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ABSTRACT

In this paper we propose an algorithm for near-lossless com-
pression of hyperspectral images based on distributed source
coding (DSC). The encoding is based on syndrome coding
of bit-planes of the quantized prediction error of each band,
using the same information in the previous band as side in-
formation. The practical scheme employs an array of low-
density parity-check codes.

Unlike other existing DSC techniques, the determination
of the encoding rate for each data block is completely based
on a statistical model, avoiding the need of inter-source com-
munication, as well as of a feedback channel. Moreover, the
statistical model allows to estimate the statistics of the cur-
rently decoded bit-plane also using the information about the
previously decoded ones in the same band; this boosts the
performance of the DSC scheme towards the capacity of the
conditional entropy of the multilevel (as opposed to binary)
source.

Experimental results have been worked out using
AVIRIS data; a significant performance improvement is ob-
tained with respect to existing DSC and classical techniques,
although there is still a gap with respect to the theoretical
coding bounds.

1. INTRODUCTION

Distributed source coding (DSC) has recently attracted a lot
of interest in the signal processing community [1]. DSC
refers to the problem of encoding two (or more) correlated
sources, sayX andY, without letting them communicate with
each other, i.e. avoiding joint encoding. Since the joint en-
coder requires explicit decorrelation of the sources, there ex-
ist several applications where it is undesirable to use one.
For example, when the encoder computational resources are
scarce, decorrelation of a complex data set such as a video
sequence or a multichannel image can be a burdensome task.
Moreover, the sources could be located in different places,
as in sensor networks applications, making it very costly to
transmit all the sources to a central joint encoder. However,
it has been shown that, for lossless compression, separate en-
coding of correlated sources can be performed without any
performance loss with respect to joint encoding, provided
that joint decodingis carried out [2]; this combination of
separate decoding and joint decoding is referred to as DSC.
Similar results exist in the lossy case [3], stating that the lossy
DSC problem may exhibit a performance loss with respect to
the joint encoder; however, the loss is no larger than 0.5 bpp
[4], and there exist no-loss cases, e.g. if the sources can be
modeled asX =Y+N, with N a zero-mean Gaussian process
independent fromY.

These results have been used to revert traditional coding
paradigms employing a complex joint encoder, which does
all the source modeling, and a light decoder. In DSC, there
is little or ideally no encoder modeling, while this is done at
the decoder side, allowing to obtain a scheme consisting of a
light encoder and a complex decoder. Applications to lossy
video coding [5] and lossless coding of hyperspectral images
[6] have shown the feasibility of this approach.

One serious issue with many DSC schemes lies in the
conditional entropy estimation stage. To clarify this, we
employ the simplest lossless DSC scheme (also known as
Slepian-Wolf coding), whereY is encoded at rateH(Y), and
X at rateH(X|Y), whereH(·) denotes entropy. The Slepian-
Wolf theorem ensures that lossless reconstruction can be
asymptotically achieved at these rates; however, although the
encoder ofX does not need to knowY, it does need to know
its encoding rateH(X|Y). To address this problem, in [8] it
is proposed to employ an embedded coding scheme coupled
with a feedback channel, in such a way that the decoder will
request as many bits as necessary to decode the data without
errors. However, while it is relatively easy to perform embed-
ded DSC, the requirement of a feedback channel is a rather
limiting assumption. Alternatively, one should employ some
statistical model that allows to estimate the conditional en-
tropy H(X|Y); some preliminary work in this direction has
been proposed in [7]. Eventually, when these solutions are
not applicable, one can violate the DSC assumption and let
the sources communicate to as much an extent as necessary
to estimateH(X|Y) (as e.g. in [5]); however, the commu-
nication and computation required to estimateH(X|Y) may
outweigh the benefits of DSC.

Moreover, typical DSC schemes employ binary coders
(e.g., applied to the bit-planes of a transformed signal or
image), thus neglecting the correlation among different bit-
planes of the signal. We have found that, for lossless coding,
neglecting this correlation can lead to a significant perfor-
mance loss (about 1 bpp for hyperspectral data). The inter-
bit-plane correlation is seldom exploited in the literature, and
even when it is (see e.g. [9]), it is done for synthetic (e.g.,
Gaussian) sources, but there is no available realistic proba-
bility model to be used in real-world data sources.

In this paper we expand on our previous lossless com-
pression scheme for hyperspectral data, named DSC-CALIC
[6], and provide the following contributions. Firstly, we pro-
pose a new full-featured statistical model in order to estimate
the rates and probabilities necessary to perform DSC encod-
ing; this eliminates the need for any kind of inter-source com-
munication and computing, and is a step towards the full ex-
ploitation of DSC potential. Secondly, we take into account
the inter-bit-plane correlations by using a multilevel (as op-
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posed to binary) probability model at the DSC decoder; this
is exactly the same model used at the encoder, and allows to
obtain estimates of the binary probabilities required to initial-
ize and run the binary channel decoders. Thirdly, we upgrade
our Slepian-Wolf scheme to a Wyner-Ziv near-lossless com-
pression scheme, i.e. one that minimizes the absolute max-
imum error, as opposed to the mean squared-error, between
the decoded and the original image. This is very important
for scientific imagery, where the improved compression ra-
tio comes at the expense of a very small quality degradation,
allowing full exploitation of the image information content.
Moreover, each band of the compressed file can be decoded
progressively.

2. THE PROPOSED NEAR-LOSSLESS DSC-CALIC
CODER

We briefly review the operation of DSC-CALIC and describe
the modifications for near-lossless and progressive operation;
the reader is referred to [6] for additional details.

2.1 Review of CALIC

In the following we briefly review the near-lossless CALIC
compression scheme, as it is used to generate the prediction
errors encoded by the proposed technique. CALIC is based
on non-linear prediction followed by context-based entropy
coding. We briefly outline the main steps leading to the gen-
eration of the prediction error signal and its entropy coding.
We assume that the image to be coded is a band of an hyper-
spectral data set.

CALIC performs prediction of a pixel value based on a
causal neighborhood; the neighborhood is also used to com-
pute contexts for arithmetic coding. It has two operating
modes, namely a binary and a continuous mode. The binary
mode is only used for those neighborhoods where no more
than two distinct intensity values appear; in this case, a spe-
cial entropy coding mode is triggered. However, we do not
employ the binary mode here because it does not generate
any prediction error samples but is a sort of direct run-length
coding.
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Figure 1: Causal neighborhood for prediction in CALIC.

A gradient-adjusted prediction of a pixel is carried out
using seven adjacent pixels in its neighborhood (see Fig. 1).
Estimates of the horizontal and vertical gradients of the pixel
to be predictedx are computed asdh = |x1−x5|+ |x2−x3|+
|x2−x4| anddv = |x1−x3|+ |x2−x6|+ |x4−x7|. According
to the values ofdh anddv, a nonlinear rule is applied in order
to obtain an estimatex′ of pixel x based on the sharpness of
the horizontal and vertical edges.

CALIC also defines contexts, which are used to decrease
the prediction error variance, as well as improve the effi-
ciency of entropy coding. It employs 144 texture contents,
combined with 4 error energy contexts, leading to overall 576
contexts. In each context, the average valueē of the predic-
tion error is computed; this average is then subtracted from

the prediction error, so as to obtain the bias-free prediction
errorEx= x−x′− ē.

In order to achieve near-lossless compression, the pre-
diction error is quantized using a uniform quantizer with odd
step-size,2L∞ +1, yielding the quantization indexesQx. The
decoder, after inverse quantization, will reconstruct the orig-
inal image within an absolute maximum error equal toL∞.
In continuous mode, a binary context-based arithmetic coder
is used to encode the quantization indexesQx (this will be
replaced by a Slepian-Wolf coder in the proposed scheme).

2.2 Overview of the proposed scheme

The basic idea of the proposed scheme is to encode each band
separately, and to decode the current band using the previous,
already decoded band as side information. What is actually
entropy-coded are the quantization indexesQx of the current
band.

As side information, the decoder uses the indexesQy of
the previous band.

The encoding of one band is done bit-plane by bit-plane,
and bit-planes are generated by reading the indexesQx in
raster-scan order. Bit-planes are not generated by taking the
bits of equal degree of all coefficients, but rather using the
significance-based ordering ala SPIHT [12], in which a sam-
ple x in bit-planei has a classC(x, i) belonging to one out of
three types, namely significance, refinement, and sign.

Each bit-plane is then coded using DSC; we em-
ploy syndrome-based coding using low-density parity-check
(LDPC) codes of suitable rate. An arithmetic coder can also
be used in place of the syndrome coder.

The decoder carries out syndrome decoding (or arith-
metic decoding) to recover the bit-planes. It then employs the
bit-planes to reconstruct the quantized prediction error sam-
ples, and performs inverse quantization and inverse CALIC
prediction.

A statistical correlation model is employed to model the
signal in order to estimate a few probabilistic parameters that
are needed by the encoder and the decoder. The encoder
requires to know the conditional entropy of each bit-plane
given the corresponding bit-plane in the side information.
The decoder needs to know the log-likelihood ratios of the
bits to be decoded.

In the following the building blocks of the proposed
scheme are described in more detail.

2.3 Statistical model for probability estimation

A good correlation model is the key ingredient in order to
easily estimate the bit-plane conditional entropies on the en-
coder side, as well as to initialize the probabilities of the mes-
sage passing syndrome decoder. In this paper we propose to
employ a Laplacian correlation model; in particular, the fol-
lowing conditional probability density function (pdf) is used:

fX|Y(x|y) =
λ
2

e−λ |x−y| (1)

where the random variablesX andY are, from now on, used
to denote the quantized prediction error samplesQx andQy
in order to simplify the notation. As a consequence, the vari-
ance ofX conditioned onY can be expressed asσ2

X|Y = 2/λ 2,
which is a parameter to be estimated. In order to not vio-
late the DSC assumptions, the samplesx in the current band
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cannot be used in the estimation ofσX|Y; therefore, in our
scheme the encoder and decoder obtain an estimate ofσX|Y
using the two previous bands Y and Z which precedeX.
In particular, the variance of the difference between the co-
located samples of bandsY andZ is used as an estimate of
σ2

X|Y and the correspondingλ is evaluated and used in Eq.
(1). In this way the estimation is causal, and the decoder can
perform the same computations as the encoder. As for the
mean valuey of the conditional distribution, the true value of
the sampley is used.

The Laplacian model, which is a continuous-amplitude
model, is then used to evaluate the probability of a given sam-
ple being equal to 1 in the considered bit-planen. According
to the bit-plane coding approach there are 3 bit classes: sig-
nificance, sign and refinement bits. The probability that the
n-th bit of samplex turns out to be significant is

PS(x,n) =
∫ 2n+1

2n
|x| fX|Y(x|y)dx

The probability of samplex, which is significant in bit-plane
n, being positive can be evaluated as:

P+(x,n) =
∫ 2n+1

2n
x fX|Y(x|y)dx

Finally, given a partially coded samplex and its current re-
construction̂xn+1 in bit-planen+1, the probability of having
a refinement bit of value 1 in bit-planen is

PR(x,n) =

{ ∫ x̂n+1+2n

x̂n+1
x fX|Y(x|y)dx , x̂n+1 ≥ 0

∫ x̂n+1
x̂n+1−2n x fX|Y(x|y)dx , x̂n+1 < 0

Note that these integrals have simple closed-form expres-
sions, which are not reported here for brevity. These quan-
tities are used by the encoder to estimate the conditional en-
tropy of bitplanei, Hi = ∑x H

(
PC(x,i)(x, i)

)
, whereC(x, i)

identifies the bit class of samplex in bit-planei andH(p) =
−plog2(p)− (1− p) log2(1− p). The bit classes are ob-
tained with bit-plane coding approach ala SPIHT, where all
sample are initially tested for significance, when a sample
is significant its sign is transmitted, then refinement bits are
coded.

Analogously, the bit probabilities computed above are
used on the decoder side to initialize the log-likelihood ra-
tios (LLR) of all sample in a certain bit-plane. The value of a
given LLR depends on the considered bit-plane and bit class.
More details on this aspect are given in Sect. 2.5.

2.4 Encoder

The near-lossless CALIC encoder [10] is employed to gener-
ate the quantized prediction error samplesX. Slepian-Wolf
coding is applied toX as entropy coding stage. In particu-
lar, the encoder decomposesX into its bit-planesXi using the
significance/refinement/sign procedure. The equivalent bit-
planesYi of the prediction error arrayY of the previous band
will be used by the decoder as side information. For each
bit-plane, we define the conditional entropyHi = H(Xi |Yi),
as well as its estimated valueH∗

i , which is computed as ex-
plained in Sect. 2.3.

For each bit-plane, depending on the value ofH∗
i the en-

coder selects one out of two possible coding modes, i.e. i)

transmitXi using an arithmetic coder, and ii) employ the DSC
mode using syndrome-based coding. IfH∗

i > 0.95, then the
bit-plane is transmitted using an arithmetic coder, since there
is no channel code of suitable rate in the database. Otherwise,
the DSC mode is triggered and the bit-plane is encoded us-
ing syndrome-based coding, i.e. the syndromeZi of the array
Xi is computed using an LDPC code with number of checks
M > H∗

i , and is transmitted to the decoder. In particular, we
use a database of about 100 irregular LDPC codes [14, 15]
with belief-propagation decoding, with code rate between 0.1
and 0.95. For more information on syndrome-based coding
the reader is referred to [1]. It is worth noticing that, accord-
ing to the proposed approach, each bit-plane is coded by a
single LDPC; on the contrary, each bit-plane collects bits of
different classes and with different probability of being 1 or
0. From the channel coding point of view, a single linear
code is being used to face a time-varying channel.

2.5 Decoder

The bit-planesYi of the quantized prediction error of the pre-
viously decoded band are used as side information to esti-
mate the bit-planesXi of the quantized prediction error of
the current band, which will be combined to form the recon-
structed quantization indexesX. Then inverse quantization
and CALIC inverse prediction are used to obtain the final de-
coded band.

The estimation process depends on which coding mode
has been employed by the encoder for each bit-plane. If the
arithmetic coding mode has been used, an arithmetic decoder
is used to extract the bit-planeXi . If the DSC mode has been
used, the decoder runs the iterative message-passing LDPC
decoding algorithm to recoverXi . The LDPC decoder takes
as inputs the LLRs of the received message, the received syn-
dromes, and the side informationYi . Unlike classical LDPC
decoding, as in [11] we carry out syndrome decoding, at-
tempting to make the decoder converge to an estimated mes-
sage having exactly the received syndromeZi . The most
important aspect of LDPC decoding is the LLR estimation.
LLRs for a binary asymmetric channel are defined as follows
[6]:

LLRy = log2
P(x = 1|y)
P(x = 0|y) =

{
log2

pi
1−pi

if y = 0

log2
1−qi

qi
if y = 1

wherepi = P(xi = 1|yi = 0) andqi = P(xi = 0|yi = 1) are as-
sumed to be known. This model neglects the correlation be-
tween neighboring bit-planes. To exploit this additional cor-
relation, we employ the statistical model described in Sect.
2.3 to estimate the probabilities of each bit-plane given the
side informationand all the previously decoded bit-planes.
Given a bit-planei, the LLR for each samplex depends on
the corresponding bit classC(x, i) and can be expressed as

LLR(x, i) = log2

PC(x,i)(x, i)
1−PC(x,i)(x, i)

where the correlation with the previously decoded bit-planes
is carried by the conditional probabilityPC(x,i)(x, i).

3. EXPERIMENTAL RESULTS

The proposed scheme has been applied to AVIRIS [13] hy-
perspectral images. The test images have 256 lines, 614 pix-
els per line, and 224 bands. This leads to a block size of

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



N ' 105, for which LDPC codes are known to exhibit good
error-correction performance. Rather than providing average
bit-rates, we show the individual bit-rates for a few bands,
which are decoded using the previous band as side informa-
tion. The bands have been chosen to be roughly uniformly
spaced in the instrument wavelength range.

The results obtained on theCupritescene are reported in
Tab. 1 for different values of absolute maximum errorL∞.
The table reports the bit-rates, in bits per sample, for vari-
ous techniques, which have been chosen in order to evaluate
how close the proposed technique is to the theoretical per-
formance bounds. In particular, b-AC refers to the proposed
algorithm when the DSC mode is disabled, and an ideal bi-
nary arithmetic coder is used to encode all bit-planes; i.e.,
the bit-rate is nothing but the average rate obtained coding
each bit-plane as a separate binary source with a rate equal
to its entropy. The technique labeled as b-DSC consists in
the proposed technique, in which the LDPC entropy coder
is replaced by an idealbinary Slepian-Wolf coder; in other
terms, the bit-rate is the average rate obtained coding each
bit-plane as a separate binary source with a rate equal to its
conditional entropy given the side information. This tech-
nique serves as reference to assess the best result that could
be achieved by a coder that neglects the inter-bit-plane cor-
relations. The column labeled asHC reports the conditional
entropy of the multilevel (as opposed to binary) source, and is
used here as performance bound for the proposed multilevel
LDPC Slepian-Wolf coder. Finally, the technique labeled as
LDPC is the proposed technique with a true LDPC coder and
decoder.

Several remarks can be made analyzing the results in Tab.
1. It can be seen that the performance difference between b-
AC and b-DSC is significant (about 1 bpp); this highlights
the potential of DSC-based techniques to capture the corre-
lation between adjacent bands. By comparing b-DSC and
HC, it can be noted that the correlation between adjacent bit-
planes is very significant, since the binary algorithm exhibits
an average performance loss in excess of 1 bpp. The practi-
cal LDPC-based scheme performs significantly better than b-
DSC, but is still far from the performance bound ofHC. This
is due to the fact that we are using a binary channel coder
outside the capacity region of the binary channel (indepen-
dent transmission and decoding of bit-planes), attempting to
reach the (higher) capacity of the multilevel channel by pro-
viding a more accurate statistical model. Since this channel
coder has not been developed nor optimized for multilevel
transmission, a performance gap has to be expected when it
is used in the multilevel context. From Tab. 1, this gap turns
out to be between 0.7 and 1 dB, whereas on the same data we
have found that the binary LDPC code is as close as 0.05 bpp
to the capacity of the binary channel. However, there is still a
significant improvement (up to about 0.5 bpp) with respect to
the ideal performance bound for the binary channel. Similar
results, reported in Tab. 2, have been obtained on theJasper
Ridgescene.

For comparison, in Tab. 3 we also report the bit-rates
achieved by CALIC [10] on the same scenes and in the same
conditions as above. As can be seen, the performance of
CALIC is slightly better than that of b-AC thanks to the con-
text modeling. However, both the practical proposed tech-
nique and its performance bound exhibit significantly lower
bit-rates, witnessing that DSC is indeed able to provide sig-
nificantly better performance than lossless 2D techniques, al-

Table 1: Bit-rates obtained on theCupritescene.

L∞ Band b-AC b-DSC HC LDPC
1 20 7.52 6.39 5.17 5.98
1 60 5.66 4.90 3.88 4.75
1 95 5.88 4.92 3.82 4.55
1 130 5.37 4.37 3.26 3.98
1 180 4.80 4.33 3.46 4.19
3 20 6.32 5.20 4.06 4.69
3 60 4.50 3.80 2.76 3.76
3 95 4.72 3.82 2.73 3.69
3 130 4.21 3.25 2.22 3.09
3 180 3.64 3.21 2.37 3.27

Table 2: Bit-rates obtained on theJasper Ridgescene.

L∞ Band b-AC b-DSC HC LDPC
1 20 7.63 6.21 4.97 5.93
1 60 7.67 6.22 4.88 5.82
1 95 7.16 5.56 4.26 5.06
1 130 6.36 4.55 3.26 3.99
1 180 5.56 4.59 3.53 4.34
3 20 6.44 5.04 3.90 4.79
3 60 6.47 5.05 3.78 4.56
3 95 5.97 4.42 3.16 3.95
3 130 5.18 3.49 2.27 3.16
3 180 4.39 3.55 2.47 3.47

though there is still some work to be done in the design of
multilevel Slepian-Wolf coders, in order to get more close to
the performance bounds.

Table 3: Bit-rates obtained by CALIC on theCuprite and
Jasper Ridgescenes.

L∞ Band Cuprite Jasper
1 20 7.40 7.32
1 60 5.44 7.56
1 95 5.83 7.02
1 130 5.11 6.09
1 180 4.24 5.14
3 20 6.20 6.09
3 60 4.24 6.33
3 95 4.62 5.80
3 130 3.91 4.88
3 180 3.06 3.60

Finally, in order to further validate the proposed statisti-
cal model, we have estimated the multilevel conditional en-
tropy by using our conditional pdf model (see Eq. 1) inside
the definition of conditional entropy:

H(X|Y) =−∑
x

∑
y

fX|Y(x|y) fY(y) log fX|Y(x|y).

It turns out that our estimate is typically within 0.05 and 0.1
bpp fromHC when the true and estimated values ofσX|Y are
employed respectively, thus witnessing the accuracy of the
proposed model.
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4. CONCLUSIONS

In this paper we have proposed a compression technique for
hyperspectral data based on DSC. Notable features are near-
lossless reconstruction, and the use of a statistical model for
encoder and decoder probability estimation.

We have found that the statistical model provides accu-
rate estimates of the required probabilities, eliminating the
need of inter-band communication (or a feedback channel).

The same model can be used to improve the LLR esti-
mation for the LDPC decoder, in an attempt to boost its per-
formance and achieve a rate equal to the conditional entropy
of the multilevel source. We have found that the proposed
approach does yield a nice performance improvement. How-
ever, since the LDPC coder is a binary channel coder, it still
exhibits a performance gap with respect to an ideal multilevel
Slepian-Wolf coder.
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