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ABSTRACT 
Fast RLS  algorithms  are known to present numerical insta-
bility  and  this instability is originated in the forward pre-
diction parameters. In this paper, A simplified FTF-Type  
algorithm for adaptive filtering is presented.  The basic idea 
behind  the proposed algorithm  is  to  avoid  using  the 
backward variables. The algorithm obtained is less complex  
than  the existing numerically stable fast FTF and shows the 
same performances.  

1. INTRODUCTION 

 
Fast recursive least squares (FRLS) adaptive filtering algo-
rithms represent an attractive way to compute the least 
squares solution efficiently. Conventional RLS requires 

)( 2NO  computations per sample, its fast versions require 
only O(N) operations. Examples of such fast algorithms in-
clude the fast a posteriori error sequential technique (FAEST) 
[3] and the fast transversal filter algorithm (FTF) [4].  The 
low complexity that is achieved by these algorithms is a di-
rect consequence of the shift invariance structure of the input 
signal vector  used in  FIR filtering implementations.  The 
least squares solution is obtained by updating the Kalman 
gain vector, which is used to update the transversal filter,  by  
using  forward and backward prediction vectors. 
 
In this contribution, we propose an algorithm derived from 
the FTF algorithm where the adaptation gain is obtained only 
from the forward prediction variables. The backward predic-
tion variables, which are the main source of  the numerical 
instability in the FRLS algorithms, are completely discarded. 
Our main goal is to obtain a robust FTF-like adaptive algo-
rithm when used with speech signal to solve acoustic echo 
cancellation problems.  By using only forward prediction 
variables and adding a small regularisation constant and a 
leakage factor, we obtain a  robust numerically stable adap-
tive algorithm that shows the same performances as  FRLS 
algorithms.  
 
The computational complexity of  the proposed algorithm is 
7N when used with a full size predictor. The proposed algo-
rithm is less complex than the 8N numerically stable FTF 
(SFTF) algorithms [5,6] and its complexity can be signifi-
cantly reduced to 2N+5P when used  with a reduced P-size 
forward predictor. 

 

2. THE FAST RLS  ALGORITHMS  

Figure 1 shows the basic schematic diagram of an adaptive 
filter, where )(nx , )(nd , and  )(nNε  are, respectively,  
the input, desired output and error signals of the adaptive 
Filter for time instant n. In most adaptive identification appli-
cations,   the adaptive algorithm enables the transversal filter 
to be estimated by the N-size vector )(nH N  using a crite-

rion based on the a priori estimation error )(nNε . This esti-
mation error is written, for each sample n:                                                    
               )()1()()( nXnHndn N

T
NN −−=ε            (1)  

where [ ])1(),1(),()( +−−= NnxnxnxnX T
N K  repre-

sents the N last samples of the input signal. The filter is up-
dated at each instant by feedback of the estimation error pro-
portional to the adaptation gain, denoted as )(nCN , and 
according to: 
           )()()1()( nnCnHnH NNNN ε−−=      (2) 
Different algorithms are distinguished by the gain calculation 

)(nCN  as described in the following paragraphs.  

 
Figure 1: Adaptive Filtering 

For the NLMS algorithm, the adaptation gain is given by: 

cnXnX
nXnC TN +

−=
)()(

)()( µ             (3) 

where µ is referred to as the adaptation step and c is a small 
positive constant used to avoid division by 0 in absence of 
the input signal. 
Recursive least squares (RLS) algorithms are based on a 
minimization of the criterion of the least squares with an ex-
ponential forgetting factor λ  ( )11 ≤< λ :  

          [ ]2
1

)()()()( iXnHidnJ N
T
N

n

i

it −= ∑
=

−λ             (4) 
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In the conventional RLS,  the adaptation gain for (2) is given 
by: 
                     )(~)()( nCnnC NNγ=                              (5) 

where )(~ nCN and )(nγ , called the dual Kalman gain and 
the likelihood variable respectively, are updated by propa-
gating an NxN  inverse covariance matrix. This solution re-
quires O(N2) operations per iteration  which is high compu-
tational complexity. However,  with the introduction of fast 
versions of the algorithm, the least squares solution remains 
an attractive solution for major practical applications. 
The main advantage of the  RLS algorithm is its very fast 
convergence which is independent of the input signal nature.  
FRLS algorithms are derived from the RLS algorithm by the 
introduction of forward and backward predictors in the cal-
culation of the adaptation gain )(nCN ; the likelihood vari-
able and the dual Kalman gain are computed, independently 
of the filtering part )(nH N , by a FRLS algorithm using a 

linear prediction analysis over the input signal )(nx :  
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    (6) 
where  )(naN  and )(nbN  are, respectively, forward  and 

backward predictors, and )(neN  and )(nrN  are, respec-

tively, forward and backward prediction errors and )(nNα  

and )(nNβ  designed, respectively, forward  and backward 
prediction error variances.  
The forward and backward predictors, updated recursively 
in the FRLS, are defined by: 

)()1()( 1 nnRna f
NNN Γ−= − , ∑

=

− −=Γ
n

i
N

inf
N ixiXn
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where )(nRN is an estimate of the correlation matrix of the 

input signal vector . )(nf
NΓ  is an estimate of the cross-

correlation of )(nx  with its past values )1( −nX N and 

)(nb
NΓ  is an estimate of the cross-correlation of )( Nnx −  

with its future values )(nX N . For stationary input signals, 
backward and forward power variances are equal and the 
backward and forward predictors have the same coefficients 
but in inverse order [1,2]. 
As mentioned before, all original FRLS algorithms are nu-
merically instable. It has been shown [5, 6] that numerical 
stability can be provided by feeding back the numerical er-
rors in the computation of the prediction variables. The re-
sulting stabilized FRLS algorithms have a complexity of 8N. 

3. SIMPLIFIED FTF-TYPE ALGORITHM 

Before giving the new simplified algorithm,   we must make 
two important observations.  If we discard completely  the 
prediction parts from the algorithm, this case correspond 
theoretically to the white noise input signal, the  Kalman 
gain (6) becomes: 
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And after the N first iterations, a shifted version of the first 
component is propagated to all other components:                            
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In the steady-state, for a stationary input signal,  the forward 
error variance can be approximated by quantity proportional 
to the signal power: 

)1/()()1()1()( 22 λσγγλαα −→−+−= XFNNN nxnnn       (9) 

where Fγ  is the steady-state value of the slowly vari-

able )(nNγ . Then the terms )(. inN −αλ  converge to-
wards a value proportional to the input signal power and we 
can approximately write : 
      2/)()(~)()( XNNN nwXnCnnC σγ −≈=          (10) 
where w  is a positive constant. 
This adaptation gain has a form similar to the  adaptation 
gain of the NLMS algorithms. This is an important observa-
tion which mains that  even  with no forward and backward 
predictors, the FTF algorithm must work but may be with 
performances just close to those of an  NLMS algorithm. 
Now assume we have the adaptation gain updated with the 
two predictors. We know that physical impulse responses are 
globally decreasing with the order of the filter. This case is 
particularly verified  in the acoustic echo cancellation prob-
lem. In this application, predictor sizes are much smaller 
than the  size of the transversal filter for speech signal. This 
propriety was used to develop a class of algorithms called 
Fast Newton transversal filter algorithm [7, 8] where the 
input signal is modelised by an  AR model with  10 to 20 
coefficients.   
From relation (6), we can see that the most significant com-
ponents, the last ones, of the backward predictor affect the 
last terms of the Kalman Gain and this contribution is not 
transmitted to other lower positions of )(~ nCN  because of  
the down shift property in the calculation of the dual Kal-
man again. The first components of )(~ nCN  come from the 

forward prediction error signal )1(/)( −− nne NN λα  and 
the most significant components of the forward predictor. 
This means that the most significant components of  the 
adaptive filter )(nH N  are updated using forward predic-
tion variables,  the backward prediction variables affect the 
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last components of )(nH N  which in most practical appli-
cations have very small values. 
This observation suggests discarding completely the back-
ward predictor from the FTF algorithm. Discarding the 
backward predictor does not mean that the last components 

)(nH N  are not updated, but they are updated by compo-

nents coming from lower positions of )(~ nCN .  
In the proposed algorithm, we discard all  backward predic-
tion variables from (6) and  use  only the forward variables 
to compute the dual Kalman gain : 
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where  
)()1()1()( 2 nennn NNNN −+−= γλαα  

)1(~)1()()1()( −−−−= nCnnenana NNNNN γ  
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This algorithm is not very robust with non-stationary input 
signal like speech signals. Suppose that after some converge, 
the signal input becomes 0 or very small, this situation can 
be observed with input speech signals in silent periods: 
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The first difficulty comes from 0)1()( →−= nn NN λαα . 
This convergence to 0, put FTF algorithms and their nu-
merically stable versions in very difficult situation. Instabil-
ity may occur since we are trying to perform numerical divi-
sion by very small values .  It is important to avoid divisions 
by very small values of )1( −nNλα .  To guard against this 
possibility,  like in the NLMS algorithm, we append a posi-
tive constant to  dividing term )1( −nNλα : 
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The second difficulty is that the forward predictor is locked 
over its last values. It is known that the FRLS algorithms 
were developed in the prewindowing case and all vectors are 
initialised by 0 in order to the algorithm to begin adapting. 
In these conditions,  when the input signal vanishes and re-
appears after a long period of time, the algorithm  may di-
verge because of these non-zero values of the forward pre-
dictor . In other words, the algorithm is not well initialised 
when the signal reappears. In such conditions, it might be 
preferable to have the forward predictor )(naN  return back 
to zero by doing the following operation: 
                         )()( nana NN η→                                 (14) 
where η   is a close to 1 constant often called Leakage factor 
[1,9]. 

The simplified FTF-Type algorithm (SMFTF) is given in 
table 1 for a full size forward predictor.  An error propaga-
tion analysis of the prediction part of the SMFTF shows that 
the algorithm is globally stable in the mean sense and  the 
variance of the numerical  errors in the  forward predictor, 
with the assumption of a white Gaussian input signal and a 
forgetting factor close to 1, is stable  under the following 
condition [10] : 
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Reduced size predictors  in the FTF algorithms have been 
successfully used in the FNTF algothms [7,8]. The   SMFTF 
algorithm can easily used with reduced size prediction part 
(table 2). If we note P the order of the predictor and N the 
size of adaptive filter, the First P components of the dual 
Kalman gain are updated using the reduced size forward 
variables, the N-P last components are just a shifted version 
of the  Pth component the dual Kalman gain. For this algo-
rithm,  we need two likelihood variables: the first one 

)(nPγ  ,  of order P,  is used to update  the backward pre-

diction error variance.  The second, )(nNγ ,  of order N, is 
used  with the dual Kalman Gain to update the forward pre-
dictor and the transversal filter.  
 
The proposed  reduced size predictor algorithm is summa-
rized in Table 3. Notice that the total complexity is to 3N+4P 
where P is the size of the forward predictor for version 1 and 
becomes  2N+5P when we use the  Pth  shifted  component of 
the dual Kalman gain  to compute the  likelihood variable 

)(nNγ  (version 2) . 
 
Table 1 : Simplified FTF-Type algorithm (SMFTF) 

The SMFTF Algorithm 
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Filtering 
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Reduced Prediction order SMFTF  Algorithm 
Initialisation: 

0)0( =Pa , 0)0(~
=NC , 1)0()0( == NP γγ ,

P
P E λα 0)0( = , 0)0( =NH  
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Filtering  
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4. SIMULATION RESULTS 

We used in our simulation two types of input signal :  a sta-
tionary  noise with an average speech spectrum (USASI 
noise) and a typical speech signal. These two signals, sam-
pled at 16 KHz,  are filtered by two impulse responses to 
obtain the desired signals. The first impulse response, repre-
sents a low pass filter of size 32, and the second represents a 
real impulse response  measured in a car and truncated to N = 
256 samples. The power signal 33.02 =xσ  for USASI 
noise.  The MSE of the filtering error is plotted against the 
number of iterations, averaged over an ensemble of 256 sam-
ples.   
 
In our simulation, we have compared the proposed SMFTF  
algorithm with the NLMS and the numerically stable FTF 
(SFTF) algorithms. For the NLMS we choose the adaptation 
step that corresponds to the fastest convergence 1=µ . The 
forgetting factor for the SFTF algorithm is chosen to ensure 
numerical stability by using N3/11−=λ  with USASI  

noise and N10/11−=λ  with speech signal.  The forget-
ting factor and the leakage factor for the SMFTF algorithm 
are chosen according to (15) with the stationary USASI 
noise. The choice of the forgetting factor is less restrictive 
than for  SFTF algorithm, and we choice N/11−=λ  for 
speech signal. The constant 0E is fixed to 1 in all our simu-
lations for the SFTF and full size predictor SMFTF algo-
rithms. 
Figures 1 and 2 present the results obtained with USASI 
noise for N=32 and N=256, respectively. These results show 
that the proposed algorithm achieves better performances 
than the NLMS algorithm and does not introduced any no-
ticeable performance degradation compared to the  SFTF 
algorithm. 
To compare the convergence speed, we simulated a jump by 
multiplying the desired signal by 1.5 in the steady-state. Fig-
ure 3 shows that better performances in convergence speed 
are obtained for the proposed algorithm.  This improvement 
is due to the use of a smaller forgetting factor 0.996 for the 
SMFT algorithm. This value is not possible to use with the 
SFTF algorithm due to stability problems.  
 
With the speech signal, the leakage factor and the regularisa-
tion constant must be carefully chosen.  In our simulations, 
we have noticed that the leakage factor must be chosen 
smaller enough than the forgetting factor to assure stability of 
the full size SMFTF algorithm . The regularisation constant c 
is used to limit the dynamic of adaptation gain: great values 
give a more robust algorithm to the non-stationary of the 
signal, small values of c allow more dynamic of the adapta-
tion gain and may improve the convergence speed. The sig-
nal power is a good indicator how to choose the constant c. 
Figure 4  shows clearly better performances for the proposed 
algorithm after the jump for the speech input signal . 
 
Figure 5 and 6 summarize the results obtained for the re-
duced size predictor SMFTF algorithm. These results show 
that  there is not degradation in the final steady-state MSE of 
the reduced size predictor algorithm even for P<<N.   Almost 
identical  performances  with the full size predictor algorithm 
are  reached   when the forgetting  is computed by  P/11−  
and  the leakage factor  is greater  enough than λ .  The ini-
tial constant 0E must chosen large enough to avoid initial 
convergence degradation for the reduced size predictor 
SMFTF when P<<N. 

5. CONCLUSION 

We have presented a simplified FTF-type algorithm derived 
from the FTF algorithm where the adaptation gain is ob-
tained only from the forward prediction variables. The back-
ward prediction variables, which are the main source of the 
numerical instability in the FTF algorithm, are completely 
discarded. The proposed algorithm compares favorably with 
the FTF and NLMS algorithms. It does not present numerical 
instability problems due to finite precision as is the case for 
the FTF and FNTF algorithms and is more robust with 
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speech signal due to the use of a leakage factor and a regu-
larisation constant 
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Figure 1 : x(n)=USASI, N=32,  SFTF: 992.0=λ , 

SMFTF: 98.0=λ , 98.0=η  and 1.0=c  

 

Figure 2: x(n)=USASI, N=256,  SFTF: 09987=λ , 
SMFTF: 9975.0=λ , 995.0=η  and 1.0=c  

 
Figure 3 : x(n)=USASI, N=256, SFTF: 9987.0=λ , 
SMFTF: 996.0=λ , 985.0=η  and 5.0=c .  

 
Figure 4: x(n)=speech, N=256. SFTF: 9996.0=λ , 
SMFTF: 996.0=λ , 96.0=η  and 1.0=c .  

 
Figure 5.  Simulation for the reduced size predictor SMFTF 
with different  values for the leakage factor. N=256, P=40. 

)(nx = USASI. SMFTF: 975.0=λ , 50 =E  and 1=c .  

 
Figure 6.  Simulation for the reduced size predictor SMFTF 
with different  values for the leakage factor. N=256, P=20. 

)(nx = Speech.  SMFTF: 95.0=λ , 50 =E  and 

1.0=c .  
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