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ABSTRACT 
The identifiability problem of the cubic phase function (CPF) 
for multicomponent quadratic FM (QFM) signals is verified 
both in theory and in simulations. A computationally effi-
cient technique based on the one dimensional (1-D) Radon-
CPF transform (RCT) is proposed for this problem. The 
RCT first reassigns the time-frequency rate distribution 
(TFRD) with the information of the second-order coefficient, 
and then implements the 1-D Radon transform with only 
angle variety. Although this technique is supposed for multi-
component QFM signals, it is also efficient for monocompo-
nent.  The simulation results verify the proposed method 
both in illustrative examples and performance evaluations.  

1. INTRODUCTION 

The frequency-modulated (FM) signals are usually used in 
numerous areas, such as communication, radar, biomedicine, 
and seismic analysis.  This paper focuses the analysis on the 
quadratic FM (QFM) signals. Two practical applications of 
this kind of signal can be found in [1, 2]. The first applica-
tion is the passive intelligent radar surveillance, where one 
tries to determine whether a linear FM, QFM, or other type 
of radar pulse is being transmitted. The other application is 
in the processing of echolocation signals from brown bats. 
These signals are multicomponent QFM sonar signals, with 
the parameters of the FM signals varying according to the 
activity of the bat. 
In the literature, the Maximum likelihood (ML) estimation is 
efficient to estimate the parameters of the QFM signal. The 
direct implementation, however, requires three-dimensional 
(3-D) maximization. Moreover, if the objective function is 
not convex, ML estimation is likely to converge to local 
maxima. To avoid the exhaustive 3-D grid search, the 
suboptimal techniques are developed, such as the phase un-
wrapping [3], the polynomial phase transform (PPT) [4], the 
product high-order ambiguity function (PHAF) [5], and the 
method based on stationary high-order moments [6]. The 
main shortcoming of these methods is the poor performance 
at low SNR, i.e., below 0 dB, since they employ highly 
nonlinear transform. To improve the performance at low 
SNR, P. O’Shea proposed a bilinear transform, which is 
known as cubic phase function (CPF) or time-frequency rate 
distribution (TFRD) [2, 7] for parameter estimation of a 
QFM signal with only second-order nonlinearity. For multi-

component QFM signals, the spurious peaks arise and thus 
the identifiability problem occurs. In [8], the product CPF 
(PCPF) is proposed to analyze the multicomponent linear 
FM signals. The extension for multicomponent QFM signal, 
however, has not yet been implemented. 
In this paper, we consider the combination of the CPF and 
Radon transform for elimination of the identifiability prob-
lem. Since the direct combination of two techniques result in 
two-dimensional (2-D) maximization and corresponding 2-
D grid search, a computationally efficient Radon-CPF trans-
form (RCT) is proposed. The RCT utilizes the second-order 
coefficient to reassign the TFRD for implementation of the 
Radon transform with only one parameter of the rotation 
angle. Specifically, two forms of the 1-D/2-D RCT are dis-
cussed: the envelope estimator and the modulus square es-
timator. 
The paper is organized as follows. In section 2, the defini-
tion of the CPF and the problem formulation are described. 
Section 3 first defines the 2-D RCT, and then proposes the 
1-D RCT for multicomponent QFM signals. The computa-
tion complexity and the constraint are also discussed. Sec-
tion 4 provides illustrative examples and performances in 
the both case of the 1-D/2-D RCT. Finally, conclusion is 
drawn in Section 5. 

2. CUBIC PHASE FUNCTION AND PROBLEM 
FORMULATION 

2.1 Cubic Phase Function 
The CPF is defined as a 2-D bilinear transform efficient for 
estimating the instantaneous frequency rate (IFR) [7]. The 
estimated IFR is used as an initial step in estimating other 
phase parameters. The IFR of a signal ( )s n  with phase 

( )nφ  is defined as 

   .                       (1) 2IFR( ) ( ) /n d n dnφ= 2

The discrete CPF for a signal ( )s n  is given by  
2j

0( , ) ( ) ( )CPF n x n x n e dττ τ+∞ − ΩΩ = + −∫ τ ,    (2) 

where Ω  represents the IFR. For a QFM signal as 
2 3

0 1 2 3j( )( ) ,a a n a n a ns n Ae n ψ+ + +=   ∈        (3) 

where [ ( 1) / 2 : ( 1) / 2]N Nψ = − − − ,  is odd, the CPF  re-
sults in 
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where . Obviously, the CPF achieves 
maxima along the IFR 2 3 . By exploiting the 
dependence of IFR on time, the algorithm in [7] estimates 
phase parameters using two slices of CPF. The selection of 
the time positions are also analysis:  is used to reduce 
the variance of 3a  and 2  and  is used to lower 
the mean-square error (MSE) of . 

2 3
0 1 2 3j2( )( ) a a n a n a nn eξ + + +=

2 6a aΩ = + n

N

3

)

0n =
a 0.11n ≈

3a
2.2 Problem Formulation 
The CPF has good performance and computational imple-
mentation for monocomponent QFM signal at low SNR [2].  
For multicomponent QFM signals, however, the CPF fails to 
estimate phase parameters at the time positions where the 
spurious peaks are presented. In [8], for multicomponent 
linear FM signals, the authors utilized the different time de-
pendences of the auto terms and spurious peaks in TFRD to 
efficiently solve the identifiability problem. The direct ex-
tension for QFM signals, however, is not able to discern the 
auto terms and cross terms, since both of auto terms and 
cross terms occur along a function of the time. 
To formulate the identifiability problem, consider two QFM 
signals: 

2 3 2
1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3j( ) j( )

1 2( ) a a n a n a n a a n a n a nx n A e A e+ + + + + += +    (5) 

Substituting (5) into (1), the ( ) (x n x nτ τ+ −  has four items: 
two auto terms and two cross terms.  The results of auto 
terms are: 

,0 ,1 ,2 ,3 ,2 ,3
2 3j(2 2 2 2 ) j(2 6 )2 i i i i i ia a n a n a n a a n

iA e e
2τ+ + + + ,    .           (6) 1, 2i =  

From (6), each auto term occurs along respective IFR as 
. In contrast, the cross terms are derived as:  ,2 ,32 6i ia aΩ = + n

3

3
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where . From 
(7), the troublesome cross terms occurs along a nonlinear 
function of the time. In particular, if  

2
1,0 2,0 1,1 2,1 1,2 2,2 1,3 2,3j(( ) ( ) ( ) ( ) )( ) a a a a n a a n a a nz n e + + + + + + +=

3

01,1 2,1 1,2 2,2

1,3 2,3

( ) 2( )
0

a a a a n
a a

⎧⎪
⎨
⎪⎩

− + − =
− =

,                    (8) 

the two cross terms merge into one item as 
1,2 2,2 1,3 2,3

2j{[( ) 3( ) ] }
1 2 ( ) a a a a nA A z n e τ+ + + .                 (9) 

In this case, the spurious peak arise at 
, where n  is subject to (8). 

Indeed, only if  
1,2 2,2 1,3 2,3( ) 3(a a a aΩ = + + + )n

0

3

 ,    (10) 2
1, 2, 1,1 1 2,2 1,3 2,32( ) 2( ) 3( )a a a a n a a n− + − + − =

The cross terms reduce to  
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,              (11) 

respectively.  
Note that to avoid ambiguities inherent in the phase parame-
ters, it is assumed that 1a π≤ , 2 /a Nπ≤ , 

2
3 3 / 2a π≤ N .Therefore, the phase in (11) is dominated by 

the term as 2
1,2 2,2 1,3 2,3[( ) 3( ) ]a a a a n τ+ + + , since the term as 

3
2,3 1,3(a a )τ− is too small with respected to 

2
1,2 2,2 1,3 2,3[( ) 3( ) ]a a a a n τ+ + + . The equation (11), hence, 

can be approximately rewritten into one term as 
1,2 2,2 1,3 2,3

2j{[( ) 3( ) ] }
1 2 ( ) a a a a nA A z n e τ+ + + .                    (12) 

which presents the spurious peaks around 
, where n  is subject to (10). 

Note that the spurious peaks are generally diffused due to the 
phase approximation. The illustration is drawn in Example 1. 

1,2 2,2 1,3 2,3( ) 3(a a a aΩ ≈ + + + )n

dxdy−

3. THE COMPUTATIONALLY EFFICIENT 
RADON-CPF TRANSFORM 

As indicated above, the CPF is not able to analyze the multi-
component QFM signals due to the arising of the spurious 
peaks. This identifiability problem should be removed for the 
purpose of detection and parameter estimation. The direct 
combination of the Radon transform and the CPF is first pro-
posed to solve this problem. However, the limitation of this 
technique is the computation burden with 2-D maximization 
and its resulting 2-D gird search. In this session, we proposed 
a computationally improved RCT with the aim to fast im-
plementation and good performance at low SNR. The novel 
Radon-CPF is to first estimate the IFR at , which is 
equal to twice of the second-order coefficient , then reas-
sign the CPF with the estimated second-order coefficient, and 
finally implement the Radon transform to extract the corre-
sponding signal.  

0n =
2a

3.1 The Radon transform 
The Radon transform in [10], which is commonly used in 
image signal processing, also has various applications in the 
area of signal detection and estimation. Its definition is: 

, ( , ) ( sin cos )sR f x y x y sθ δ θ θ+∞ +∞
−∞ −∞= +∫ ∫ ,   (13) 

for s−∞ < < +∞  and 0 θ π≤ < , where the delta function 
specifies the direction of integration. The parameter s  and 
θ  represent the angle with the x  axis and shifted location 
of the origin, respectively. Two typical applications of Ra-
don transform in detection and parameter estimation are the 
Radon-Wigner transform (RWT) [9] and the Radon-
Ambiguity transform (RAT) [10].  
3.2 The 2-D Radon-CPF transform 
In this subsection, we briefly define the RCT. The direct 
combination of Radon transform and the CPF results in the 
2-D RCT. In particular, two forms of the 2-D Radon CPF 
transform are defined as follow:  
Envelope estimator:  
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Modulus square estimator:  
2'

,

2
0

( , ) ( sin cos )

( , )
sR CPF n n s d

CPF n kn dn
θ δ θ θ+∞ +∞

−∞ −∞

+∞
−∞

= Ω + Ω −∫ ∫

= Ω −∫

ndΩ
 

(15) 
where 0  and k  are the initial IFR and the change of IFR, 
respectively. For a given k , the integral corresponds to a 
slice through ,

Ω

sR θ  and ,
'
sR θ  at angle arctan( 1/ )kθ = −  with 

the projection axis, s , scaled by 1/ sin( )θ . If the direction 
coincides with the IFR, the integral sums up all energy of 
auto terms and present a distinct peak. According to this, the 
parameter estimation can be achieved by 

2

3

ˆ / 2sin( )
ˆ cot( ) / 6
a s
a

θ
θ

=⎧
⎨ = −⎩

                             (16) 

On the other hand, it is obvious that both of (14) and (15) 
are the 2-D transform and require corresponding 2-D gird 
search, which is not easily for fast implementation.  
3.3 The 1-D Radon-CPF transform 
3.3.1 The 1-D Radon-CPF Transform 
In order to reduce the computation and exhaustive 2-D grid 
search, a computationally efficient RCT is proposed in this 
subsection. The motivation behind this idea is that the com-
putationally efficient RAT only integrals the straight line 
across the origin in the ambiguity function. The computation 
thus can be reduced if we can reassign the CPF and only in-
tegral the straight line across the origin in the TFRD. 
The question in the reassign operation is how to appropri-
ately adjust the CPF. The obvious approach is to first esti-
mate the second-order coefficient 2a  and move the CPF 
down or up along the IFR axis based on the distance from 2a  
to the origin. Mathematically, this operation can be described 
as: 

22shift aΩ =  ,                                  (17) 

and  
'( , ) ( , )shift shiftCPF n CPF nΩ = Ω − Ω .          (18) 

Substituting (4) into (18), yields, 

2

3

( , )
4 6 -shiftCPF n A

a n
π′Ω =   

′Ω
.              (19) 

Once the reassign operation is finished, the auto terms dis-
tribute along the straight line across the origin in the TFR 
domain. Note that each reassign operation only makes one 
component pass through the origin in the TFR domain. Then 
the third-order coefficient can be estimated by a 1-D grid 
search over the Radon transform domain: 
Envelope estimator: 
 
 

 
     

 
 

 ( , )shiftCPF n kn dn+∞
−∞= ∫                                                      (20) 

Modulus square estimator: 
2

( ) ( , )shift shiftR k CPF n kn d+∞
−∞′ = ∫ n                (21) 

Substituting (19) into (20) and (21), in addition to n ψ∈ , 
the results of the 1-D Radon transform can be derived as 

2

3

( 1)( )
8 6 -shift

NR k A
a k

π −
=                       (22) 

and  
4

3

ln[( 1) / 2]( )
2 6 -shift

A NR k
a k

π −′ =                 (23) 

From (22) and (23), both estimators achieve maxima at the 
angle as arc , while presenting finite energy at 
other angles. 

3cot( 6 )a−

3.3.2 Separation of multicomponent quadratic FM signals 
For multicomponent QFM signals, the RCT sequential ex-
tract one signal once, which is different from the case of the 
2-D RCT simultaneously employs the integral over all the 
components. Therefore, the 1-D RCT introduces much less 
cross terms and noise into the Radon transform domain.  
Moreover, the 1-D RCT also has ability to resolve closely-
spaced QFM signals, since both of the reassign operation and 
the Radon transform can be used to distinguish two signals. 
In specific, the algorithm in [2], with a coarse estimation and 
subsequent refined estimation, is able to first discern two 
closely-spaced second-order coefficients. Based on it, the 
reassign operation just makes the auto terms of one signal 
occur across the origin in the TFRD. Once the first step fin-
ishes, the Radon transform with small variety of the rota-
tional angle is utilized for further signal separation, espe-
cially the signals with closely-spaced third-order coefficients.  
3.3.3 Computational complexity 
We first list the computations in the 2-D RCT: the fast com-
putation of the CPF with subband decomposition [2], 2-D 
Radon transform over the CPF, and 2-D grid search in the 
Radon transform domain. In contrast, the 1-D RCT requires: 
the fast computation of the CPF, a 1-D gird search in the CPF 
at 0n = , reassign operation, 1-D Radon transform over the 
CPF, and a 1-D grid search. The computation reduces mainly 
due to much less integrals and grid search.  
Within other techniques for multicomponent QFM signals, 
the PPT and the PHAF with small lag sets are faster than the 
RCT; the Radon-Wigner transform (RWT) suffers from 2-D 
gird search; The integrated general ambiguity function 
(IGAF) [11] is also computationally exhaust. 
In conclusion, the 1-D RCT can be treated as, in addition to 
good performance at low SNR and suppression of spurious 
peaks, one of the computationally efficient transform for 
multicomponent QFM signals. 
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3.3.4 Constraint 
The 1-D RCT has the constraint on estimating the second-
order coefficient in assign operation. From (8) and (10), if the 
spurious peaks arise at , the first-order coefficients 
must be same. Therefore, we make the assumption that the 
first-order coefficients of all signals are distinct which results 
in the spurious peaks occur at 

0n =

0n ≠ . 

4. SIMULATIONS 

In this section, we first demonstrate the identifiability prob-
lem, then the direct illustration and finally the performance 
of the 1-D/2-D RCT with respect to the Cramér-Rao lower 
Bound (CRLB). Due to the proposed algorithm is sequential, 
it inevitably suffers from error propagation effect. Therefore, 
only the MSEs of the third-order coefficient are evaluated.  

Example 1 – To demonstrate the identifiability problem 
and the illustration of the 1-D/2-D Radon-CPF transform. 
Two signals are generated by (3) and the parameters are cho-
sen to be , 1,  , , 

, and , , 2,1  , 
 , (fig.1 (a)) or 

 (fig.1 (b)), respectively.  and the 
sampling rate is 1.  

1 1A = 0 0a = 1,1 / 25a π= 1,2 / 5a Nπ=
2

1,3 / 5a π= N
N

N

2 1A = 2,0 0a = / 25a π= −
2,2 /10a Nπ= − 2

2,3 / 5a π=
2

2,3 2 / 5a π= 515N =

The simulation results of example 1 are plotted in Fig.1. The 
identifiability problem is easy to see from Fig.1 (a-b). The 
results of the 1-D RCT are indicated with plus signs, 
whereas the results of the 2-D RCT are shown as circles. 
Note that the results of the 2-D Radon-CPF are plotted at the 
slice where the distinct peaks occur. From Fig. 1, it is evi-
dent that the 1-D RCT has similar performance for multi-
component QFM signals.  

Examples 2 – To evaluate the performance of the 1-
D/2-D Radon-CPF transform. Due to the error propagation 
effect, only the third-order coefficient is considered. The 
simulation results show other phase estimations have similar 
performance, i.e., the SNR threshold, as well. In order to 
compare with other algorithms, especially the PPT and CPF, 
the same signal in [2, 12] is used with parameter 
as, 0 , 10a = 0.3a π= , 3

2 10a π −= − , , 5
3 10a π −= 257N =  

and sampling rate is 1. The MSEs of estimates are evaluated 
as  

3

2
1 3 3ˆMSE = /M

ia a a M= −∑ .                    (24) 

where  is the Monte-Carlo runs for each SNR. The 
SNR is varied from -10 dB to 10 dB by a step of 1 dB.  

250M =

The measured MSEs are plotted in Fig.2. Both cases of the 1-
D and 2-D RCT are evaluated.  For high input SNR, the en-
velop form of the 1-D transform has an about 1.32 dB loss 
compared with the CRLB, whereas the square-law estimator 
has an about 2 dB loss results for its higher order of nonlin-
earity.  For the comparison, the corresponding performances 
loss of envelope form and square-law form of the 2-D RCT 
are shown about 4 dB and 6 dB, respectively. For lower SNR, 
the performances of all estimators degrade dramatically.   
From Fig. 2, it is evident that the 1-D RCT has the SNR 
threshold at -3 dB, whereas the SNR threshold of the 2-D 

RCT is about 5 dB. In [2] and [12], the CPF and PPT are 
shown to threshold at higher SNR, i.e., -2 dB and 6 dB, re-
spectively. 

5. CONCLUSION 

A computationally efficient technique has been proposed for 
elimination of the identifiability problem arising from multi-
component QFM signals. This technique utilizes the second-
order coefficient to reassign the TFRD with the aim to im-
plement only angle integrals. Once the reassign operation is 
finished, the multicomponent case can be expressed sequen-
tial monocomponent cases, which introduces much less 
cross terms in the Radon transform domain. In numerical 
simulations, the performances of the 1-D and 2-D RCT are 
evaluated. Compared with other techniques for multicompo-
nent QFM signals, the 1-D Radon transform can be consid-
ered as the good trade-off between the computation com-
plexity and the performance.  
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Fig.2.  The MSEs of 3  versus SNR for 257 sample quadratic FM signal. 
Full line is the CRLB. Plus signs: envelope form of the 1-D Radon-CPF 
transform. Circles: square-law form of the 1-D Radon-CPF transform. 
Squares: envelope form of the 2-D Radon-CPF transform. Asterisks: 
square-law form of the 2-D Radon-CPF transform 
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Fig.1.  The identifiability problem and the results of the 1-D Radon-CPF 
transform. Top row — The illustration of identifiability problem; Middle 
row — The 1-D/2-D Radon-CPF transform over the fig.1 (a) (left: enve-
lope estimator; right: square-law estimator); Bottom row — The 1-D/2-D 
Radon-CPF transform over the fig.1 (b).  
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