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ABSTRACT
This article presents a new method of camera motion classification
based on Transferable Belief Model (TBM). It consists in locating
in a video the motions of translation and zoom, and the absence
of camera motion (i.e static camera). The classification process
is based on a rule-based system that is divided into three stages.
From a parametric motion model, the first stage consists in com-
bining data to obtain frame-level belief masses on camera motions.
To ensure the temporal coherence of motions, a filtering of belief
masses according to TBM is achieved. The second stage carries
out a separation between static and dynamic frames. In the third
stage, a temporal integration allows the motion to be studied on a
set of frames and to preserve only those with significant magnitude
and duration. Then, a more detailed description of each motion is
given. Experimental results obtained show the effectiveness of the
method.

1. INTRODUCTION

During this decade, the volume of videos has increased with the
growth of diffusion processes and storage devices. To facilitate
access to information, various indexing techniques using low-level
features have been developed to represent video content.

Among the different features, camera motion is an important in-
dex to take into account for video content analysis and can be used
in many applications such as shot segmentation [1], video sum-
mary [2] or sports video classification [3]. In general, the domi-
nant motion is assumed to come from camera motion. A parametric
model is often used to represent this, and the parameters are es-
timated either in compressed domain [4] or in uncompressed do-
main [2]. Other methods obtain camera motions by directly ana-
lyzing the MPEG motion vectors [5, 6]. However, most approaches
associate a camera motion type from parameters extracted locally
(either between two successive frames or from predicted pictures in
MPEG) by using a learning algorithm [5] or a strategy of threshold-
ing [4, 6]. A stage of filtering is sometimes added to obtain con-
sistent motions [6]. But, few methods quantify identified motions.
For example, a zoom is detected but the enlargement is not defined,
which can be a disadvantage for some applications.

As an alternative to the various approaches presented above, we
propose an original method of camera motion classification based
on Transferable Belief Model (TBM). This theory is a structure
adapted to process imprecise data, to combine various sources of
information and to manage the conflict between the sources. The
objective of our classification is to label a video in a robust way
following the three camera motion classes which are: translation
(pan and/or tilt), zoom and static camera. From a parametric mo-
tion model, our approach estimates frame-level camera motion, then
analyzes segment-level camera motion (on a set of frames). The
main contribution of this paper resides in motion recognition that is
based on a certain number of rules: combination designed to avoid
low magnitude motions, a filtering according to TBM to ensure the
temporal coherence of the motions, and analysis on segment level
to preserve the motions with consequent magnitude and duration.

The rest of the paper is organized as follows. Section 2 presents
an overview of the system architecture for camera motion charac-

terization. Section 3 discusses motion parameter extraction. After
a brief description of the TBM in section 4, the method of camera
motion classification is detailed in section 5. We explain in sec-
tion 6 how identified motions are described. Experimental results
are given in Section 7. Finally Section 8 draws our conclusions.

2. SYSTEM OVERVIEW

The system architecture is depicted in figure 1 and consists of three
phases: motion parameter extraction, camera motion classification
and motion description. The core of our work is the classification
phase which is divided into three stages. The first stage is designed
to convert the motion model parameters into symbolic values. This
representation aims at facilitating the definition of rules to combine
data and to provide frame-level mass functions on different camera
motions. A filtering of mass functions according to TBM is carried
out and contributes to ensuring the temporal coherence of the belief
masses. The second stage carries out a separation between static
and dynamic (zoom, translation) frames. Finally, in the third stage,
the temporal integration of motions is achieved and allows motions
to be studied on segment level (by gathering frames having a cer-
tain belief in a type of motion). The advantage of this analysis is to
preserve only the motions with significant magnitude and duration.
The description phase is then carried out by extracting different fea-
tures on each video segment containing an identified camera motion
type.

Stage  3:  Temporal      integration of    zoom    / translation

Video    stream

Camera   motion  characterization

Phase   2: Camera  motion   classification

Stage  2:  Static   /   dynamic    separation

Phase   1: Motion       parameter      extraction

Phase   3: Camera  motion description

Stage  1:  Combination  based   on  heuristic  rules

Figure 1: System architecture for camera motion characterization

3. MOTION PARAMETER EXTRACTION

The dominant motion, supposed to come from camera motion, is es-
timated between two successive frames by a parametric model. The
affine model is chosen and can describe 5 traditional types of cam-
era motion: zoom, rotation, horizontal translation, vertical transla-
tion, static camera. The velocity vector field is expressed according
to pixel position pi = (xi,yi) of the frame I(pi, t) according to the
following equation:

Vx(pi) = c1 +a1 · xi +a2 · yi
Vy(pi) = c2 +a3 · xi +a4 · yi

where θt = (c1,c2,a1,a2,a3,a4) are the parameters to be estimated.
The determination of the model coefficients is carried out by the
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Motion2D software [7]. It yields a robust and incremental estima-
tion of the dominant motion exploiting the spatio-temporal deriva-
tives of the frame intensity.

Before to use these coefficients, we achieve an average filter
of size L1 on the parameters θt to reduce noise and estimation er-
rors. Certain model parameters are specific to a motion and are
used to identify camera motions. From the filtered parameters
θ ′t = (c′1,c

′
2,a

′
1,a

′
2,a

′
3,a

′
4), the displacement of the camera d pl(t)

and the divergent div(t) between two successive frames I(pi, t) and
I(pi, t + 1) are defined as well as the total displacement d pt(to, t f )
and the distance traveled dtl(to, t f ) between two times to and t f :

−→d pl(t) = (c′1(t),c
′
2(t))

d pl(t) =
∥∥∥−→d pl(t)

∥∥∥
div(t) = (a′1(t)+a′4(t))/2

d pt(to, t f ) =

∥∥∥∥∥t f−1
∑

j=to

−→d pl( j)

∥∥∥∥∥
dtl(to, t f ) =

t f−1
∑

j=to

∥∥∥−→d pl( j)
∥∥∥

The total displacement d pt corresponds to the displacement in
the straight line between the original and final position whereas the
distance traveled dtl is the original way and corresponds to the in-
tegration of all displacements between sampling times.

According to the magnitude of the variables div and d pl, the
different camera motions can be extracted. A translation (respec-
tively a zoom) is detected if the displacement (respectively the di-
vergent) is high. When a light zoom and a strong translation occur
simultaneously, the zoom is not, or hardly visible and thus should
not be detected. In the same way, only the zoom is preserved in the
presence of a strong zoom and a weak translation. In order to satisfy
these rules, the variables need to be converted into linguistic values
to be combined. Before describing camera motion classification,
the following section will point out the bases of the Transferable
Belief Model.

4. TRANSFERABLE BELIEF MODEL

The Transferable Belief Model was formalized by P. Smets [8] and
comes from the Dempster-Shafer’s evidence theory.

Let Ω = {H1, · · · ,HN} be the frame of discernment containing
N mutually exclusive and exhaustive hypotheses related to a given
problem. A mass function or a Basic Belief Assignment (BBA) is a
function m : 2Ω → [0,1] that assigns a value in [0,1] to each subset A
of Ω. The value m(A) is the part of belief that is allocated exactly to
the proposition A. Under closed-world assumption, a BBA is sub-
ject to the following constraints: m( /0) = 0 and ∑A⊆Ω m(A) = 1. The
subsets A ⊆ Ω such that m(A) > 0 are called focal elements of m.

Consider two BBA m1 and m2 defined on the same frame of
discernment and provided by a source 1 and a source 2 respec-
tively. According to applications, two combinations are possible:
conjunctive combination m1 ∩©m2(Ai) and disjunctive combination
m1 ∪©m2(Ai).

m1 ∩©m2(Ai) = ∑A j∩Ak=Ai
m1(A j) ·m2(Ak)

m1 ∪©m2(Ai) = ∑A j∪Ak=Ai
m1(A j) ·m2(Ak)

The conjunctive combination (respectively disjunctive) is inter-
preted as a logical “and” (respectively “or”). These combinations
can then be used in logical rules. From a BBA, a transformation
was proposed by P. Smets [8] to obtain a probability measure called
pignistic probability on the frame of discernment Ω:

BetPΩ(A) = ∑
B⊆Ω

mΩ(B)
1−mΩ( /0)

|A∩B|
|A|

, ∀A ⊆ Ω (1)

where |A| is the cardinal of A ⊆ Ω. This function can be used for
decision-making.

Let Ω1 and Ω2 be two distinct and disjointed frames of discern-
ment, a BBA can be defined on Ω = Ω1×Ω2 through the conjunc-
tive combination as follows:

m1 ∩©m2(A×B) = m1(A) ·m2(B) ∀A ⊆ Ω1, ∀B ⊆ Ω2

The interest of the Cartesian product is to apply TBM even when
the frames of discernment are disjointed and thus not compatible.

5. CAMERA MOTION CLASSIFICATION

Camera motion classification consists in locating in a video the
places where a camera motion takes place. The method, which is
based on TBM, has to identify the three camera motions that are
translation, zoom and absence of motion. The principle of camera
motion classification phase is presented in figure 2. It is divided into
three stages: combination based on heuristic rules, static/dynamic
separation and temporal integration of zoom and translation mo-
tions. The rest of this section describes each stage of the method.
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Figure 2: Principle of camera motion classification phase

5.1 Combination based on heuristic rules
The first stage (fig. 2) consists in converting the model parameters
into symbolic values describing the retrieved motions. From these
variables, we establish heuristic rules to combine them in order to
affect frame-level belief masses on camera motions. Then a tempo-
ral filtering of belief masses is carried out for the purpose of ensur-
ing the temporal coherence of the belief masses on a neighborhood.

5.1.1 Numerical-symbolic conversion

The numerical variables d pl and div are transformed into symbolic
values: weak (W), average (A), large (L) and very large (VL). A
type of fuzzy sets is used to formalize expert knowledge and to pro-
vide a symbolic representation of data. Each linguistic term is as-
sociated to a set defined by a function as indicated in figure 3. With
regard to the symbolic description of divergent, it is carried from
the absolute value of divergent that informs about the magnitude of
the zoom (the sign is related to the direction). Thus the mass func-
tions for the variables div and d pl are respectively defined on the
frame of discernment div = {W,A,L,V L} and d pl = {W,A,L,V L}.
The combination of these mass functions will lead to camera motion
detection.
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jdivj
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Figure 3: Definition of the BBAs for the displacement (left) and for
the divergent (right)

5.1.2 Inference rules

The approach to camera motion classification is based on heuristic
rules. The Transferable Belief Model (TBM) provides tools adapted
to build models that integrate inference mechanisms.

Let A = {T,T} be the frame of discernment of the translation
motion and let B = {Z,Z} be the frame of discernment of the zoom
motion where T (resp Z) is a hypothesis on the presence of the trans-
lation (resp zoom) and T (resp Z) is an hypothesis on the absence
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of the translation (resp absence of zoom). The motion identification
can be carried out by applying the Cartesian product of sets A×B.
For example, if a frame belongs to class (T ,Z) then the frame is
regarded as static. The rules R which we defined for camera mo-
tion classification are summarized in table 1. For example, if div
is average and d pl is large then the detected motion is translation
and thus the belief mass on the product set A×B is assigned to
(T,Z). We can also notice propositions on several motions such
as (T ,Z),(T ,Z). This means the absence of translation and igno-
rance of the presence of zoom, which corresponds to a proposition
on “static or zoom”. The combination mdiv

1 and md pl
2 with the rules

R leads to the definition of a new BBA mA×B
3 = mdiv

1 R©md pl
2 which

directly characterizes the belief on camera motions. We can also
note that the rules are designed to avoid as far as possible secondary
motions. For example, if the displacement is very large and the
divergent is large then the zoom motion is neglected and only the
translation motion is considered. Finally, a BBA mA×B

3,t is obtained
for each frame t of the video.

div
Weak Average Large Very Large

d pl

Weak (T ,Z) (T ,Z),(T ,Z) (T ,Z) (T ,Z)
Average (T ,Z),(T,Z) A×B (T ,Z) (T ,Z)
Large (T,Z) (T,Z) (T,Z) (T ,Z)

Very Large (T,Z) (T,Z) (T,Z) (T,Z)

Table 1: Attribution of a BBA in function of the values of divergent
and displacement according to rules R

5.1.3 Temporal filtering of mass functions

Temporal filtering of mass functions was introduced and is based
on the hypothesis that camera motion cannot be very different from
one frame to the next. If the case appears, then it is considered
that all motions are possible, without being able to highlight one
rather than another. This filtering according to TBM, adds doubt
by reallocating the belief on the union of motion propositions if the
temporally close beliefs deliver different information. The filter is
produced by the disjunctive combination of the sources mA×B

3,t on a
temporal window of size L2. A new BBA is then obtained:

mA×B
4,t = mA×B

3,t−(L2−1)/2 ∪© . . . ∪© mA×B
3,t+(L2−1)/2

The interest of this combination is to increase the temporal co-
herence of motions and thus prevent the presence of different mo-
tions on a neighborhood. The consistency of a motion can be im-
proved by filling the possible holes generated by estimation errors.

Figure 5 shows an example of sequence having a zoom out
where the method is applied with a window of size L1 = L2 = 13.
When the divergent is average and the displacement is weak, the
motion is considered to be “static or zoom” (T ,Z),(T ,Z) on curve
mA×B

3,t . When the displacement becomes average with an average
divergent, the mass is allocated to total doubt A×B. The temporal
filtering (curve mA×B

4,t ) amplifies the zone of A×B by adding doubt.
The two following stages of classification allow camera motion to
be found .

Globally, the rules and the filtering correspond to a very cau-
tious process leaving a wide place open to doubt rather than impos-
ing a final opinion on camera motion.

5.2 Static/dynamic separation
The second stage (fig. 2) consists in separating the static frames
from the dynamic frames (zoom, translation) by taking into account
the temporal neighborhood of beliefs allocated locally by the heuris-
tic rules (here the preceding filtering is not considered). In the ab-
sence of camera motion, the estimated model parameters have often
a weak magnitude. However this property is not always checked lo-
cally because of noise or estimation errors. To take it into account,

a frame will be considered as static if the close frames are static.
Thus a new BBA is defined and is based on the following rule: if a
certain number of frames around the frame studied have a belief on
the static hypothesis (respectively dynamic) then a belief mass will
be allocated to the static hypothesis (respectively dynamic) for the
frame studied.

Let Ω = {S,D} be the frame of discernment where S and D
indicate a static and dynamic motion respectively. Ω is a coarsening
of A×B and reciprocally A×B is a refinement of Ω. To know if
the frame t is rather static or rather dynamic, each BBA mA×B

3,t is
transformed into a BBA mΩ

3,t as follows:
mΩ

3,t(S) = mA×B
3,t (T ,Z)

mΩ
3,t(D) = ∑K⊆A×B\(T ,Z) mA×B

3,t (K)

mΩ
3,t(Ω) = 1−mΩ

3,t(S)−mΩ
3,t(D)

For each frame t, a temporal window of size L3 centered on t
is considered. The proportion of frames having a static hypothesis
on this window is determined by combining the BBA mΩ

t on the
Cartesian product Ω′ = Ωt−(L3−1)/2× . . .×Ωt+(L3−1)/2 where each
Ωi is associated to frame i of window centered on frame t studied.
If a mass of Cartesian product Ω′ has at least α% of frames on the
static hypothesis then this mass is deferred to the static hypothesis S
for the frame t studied. In the same way, if a mass of Ω′ has at least
100−α% of frames on the dynamic hypothesis then it is affected
to the dynamic hypothesis D for the frame t studied. If it is not the
case, then the mass is returned to the hypothesis S∪D.

Based on this rule, a BBA mΩ
5,t on Ω is defined for each frame

t. It is extended to A×B to be combined with mA×B
4,t using the

conjunctive combination. The resulting BBA is mA×B
6,t and if the

mass attributed to the empty set is non-null then it is transferred to
the union of propositions.

In figure 5, as the motion is either “static or zoom” (T ,Z),(T ,Z)
or total doubt A×B, the separation cannot find static camera since
no mass is associated to the proposition “static”.

5.3 Temporal integration of zoom and translation
The third stage (fig. 2) achieves a more global motion description
on segment level (by gathering frames containing the same motion
type). This consists in segmenting the sequence by coherent mo-
tions (translation or zoom), then estimating the motion magnitude
on each segment. By describing motion on each segment, the pur-
pose of this integration is to preserve only motions of consequent
magnitude and duration.

5.3.1 Case of zoom

As soon as the pignistic probability BetPA×B({(T ,Z),(T,Z)}) on a
frame (eq. 1) becomes higher than a threshold δ then the beginning
of a zoom is detected and the corresponded time t0 is memorized.
When BetPA×B({(T ,Z),(T,Z)}) is lower than δ then the zoom mo-
tion stops and this time t f is memorized. The segment between t0
and t f contains a potential zoom which is analyzed to be ensured of
its presence. As the divergent is not very well adapted to represent
zoom, the enlargement coefficient is introduced.

We develop the case in one dimension. Let a′1(t) be the param-
eter of the affine model at the time t and let vx be the velocity for
the position xi provided by vx = a′1(t) ·xi assuming the other coeffi-
cients to be null (case for a perfect zoom). The position at the time
t + 1 is given by x′i = xi + vx = xi · (1 + a′1(t)). From where the re-
port between the position at the final time t f and the position at the
initial time t0 is given by:

kx =
t f−1

∏
t=t0

(1+a′1(t))

If the motion is a zoom in, the ratio kx corresponds to an enlarge-
ment coefficient (kx > 1), denoted agx. If it is a zoom out then kx
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is a reduction coefficient (kx < 1) and by convention the inverse of
this report agx = 1/kx is called enlargement coefficient. In the case
of a frame, an enlargement coefficient ag is defined by multiplying
agx and agy obtained along the axis x and y. The enlargement coef-
ficient ag represents the ratio between frame size and the part of the
frame that increased until frame size. For zoom segment, the sign
of divergent can change, which means a change of zoom direction.
In order to take this into account, we determine on each zoom seg-
ment, the under-segments having the divergent of the same sign and
an enlargement is calculated on each one of them.

Finally, the enlargement coefficient ag that characterizes the
power of the zoom is used to cancel or preserve the zoom seg-
ment. Thus, a BBA mΩZ

7 is built on the frame of discernment
ΩZ = {Zoom,Zoom} from the enlargement coefficient as shown
in figure 4. mΩZ

7 is then extended on A×B using the relations
{(T ,Z),(T,Z)}= Zoom, {(T ,Z),(T,Z)}= Zoom and A×B = ΩZ
and the resulting BBA mA×B

7 is associated to each frame of the seg-
ment. The passage of description from segment to frame allows the
BBA mA×B

6,t defined previously to be combined with this one and

the resulting BBA is mA×B
8,t . Table 2 shows the combination of the

masses. It is important to note that, in case of conflict, mA×B
7,t , being

more reliable than mA×B
6,t for the “zoom”, the mass associated to the

empty set is transfered to the proposition of the zoom coming from
mA×B

7,t and to the proposition of the translation coming from mA×B
6,t .

mA×B
6,t

(T ,Z) (T,Z) (T ,Z) (T,Z)

mA×B
7

(T ,Z),(T,Z) (T ,Z) (T,Z) /0→ (T ,Z) /0 → (T,Z)
(T ,Z),(T,Z) /0→ (T ,Z) /0 → (T,Z) (T ,Z) (T,Z)

A×B (T ,Z) (T,Z) (T ,Z) (T,Z)

Table 2: Combination of the mass functions mA×B
6,t and mA×B

7

5.3.2 Case of translation

As processing with zoom, a segment of potential translation is ob-
tained using BetPA×B({(T,Z),(T,Z)}) > δ , then the segment be-
tween to and t f is analyzed by calculating maximum displacement
d plmax on this window.

t = argmax
tk∈[to,t f ]

(d pl(to, tk)) and d plmax = d pl(to, t)

Maximum displacement d plmax is then standardized by the
duration (from to to t) to have a relative representation of dis-
placement. Thus standardized maximum displacement d plmaxn
characterizes the power of translation on the segment and this
value is used to define a mass function (fig. 4) on ΩT =
{Translation,Translation}. Like the zoom, mΩT

9 is extended on
A×B, then this one is associated to each frame of segment to be
combined with mA×B

8,t and the resulting BBA is mA×B
10,t .

dlpmaxn0 1

1

0

1.50.5

m
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1
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1.5

m
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7
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Z

Figure 4: Definition of the BBAs from the enlargement coefficient
(left) and the standardized maximum displacement (right)

The integration is applied with δ = 0.1 in figure 5. We can
see that the integration of the zoom (curve mΩZ

7,t ) allows it to be
preserved and thus leads to the removal of the “static” proposition
on the curve mA×B

8,t . Then, the integration of the translation (curve

mΩT
9,t ) allows it to be removed and thus only the proposition (T ,Z)

on the curve mA×B
10,t is preserved.

Finally the decision on camera motions is taken by choosing the
maximum of the pignistic probability for each frame.
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Figure 5: Illustration of the classification method on a sequence
having a motion of zoom out. The awaited motion is (T ,Z).

6. CAMERA MOTION DESCRIPTION

This phase (fig. 1) consists in describing each identified camera mo-
tion. For the three motions (static, translation and zoom), a binary
decision is attributed to each frame. Based on the results of the
previous paragraphs, each segment where a zoom is identified is
described by the enlargement coefficient and the direction. The
sign of the divergent is used to know the zoom direction (zoom
in or zoom out). The translation segment is represented by dis-
tance traveled and standardized total displacement. Moreover, the
translation direction is also obtained for each frame contained in
a translation segment. A fuzzy quantification (fig. 6) from vector
phase −→d pl(t) is used to represent it. For example, a diagonal mo-
tion from down-left to up-right is characterized by the four values
(Zone 1,Zone 2,Zone 3,Zone 4) = (0.5,0.5,0,0).

Zone  2Zone 1 Zone   1Zone   4Zone  3

0 π/6   π/3   π/2   π/6  2π /3   π/2  7π /6  4π /3 3π /2  5π /3 11π /6

1 

Decision

Angle (
¡!
dpl(t))

Figure 6: Membership functions according to the 4 directions.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



7. CAMERA MOTION CLASSIFICATION EVALUATION

Camera motion classification evaluation aims to verify the perfor-
mance of the method. Two studies are discussed: one on video
extracts containing a single camera motion and an other containing
composed camera motions. Thereafter, we apply the method with
the following thresholds: L1 = L2 = L3 = 13 (window about a half
second), α = 50% (stage 2) and δ = 0.1 (stage 3).

7.1 Analysis of single motions
To evaluate the method of camera motion classification, video ex-
tracts containing a single camera motion type were selected dur-
ing the video playback. The chosen video extracts are various con-
tents (sport sequences, series “The Avengers”,. . . ) and possess per-
ceived motions. The corpus is composed of 42 video extracts (4605
frames) of a few seconds each (8 extracts at fixed camera, 21 ex-
tracts containing a translation, and 13 extracts containing a zoom).

The results are reported for motion classification (presence of
static, translation or zoom). Like evaluation measures, we use re-
call and precision. However, the classification of a video extract de-
pends on camera motion allocated on each one of these frames. We
consider that a video is correctly identified if all frames are correctly
classified. Table 3 shows the results of motion classification. If the
zoom is considered, recall indicates that one video is not found. It
is about a zoom which is in fact detected at 73%. The beginning of
this video has a light zoom and is related with a static camera. With
regard to the translation motion, it misses one video for the recall,
this one is detected at 95% and has a small static segment at the
beginning. Hence camera motion classification presents good per-
formances with a precision of 100%, a recall > 92% for the three
camera motions, which demonstrates the robustness of the method.

Translation Zoom Static
Recall 95.2 (20/21) 92.3 (12/13) 100 (8/8)

Precision 100 (20/20) 100 (12/12) 100 (8/8)

Table 3: Performance of the classification of video extracts

Table 4 illustrates the description of zoom and translation accord-
ing to the direction. Here, a video is correctly identified if at least
80% of frames are well classified. The obtained results shows the
performance of the motion direction description.

Right
to left

Up to
down

Left to
right

Down
to up

Zoom
in

Zoom
out

Recall at
80%

100
(6/6)

100
(7/7)

100
(6/6)

100
(2/2)

100
(7/7)

83.3
(5/6)

Precision
at 80%

100
(6/6)

100
(7/7)

100
(6/6)

100
(2/2)

100
(7/7)

100
(5/5)

Table 4: Local performance of the classification of video extracts
with recall and precision calculated at 80%

7.2 Analysis of composed motions
Camera motion classification is studied here on video extracts
where the motions can be superimposed (zoom and translation) or
successive in the same extract. We annotated three video extracts
(a documentary of sports with 20 shots and 3271 frames, a series
“The Avengers” with 27 shots and 2412 frames, and TV news with
42 shots and 6870 frames) according to the three camera motions.
By assuming the known shots, the different motions are extracted
by the method and compared with the ground truth. The evaluation
is carried out by recall and precision on frame level (calculation of
the frame number correctly identified for each motion). Neverthe-
less, the ground truth is sometimes difficult to determine in certain
places of the video (ambiguity between motions) or the border be-
tween two successive motions is difficult to find. From these con-
siderations, errors can be added to the classification errors coming
from the classification method. That allows the results presented in

table 5 to be moderated. We can notice that the results are good
with a recall and a precision superior to 79% for the three videos.

documentary News series
Recall 84.8 (2884/3401) 85.9 (5990/6967) 90.0 (2409/2663)
Precision 79.4 (2884/3632) 85.0 (5990/7045) 88.6 (2409/2718)

Table 5: Performance of the classification of frames on three video
extracts with composed motions

8. CONCLUSION

We have presented a method of camera motion classification based
on Transferable Belief Model. It consists in finding the motions of
translation and zoom, and static camera in a video. The approach
is characterized by its rule based recognition system. The combina-
tion rules are designed to avoid as far as possible secondary motions
(low magnitude motions). A filtering according to TBM is carried
out and modifies the belief in a motion following the close frames.
A static/dynamic separation is archived and assumes that a frame is
static if these close frames are considered to be static. Finally the
analysis on segment level aims at only preserving motions of con-
sequent magnitude and duration. Then, the description of motions
is carried out by quantifying them (for example, coefficient enlarge-
ment for a zoom) to interpret them easily. The motion of translation
and zoom are also characterized in a more local way with the direc-
tion (zoom in, zoom out, translation from left to right. . . ).

In order to ensure the performances of the method, we have pre-
sented results on videos containing one motion type or containing
superimposed camera motions or which followed one another. In
the two cases, the results obtained in term of recall and precision
enable us to conclude that our classifier is effective to determine
camera motions. One of the future line of investigation would be to
consider other motion types such as rotation. TBM will not pose a
theoretical problem to integrate them.
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