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ABSTRACT
In this paper, we investigate two binary detection problems
for a single real tone in additive white Gaussian noise using
short data records. In the first hypothesis-testing scenario,
we decide if a sinusoid is present in the received signal where
both cases of known and unknown sinusoidal frequency will
be examined. In the second problem, differentiation between
two distinct noisy tones is considered. Simulation results
show that the nonlinear least squares and maximum likeli-
hood methods give identical detection performance and they
outperform the periodogram approach.

1. INTRODUCTION

Detection of sinusoidal signals is of interest in many fields
[1]-[3] such as radar, sonar, communications and spec-
troscopy. In this paper, we study two fundamental binary
detection problems for a single real tone in additive white
Gaussian noise using short data records. The first problem
has applications in radar and sonar where we need to detect
whether a sinusoid is present in the received signal or not,
and it is formulated as follows. Given N samples of a re-
ceived signal x[n], n = 0,1, ...,N− 1, where N is small, it is
required to decide between the hypotheses:

H0 : x[n] = q[n]

H1 : x[n] = A1 cos(ω1n+φ1)+q[n]
(1)

where q[n] is a white Gaussian process while A1, ω1 and φ1
represent the tone amplitude, frequency and phase, respec-
tively. We consider unknown A1 and φ1 while ω1 is either
known or unknown. The first hypothesis H0 assumes that
x[n] consists only of noise while in H1, the sinusoid is pre-
sumed to be present.

The second detection problem is to classify the sinusoid
from two choices and this corresponds to binary communi-
cation application, although extension to multiple signals is
straightforward. That is, given the received sequence x[n], a
decision has to be made between the hypotheses:

H0 : x[n] = A0 cos(ω0n+φ0)+q[n]

H1 : x[n] = A1 cos(ω1n+φ1)+q[n]
(2)

where A0, ω0, φ0 are the tone amplitude, frequency and phase
of another sinusoid with ω0 6= ω1. Here, we consider un-
known amplitudes and phases but known frequencies.

In this work, we study the performance of three fre-
quency estimation approaches, namely, periodogram, max-
imum likelihood (ML) estimator and nonlinear least squares
(NLS) method on the binary sinusoid detection problems. It
is well known that [4] the periodogram peak corresponds to

the ML estimate of frequency if x[n] is a noisy complex sinu-
soid. However, its optimality is only approximately true for
N >> 1 in the case of a real-valued sinusoid. It is because the
real tone is a sum of two complex exponentials and as a result
the frequency estimate provided by the periodogram is gen-
erally biased due to interference from the negative spectral
line. Furthermore, when the frequency is approaching 0 or
π , the separation between the positive and negative spectral
lines becomes smaller and the periodogram will not be able
to resolve them if the data length is small enough. In fact, an
exact ML estimator for a single real tone has been derived by
Kenefic and Nutall [5]. On the other hand, in the presence
of white Gaussian q[n], the NLS method [6] can also be in-
terpreted as the ML estimator, although the realizations are
different.

The rest of the paper is organized as follows. In Section
2, the periodogram, ML and NLS methods are reviewed for
frequency estimation. They are then utilized for the two si-
nusoid detection problems and the algorithms are given in
Section 3. Numerical examples are presented in Section 4 to
contrast the detection performance of the three approaches.
Finally, concluding remarks are included in Section 5.

2. FREQUENCY ESTIMATORS

Assuming that x[n] = A0 cos(ω0n + φ0)+ q[n] where all A0,
ω0 and φ0 are unknown constants, the frequency estimate
based on the periodogram, denoted by ω̂P, is

ω̂P = argmax
ω
{Px(ω)} (3)

where

Px(ω) =
1
N
|X(ω)|2 , X(ω) =

N−1

∑
n=0

x[n]e− jωn (4)

The Px(ω) is called the periodogram of x[n] while X(ω) de-
notes the discrete-time Fourier transform (DTFT) of x[n].
Since the periodogram is a nonlinear function in ω and con-
tains multiple maxima, we can get a coarse frequency from
the discrete Fourier transform (DFT) peak first and then per-
form the peak search to reduce computations [7]. Decom-
posing X(ω) into signal and noise components yields

X(ω) = S(ω)+
N−1

∑
n=0

q[n]e− jωn (5)
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where S(ω) represents the DTFT of the sinusoid and it is
calculated as

S(ω)

=
N−1

∑
n=0

A0 cos(ω0n+φ0)e− jωn

=
A0

2
e jφ0

N−1

∑
n=0

e j(ω0−ω)n +
A0

2
e− jφ0

N−1

∑
n=0

e− j(ω0+ω)n

=
A0

2
e jφ0

1− e j(ω0−ω)N

1− e j(ω0−ω) +
A0

2
e− jφ0

1− e− j(ω0+ω)N

1− e− j(ω0+ω)

=
A0

2
e j(φ0−(ω0−ω)(N−1)/2) sin( (ω0−ω)N

2 )
sin(ω0−ω

2 )
+

A0

2
e− j(φ0+(ω0+ω)(N−1)/2) sin( (ω0+ω)N

2 )
sin(ω0+ω

2 )
(6)

Substituting (4)-(6) into (3) and then taking the expected
value, the mean value of ω̂P, E{ω̂P}, is obtained as

E{ω̂P}= argmax
ω

{|S(ω)|2 +Nσ2
q
}

(7)

where σ2
q represents the variance of q[n]. It is clear from (6)

and (7) that E{ω̂P} does not depend on the tone amplitude
and noise power but is a nonlinear function of N, ω0 and
φ . Due to interference from the negative frequency compo-
nent in S(ω), E{ω̂P} is generally a biased estimate of ω0,
although the first term of (6) does peak at ω = ω0.

In fact, based on maximizing the conditional probability
density of x[n], n = 0,1, · · · ,N−1, given A0, ω0 and φ0, the
ML estimate of ω0 for arbitrary data record lengths in white
Gaussian noise has been derived in [5]. The ML frequency
estimate, denoted by ω̂ML, is the value of ω which maximizes
CML(ω):

CML(ω)

=
a22(ω)I2(ω)−2a12(ω)I(ω)Q(ω)+a11(ω)Q2(ω)

a11(ω)a22(ω)−a2
12(ω)

(8)

where I(ω) = ∑N−1
n=0 x[n]cos(nω), Q(ω) =

∑N−1
n=0 x[n]sin(nω), a11(ω) = ∑N−1

n=0 cos2(nω), a12(ω) =
∑N−1

n=0 sin(nω)cos(nω) and a22(ω) = ∑N−1
n=0 sin2(nω). Since

the cost function in (8) is highly nonlinear and multimodal,
extensive computations will be involved in the optimal
estimation.

On the other hand, an intuitively appealing approach
to frequency estimation, based on the nonlinear regression
model [6], consists of finding the unknown parameters via
minimizing the NLS cost function:

N−1

∑
n=0

(x[n]−A0 cos(ω0 +φ0))
2 (9)

The nuisance parameters of amplitude and phase can be re-
moved and the NLS frequency estimate, denoted by ω̂NLS, is
the value of ω which maximizes CNLS(ω) [8]:

CNLS(ω) = xT ΦT (ω)R−1(ω)Φ(ω)x (10)

where

x = [x[0] x[1] · · ·x[n−1]]T

Φ =
[

sin(0) sin(ω) · · · sin((N−1)ω)
cos(0) cos(ω) · · · cos((N−1)ω)

]

R(ω) =




N−1

∑
n=0

sin2(ωn)
N−1

∑
n=0

sin(ωn)cos(ωn)

N−1

∑
n=0

sin(ωn)cos(ωn)
N−1

∑
n=0

cos2(ωn)




As in (8), the cost function of (10) is highly nonlinear and
thus extensive computations will be required for the peak
search. Nevertheless, by expanding CNLS (ω), we easily get
CNLS (ω) = CML (ω) which implies that ω̂NLS = ω̂ML and
thus the NLS approach also achieves optimum estimation
performance.

3. DETECTION ALGORITHMS

In the first hypothesis-testing scenario of (1), we decide
whether the received signal consists of noise only or is a
noisy sinusoid. When the frequency ω1 is known, we com-
pute Px(ω1), CML(ω1) and CNLS(ω1) and then compare these
values with their corresponding thresholds. If the peak coef-
ficient is larger than the threshold, H1 is accepted, otherwise
H0 is chosen. Assuming that the data independent elements
have been precomputed, the computational requirements for
the periodogram, ML and NLS estimators are 2N + 2 multi-
plications and 2N− 1 additions, 2N + 7 multiplications and
2N additions, and N2 + N multiplications and N2 additions,
respectively. Although both ML and NLS methods give op-
timum performance, we see that the former is much more
computationally attractive, particularly for larger N. When
the frequency is unknown, we use Px(ω̂P), CML(ω̂ML) and
CNLS(ω̂NLS) instead and thus complex peak search proce-
dure is required. In our study, we first use the DFT peak as
the coarse frequency estimate in all methods and then apply
golden section search for fine estimation.

In the second hypothesis-testing scenario of (2), we need
to determine whether the frequency of the received sinusoid
is of ω0 or ω1. When the frequencies are available, we
compute Px(ω0) and Px(ω1) for the periodogram approach.
If Px(ω1) > Px(ω0), we choose H1, otherwise, H0 is ac-
cepted. In a similar manner, CML(ω0), CML(ω1), CNLS(ω0)
and CNLS(ω1) are computed in the ML and NLS based de-
tectors.

4. NUMERICAL EXAMPLES

Computer experiments have been conducted to compare the
detection performance of the periodogram, ML and NLS
methods for the two hypothesis-testings in (1) and (2). The
tone amplitudes A0 and A1 are set to be identical, the phases
φ0 and φ1 are uniformly distributed between 0 and 2π at each
trial, and ω0 = 11π/12 and ω1 = 6π/12. The signal-to-noise
ratio (SNR) is defined as A2

0/(2σ2
q ) and N = 4 is considered.

All results are averages of 50000 independent runs.
Figures 1 to 3 show the receiver operating characteris-

tic (ROC), that is, probability of detection versus false alarm
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rate, in detecting a pure sinusoid in the presence of white
Gaussian noise based on the periodogram, ML and NLS
methods, respectively. The simulation results of the oper-
ating characteristics are obtained by using the method sug-
gested in [9]. Four different SNR values, namely, −5 dB, 0
dB, 5 dB and 10 dB are considered and ω1 is assumed known.
As expected, the ML and NLS methods provide identical re-
sults. Interestingly, the periodogram gives the same detection
performance as well. The above test is repeated for unknown
ω1 and the results are plotted in Figures 4 to 6. It is observed
that ML and NLS methods give the same detection perfor-
mance again and outperform the periodogram. A possible
reason for the inferiority of the periodogram is that it pro-
vides biased real-tone frequency estimation particularly for
short data lengths.

Figures 7 and 8 show the detection probability of ω0 and
ω1, respectively, versus SNR for the binary classification.
This test in fact corresponds to the caller ID signal decoding
problem with sinusoidal frequencies of 2200 Hz and 1200
Hz, which represent bits 0 and 1, respectively, at a sampling
frequency of 4800 Hz [8]. Again, we see that both ML and
NLS detectors give the same performance for both bits 0 and
1. In classifying ω0, the periodogram cannot provide a de-
tection probability of one even for sufficiently high SNR be-
cause the frequency is close to π such that it is unable to
resolve the peaks of positive and negative spectral lines for
some phase angles. It is also observed that the periodogram
is biased in the sense that bit 1 is preferred over bit 0 for all
SNR conditions, although it has slightly higher probability
of detection than those of ML and NLS detectors for bit 1.

5. CONCLUDING REMARKS

The periodogram, maximum likelihood (ML) and nonlinear
least squares (NLS) methods have been studied for deciding
if a sinusoid is present as well as differentiating between two
distinct noisy tones for short data records. It is shown that
the ML and NLS detectors give the same performance for
the two hypothesis-testing scenarios but the former should
be preferred because of its smaller computational require-
ment. Moreover, apart from sinusoidal detection with known
frequency, the periodogram is inferior to the ML and NLS
methods. It is noteworthy that the results hold for larger data
lengths and the multiple sinusoidal signal classification prob-
lem as well, where the ML method is always the best choice.
An interesting extension of this work is to produce the theo-
retical ROC of the ML detector.
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Figure 1: ROC of periodogram with known frequency
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Figure 2: ROC of ML estimator with known frequency
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Figure 3: ROC of NLS estimator with known frequency
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Figure 4: ROC of periodogram with unknown frequency
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Figure 5: ROC of ML estimator with unknown frequency
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Figure 6: ROC of NLS estimator with unknown frequency
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Figure 7: Probability of detection for bit 0
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Figure 8: Probability of detection for bit 1
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