysis," IEEE 
Trans.Biomed.Eng., pp. 1186-1190,1993. 

[12] JP. Eckman, SO. Kamphorst, D. Ruelle,and S. Ciliberto, 
"Lyapunov Exponents From Time Series," Physical     
Review A, vol.34(6), pp. 4971-4979, 1986. 

[13] H. Kantz,and T. Schreiber, "Nonlinear Time Series 
Analysis," Cambridge University Press, p.304, 1997.    

[14] A. Wolf, JB. Swift, HL. Swinney, and JA. Vastano,   
"Determining Lyapunov Exponents from a Time Series," 
Physica D, vol.16, pp.285-317, 1985.   

[15] I.S. Uzun, M.H. Asyali, G. Selebi,and M. Pehlivan, 
"Nonlinear Analysis of Heart Rate Variability,"IEEE, 23rd 
EMBS conf., pp.1581-1584, 2001. 

[16] H.V. Huikuri, T.H. Makikallio, C.K. Peng, A.L.      
Goldberger, U. Hintze, and M. Moller, "Fractal           
Correlation Properties of R-R Interval Dynamics and 
Mortality in Patients with Depressed Left Ventricular 
Function after an Acute Myocardial Infraction,"           
Circulation 101, pp.47-53, 2000. 

[17] S. Haykin, "Neural Networks a Comprehensive Founda-
tion," MacMillan College Publishing Company, New 
York, 1995. 

 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


