14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

NEAR-LOSSLESS DISTRIBUTED CODING OF HYPERSPECTRAL IMAGES USING
A STATISTICAL MODEL FOR PROBABILITY ESTIMATION

Marco Grangetto, Enrico Magli, Gabriella Olmo

Dept. of Electronics, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: firstname.lastname@polito.it

ABSTRACT These results have been used to revert traditional coding

In this paper we propose an algorithm for near-lossless congm”‘d'gmS employing a complex joint encoder, which does

pression of hyperspectral images based on distributed sour -g the source modeling, and a light decoder. In DSC, there
little or ideally no encoder modeling, while this is done at

coding (DSC). The encoding is based on syndrome codingh . g - o
. - S e decoder side, allowing to obtain a scheme consisting of a
of bit-planes of the quantized prediction error of each ban.dﬁght encoder and a comglex decoder. Applications to I%ssy

using the same information in the previous band as side iNGig : . ;
: ; eo coding [5] and lossless coding of hyperspectral images
formation. The practical scheme employs an array of Iow—[6] have shc?V\En]the feasibility of thisgapp?(/)%ch.p 9

density parity-check codes. . . ) o
Unlike other existing DSC techniques, the determination One serious issue with many DSC schemes lies in the
nditional entropy estimation stage. To clarify this, we

of the encoding rate for each data block is completely baset lov the simplest loss h IS6 K
on a statistical model, avoiding the need of inter-source con€MPIOY the simplest lossless DSC scheme (also known as

munication, as well as of a feedback channel. Moreover, thg €Pian-Wolf COdinﬁl)' Wher&;Iis encoded at ratlelh(Y),Iand
statistical model allows to estimate the statistics of the cur altfrar;teH (X[Y), w ereHé-) Ieno'ies entropy. The S ep'a”'b
rently decoded bit-plane also using the information about th&/o!f theorem ensures that lossless reconstruction can be

previously decoded ones in the same band:; this boosts tfsymptotically achieved at these rates; however, although the

performance of the DSC scheme towards the capacity of thgcoder oX does not need to knol, it does need to know

e i d Its encoding ratéd (X|Y). To address this problem, in [8] it
ggﬂ?éteu.)nal entropy of the multilevel (as opposed to bmary)is proposed to employ an embedded coding scheme coupled

Experimental results have been worked out usin ith a feedback channel, in such a way that the decoder will
AVIRIS data; a significant performance improvement is ob- equest as many bits as necessary to decode the data without

tained with respect to existing DSC and classical techniquegggré'sﬁovtvﬁgig Whrltleen:telﬁ trilfagvfzg debaascykt(():k?ae;fr?ér?se?tr)aet?\-er
although there is still a gap with respect to the theoretic ' qui !

; imiting assumption. Alternatively, one should employ some

coding bounds. statistical model that allows to estimate the conditional en-
tropy H(X|Y); some preliminary work in this direction has

1. INTRODUCTION been proposed in [7]. Eventually, when these solutions are
Distributed source coding (DSC) has recently attracted a It @Pplicable, one can violate the DSC assumption and let
of interest in the signal processing community [1]. DscLhe sources communicate to as m.uch an extent as necessary
refers to the problem of encoding two (or more) correlated® es_tlmateH(X|Y) (as_e.g. n .[5])’ howeyer, the commu-
sources, sa}t andyY, without letting them communicate with nication and computation required to estimBitex|Y) may
each other, i.e. avoiding joint encoding. Since the joint en—OUtWeIgh the ben«_aﬁts of DSC. )
coder requires explicit decorrelation of the sources, there ex- Moreover, typical DSC schemes employ binary coders
ist several applications where it is undesirable to use ond€.9., applied to the bit-planes of a transformed signal or
For example, when the encoder computational resources aféage), thus neglecting the correlation among different bit-
scarce, decorrelation of a complex data set such as a vidéanes of the signal. We have found that, for lossless coding,
sequence or a multichannel image can be a burdensome ta§Rglecting this correlation can lead to a significant perfor-
Moreover, the sources could be located in different placeghance loss (about 1 bpp for hyperspectral data). The inter-
as in sensor networks app”cationsy making it very Cost|y t(blt'plane COl_’relatlon is seldom QXplOIted in the ||teratl.lre, and
transmit all the sources to a central joint encoder. Howevegven when it is (see e.g. [9]), it is done for synthetic (e.g.,
it has been shown that, for lossless compression, separate épaussian) sources, but there is no available realistic proba-
coding of correlated sources can be performed without an@ility model to be used in real-world data sources.
performance loss with respect to joint encoding, provided In this paper we expand on our previous lossless com-
that joint decodingis carried out [2]; this combination of pression scheme for hyperspectral data, named DSC-CALIC
separate decoding and joint decoding is referred to as DS(B], and provide the following contributions. Firstly, we pro-
Similar results exist in the lossy case [3], stating that the losspose a new full-featured statistical model in order to estimate
DSC problem may exhibit a performance loss with respect tthe rates and probabilities necessary to perform DSC encod-
the joint encoder; however, the loss is no larger than 0.5 bping; this eliminates the need for any kind of inter-source com-
[4], and there exist no-loss cases, e.g. if the sources can Ibeunication and computing, and is a step towards the full ex-
modeled aX =Y + N, with N a zero-mean Gaussian processploitation of DSC potential. Secondly, we take into account
independent frony. the inter-bit-plane correlations by using a multilevel (as op-
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posed to binary) probability model at the DSC decoder; thishe prediction error, so as to obtain the bias-free prediction
is exactly the same model used at the encoder, and allows &srorEx=x—x —e.

obtain estimates of the binary probabilities required to initial-  In order to achieve near-lossless compression, the pre-
ize and run the binary channel decoders. Thirdly, we upgradeiction error is quantized using a uniform quantizer with odd
our Slepian-Wolf scheme to a Wyner-Ziv near-lossless comstep-size2L., + 1, yielding the quantization index€y. The
pression scheme, i.e. one that minimizes the absolute magecoder, after inverse quantization, will reconstruct the orig-
imum error, as opposed to the mean squared-error, betweéral image within an absolute maximum error equalig

the decoded and the original image. This is very importanin continuous mode, a binary context-based arithmetic coder
for scientific imagery, where the improved compression rais used to encode the quantization indeggs(this will be

tio comes at the expense of a very small quality degradatiomeplaced by a Slepian-Wolf coder in the proposed scheme).
allowing full exploitation of the image information content.

Moreover, each band of the compressed file can be decoded®2 Overview of the proposed scheme

progressively. The basic idea of the proposed scheme is to encode each band

separately, and to decode the current band using the previous,
2. THE PROPOSED NEAR-LOSSLESS DSC-CALIC  gready decoded band as side information. What is actually

CODER entropy-coded are the quantization indeggof the current

We briefly review the operation of DSC-CALIC and describeband' ide inf . he decod he ind ¢
the modifications for near-lossless and progressive operatio,r[h'eAS side information, the decoder uses the inde@gs

h is ref t f itional ils. previous band.
the readeris referred to [6] for additional detatls The encoding of one band is done bit-plane by bit-plane,

, and bit-planes are generated by reading the ind€xem

2.1 Review of CALIC raster-scan order. Bit-planes are not generated by taking the
In the following we briefly review the near-lossless CALIC bits of equal degree of all coefficients, but rather using the
compression scheme, as it is used to generate the predictisignificance-based ordering ala SPIHT [12], in which a sam-
errors encoded by the proposed technique. CALIC is baseagle x in bit-planei has a clas€(x,i) belonging to one out of

on non-linear prediction followed by context-based entropythree types, namely significance, refinement, and sign.
coding. We briefly outline the main steps leading to the gen- Each bit-plane is then coded using DSC; we em-
eration of the prediction error signal and its entropy codingploy syndrome-based coding using low-density parity-check
We assume that the image to be coded is a band of an hyp&tzDPC) codes of suitable rate. An arithmetic coder can also
spectral data set. be used in place of the syndrome coder.

CALIC performs prediction of a pixel value based on a  The decoder carries out syndrome decoding (or arith-
causal neighborhood; the neighborhood is also used to cormetic decoding) to recover the bit-planes. It then employs the
pute contexts for arithmetic coding. It has two operatingbit-planes to reconstruct the quantized prediction error sam-
modes, namely a binary and a continuous mode. The binaples, and performs inverse quantization and inverse CALIC
mode is only used for those neighborhoods where no morgrediction.
than two distinct intensity values appear; in this case, a spe- A statistical correlation model is employed to model the
cial entropy coding mode is triggered. However, we do nosignal in order to estimate a few probabilistic parameters that
employ the binary mode here because it does not generasee needed by the encoder and the decoder. The encoder
any prediction error samples but is a sort of direct run-lengthequires to know the conditional entropy of each bit-plane
coding. given the corresponding bit-plane in the side information.
The decoder needs to know the log-likelihood ratios of the
bits to be decoded.

X51% In the following the building blocks of the proposed
X3| Xo| %4 scheme are described in more detail.
Xs| Xq | X

2.3 Statistical model for probability estimation

Figure 1: Causal neighborhood for prediction in CALIC. A good correlation model is the key ingredient in order to
easily estimate the bit-plane conditional entropies on the en-

A gradient-adjusted prediction of a pixel is carried outcoder side, as well as to initialize the probabilities of the mes-
using seven adjacent pixels in its neighborhood (see Fig. 1¥age passing syndrome decoder. In this paper we propose to
Estimates of the horizontal and vertical gradients of the pixeemploy a Laplacian correlation model; in particular, the fol-
to be predictec are computed ad, = |x; —Xs| +|%2 —x3|+  lowing conditional probability density function (pdf) is used:
X2 —X4| @anddy = |x1 — Xa| + |X2 — Xg| + |X4 — X7|. According
to the values ofl, anddy, a nonlinear rule is applied in order f _ A Ay 1
to obtain an estimate of pixel x based on the sharpness of xiv (Xly) = 2 @
the horizontal and vertical edges. )

CALIC also defines contexts, which are used to decreas¢here the random variablesandY are, from now on, used
the prediction error variance, as well as improve the effifo denote the quantized prediction error sam@les®indQy
ciency of entropy coding. It employs 144 texture contentsin order to simplify the notation. As a consequence, the vari-
combined with 4 error energy contexts, leading to overall 57@nce oiX conditioned orY can be expressed &g, = 2/A?,
contexts. In each context, the average vaié the predic- which is a parameter to be estimated. In order to not vio-
tion error is computed; this average is then subtracted frorfate the DSC assumptions, the samplés the current band
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cannot be used in the estimation @fy; therefore, in our transmitx; using an arithmetic coder, and ii) employ the DSC
scheme the encoder and decoder obtain an estimaigypf mode using syndrome-based codingHjf > 0.95, then the
using the two previous bands Y and Z which precéde bit-plane is transmitted using an arithmetic coder, since there
In particular, the variance of the difference between the cois no channel code of suitable rate in the database. Otherwise,
located samples of bandsandZ is used as an estimate of the DSC mode is triggered and the bit-plane is encoded us-
a)%‘Y and the corresponding is evaluated and used in Eq. ing syndrome-based coding, i.e. the syndranef the array

(1). In this way the estimation is causal, and the decoder cafy is computed using an LDPC code with number of checks
perform the same computations as the encoder. As for tHd > H;", and is transmitted to the decoder. In particular, we
mean valug of the conditional distribution, the true value of Use & database of about 100 irregular LDPC codes [14, 15]
the sampley is used. with behef—propagauqn decod_mg, with code rate between 01
The Laplacian model, which is a continuous-amplitude2nd 0.95. For more information on syndrome-based coding
model, is then used to evaluate the probability of a given santhe reader is referred to [1]. It is worth noticing that, accord-
ple being equal to 1 in the considered bit-planéccording  iNg to the proposed approach, each bit-plane is coded by a
to the bit-plane coding approach there are 3 bit classes: sigingle LDPC; on the contrary, each bit-plane collects bits of
nificance, sign and refinement bits. The probability that thdlifferent classes and with different probability of being 1 or

n-th bit of samplex turns out to be significant is 0. From the channel coding point of view, a single linear
code is being used to face a time-varying channel.
on+1

Ps(x,n) — / IX| gy (Xly)dx 25 Decoder
2n

- S o The bit-plane%; of the quantized prediction error of the pre-
The probability of sample, which is significant in bit-plane  viously decoded band are used as side information to esti-
n, being positive can be evaluated as: mate the bit-plane¥; of the quantized prediction error of

- the current band, which will be combined to form the recon-

= _ f d structed quantization indexe& Then inverse quantization
(% n) = on xfxjv (Xly)dx and CALIC inverse prediction are used to obtain the final de-
coded band.
Finally, given a partially coded sampeand its current re- The estimation process depends on which coding mode
constructiork,.1 in bit-planen+-1, the probability of having  has been employed by the encoder for each bit-plane. If the
a refinement bit of value 1 in bit-plameis arithmetic coding mode has been used, an arithmetic decoder
o is used to extract the bit-plang. If the DSC mode has been
‘)é]n-%—lﬁ’ xfxy (Xy)dx, Xny1 >0 used, the decoder runs the iterative message-passing LDPC
RR(x,n) = fﬁfﬁl xfyy (XIY)dX, Rnig < O decoding algorithm to recovét. The LDPC decoder takes
fs1—20 X XY AY)OX, Xnsd as inputs the LLRs of the received message, the received syn-

. . romes, and the side informatidh Unlike classical LDPC
Note that these integrals have simple closed-form eXpre%ecoding, as in [11] we carry out syndrome decoding, at-

sions, which are not reported here for brevity. These quan: ' .
tities are used by the encoder to estimate the conditional erl.@mptmg to make the decoder converge to an estimated mes-

; S iy : sage having exactly the received syndrofe The most
ftropy_ Pf b|tplar_1e|, Hi = 3xH (quv').(x"))’ _vvhereC(x,|) important aspect of LDPC decoding is the LLR estimation.
identifies the bit class of sampian bit-planei andH (p) =

LLRsf i tric ch I fi foll
—plog,(p) — (1— p)logy(1— p). The bit classes are ob- [6]: s for a binary asymmetric channel are defined as follows

tained with bit-plane coding approach ala SPIHT, where al
sample are initially tested for significance, when a sample P(x=1ly) Iogz%pi ify=0
is significant its sign is transmitted, then refinement bits are  LLRy =109, P(x=0ly) _ | log, =8 ify=1
coded. 27

Analogously, the bit probabilities computed above areyherep; = P(x; = 1]y; = 0) andg; = P(x; = Oly; = 1) are as-
used on the decoder side to initialize the |Og-|ik9|ih00d rAsymed to be known. This model neg]ects the correlation be-
tios (LLR) of all sample in a certain bit-plane. The value of atween neighboring bit-planes. To exploit this additional cor-
given LLR depends on the considered bit-plane and bit classgelation, we employ the statistical model described in Sect.

More details on this aspect are given in Sect. 2.5. 2.3 to estimate the probabilities of each bit-plane given the
side informationand all the previously decoded bit-planes.

2.4 Encoder Given a bit-pland, the LLR for each sample depends on
The near-lossless CALIC encoder [10] is employed to genetthe corresponding bit clag¥x,i) and can be expressed as
ate the quantized prediction error samp¥esSlepian-Wolf Peo (%

. . . . - . C(X,I)(X7I)
coding is applied tX as entropy coding stage. In particu LLR(x,i) = log, —————
lar, the encoder decomposesnto its bit-planesX; using the 1—PRepi) (%)

significance/refinement/sign procedure. The equivalent bi
planesy; of the prediction error array of the previous band
will be used by the decoder as side information. For ea
bit-plane, we define the conditional entroply = H(X[Y;), 3. EXPERIMENTAL RESULTS
as well as its estimated vall", which is computed as ex-
plained in Sect. 2.3. The proposed scheme has been applied to AVIRIS [13] hy-
For each bit-plane, depending on the valuéipfthe en-  perspectral images. The test images have 256 lines, 614 pix-
coder selects one out of two possible coding modes, i.e. Bls per line, and 224 bands. This leads to a block size of

Where the correlation with the previously decoded bit-planes
cli1$ carried by the conditional probabiliB ) (X,1).
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N ~ 10P, for which LDPC codes are known to exhibit good
error-correction performance. Rather than providing average
bit-rates, we show the individual bit-rates for a few bands,
which are decoded using the previous band as side informa-
tion. The bands have been chosen to be roughly uniformly
spaced in the instrument wavelength range.

The results obtained on ti@uprite scene are reported in
Tab. 1 for different values of absolute maximum erkgy.
The table reports the bit-rates, in bits per sample, for vari-
ous techniques, which have been chosen in order to evaluate
how close the proposed technique is to the theoretical per-
formance bounds. In particular, b-AC refers to the proposed
algorithm when the DSC mode is disabled, and an ideal bi-
nary arithmetic coder is used to encode all bit-planes; i.e.,
the bit-rate is nothing but the average rate obtained coding
each bit-plane as a separate binary source with a rate equal
to its entropy. The technique labeled as b-DSC consists in Table 2: Bit-rates obtained on tdasper Ridgacene.
the proposed technique, in which the LDPC entropy coder
is replaced by an ideddinary Slepian-Wolf coder; in other Band | b-AC | b-DSC| Hc [ LDPC
terms, the bit-rate is the average rate obtained coding each 20 | 763 | 6.21 | 497 5.93
bit-plane as a separate binary source with a rate equal to its 60 | 767 | 6.22 | 4.88| 5.82
conditional entropy given the side information. This tech- 95 | 7.16 | 556 | 4.26| 5.06
nique serves as reference to assess the best result that could 130 | 6.36 | 4.55 | 3.26| 3.99
be achieved by a coder that neglects the inter-bit-plane cor- 180 | 5.56 | 4.59 | 3.53| 4.34
relations. The column labeled & reports the conditional 6.44 | 5.04 | 3.90| 4.79
entropy of the multilevel (as opposed to binary) source, and is 60 | 6.47 | 505 | 3.78| 4.56
used here as performance bound for the proposed multilevel 95 | 597 | 442 |316] 3.9
LDPC Slepian-Wolf coder. Finally, the technique labeled as 130 | 5.18 | 3.49 | 2.27| 3.16
LDPC is the proposed technique with a true LDPC coder and 180 | 439 | 3.55 | 247| 3.47
decoder.

Several remarks can be made analyzing the results in Tab.

1. It can be seen that the performance difference between b | ‘e ofi ; ;

A e SR gh there is still some work to be done in the design of
AC and b-DSC is significant (about 1 bpp); this highlights n, jjevel Slepian-Wolf coders, in order to get more close to
the potential of DSC-based techniques to capture the corr%—1e performance bounds.

lation between adjacent bands. By comparing b-DSC an
Hc, it can be noted that the correlation between adjacent bit-
planes is very significant, since the binary algorithm exhibitsTable 3: Bit-rates obtained by CALIC on th@uprite and
an average performance loss in excess of 1 bpp. The practiasper Ridgecenes.
cal LDPC-based scheme performs significantly better than b-
DSC, butis still far from the performance boundHf. This
is due to the fact that we are using a binary channel coder
outside the capacity region of the binary channel (indepen-
dent transmission and decoding of bit-planes), attempting to
reach the (higher) capacity of the multilevel channel by pro-
viding a more accurate statistical model. Since this channel
coder has not been developed nor optimized for multilevel
transmission, a performance gap has to be expected when it
is used in the multilevel context. From Tab. 1, this gap turns
out to be between 0.7 and 1 dB, whereas on the same data we
have found that the binary LDPC code is as close as 0.05 bpp
to the capacity of the binary channel. However, there is still a
significant improvement (up to about 0.5 bpp) with respect to
the ideal performance bound for the binary channel. Similar  Finally, in order to further validate the proposed statisti-
results, reported in Tab. 2, have been obtained odadkper cal model, we have estimated the multilevel conditional en-
Ridgescene. tropy by using our conditional pdf model (see Eqg. 1) inside
For comparison, in Tab. 3 we also report the bit-rateghe definition of conditional entropy:
achieved by CALIC [10] on the same scenes and in the same .
conditions as above. As can be seen, the performance of H(X]Y) = —ZZ iy (X1y) T (y) log v (X]y).-
CALIC is slightly better than that of b-AC thanks to the con- Y
text modeling. However, both the practical proposed techk turns out that our estimate is typically within 0.05 and 0.1
nique and its performance bound exhibit significantly lowerbpp fromHc when the true and estimated valuesgfy are
bit-rates, witnessing that DSC is indeed able to provide sigemployed respectively, thus witnessing the accuracy of the
nificantly better performance than lossless 2D techniques, aproposed model.

Table 1: Bit-rates obtained on ti@upritescene.

Band | b-AC | b-DSC| Hc | LDPC
20 752 | 639 | 517| 5.98
60 5.66 | 490 | 3.88| 4.75
95 588 | 492 | 3.82| 4.55
130 | 5.37 | 4.37 | 3.26| 3.98

480 | 433 | 346| 4.19
20 6.32 | 5.20 | 4.06| 4.69
60 450 | 3.80 | 2.76| 3.76
95 472 | 382 | 2.73| 3.69

130 | 421 | 3.25 | 2.22| 3.09

180 | 3.64 | 3.21 | 237 | 3.27

WWWwWwk PR R R
H
)
)

WWWWWER R PR R
N
(=

Band | Cuprite | Jasper
20 7.40 7.32
60 5.44 7.56
95 5.83 7.02

130 5.11 6.09
180 4.24 5.14
20 6.20 6.09
60 4.24 6.33
95 4.62 5.80
130 3.91 4.88
180 3.06 3.60

WWWWWkR P PR R




14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

4. CONCLUSIONS [12]

In this paper we have proposed a compression technique for
hyperspectral data based on DSC. Notable features are near-
lossless reconstruction, and the use of a statistical model f?iS]
encoder and decoder probability estimation.

We have found that the statistical model provides accu-
rate estimates of the required probabilities, eliminating the
need of inter-band communication (or a feedback channel).[14]

The same model can be used to improve the LLR esti-
mation for the LDPC decoder, in an attempt to boost its perf15]
formance and achieve a rate equal to the conditional entropy
of the multilevel source. We have found that the proposed
approach does yield a nice performance improvement. How-
ever, since the LDPC coder is a binary channel coder, it still
exhibits a performance gap with respect to an ideal multilevel
Slepian-Wolf coder.
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