
Digital estimation of analog imperfections using
blind equalization

Davud Asemani, Jacques Oksman, Daniel Poulton
Department of Signal Processing and Electronic Systems
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Abstract— The analog electronic circuits are always subject to
some imperfections. Analog imperfections cause deviations from
nominal values of electronic elements. In the case of Linear
Time-Invariant (LTI) circuits, the coefficients of the transfer
function include some deviations from related typical values
leading to the differences between the typical (i.e. design) and the
actual transfer functions. In this paper, the analog imperfections
are digitally estimated using only the output samples, without
any access to the input signal nor to the analog system (blind
method). Super Exponential Algorithm (SEA) is used as the blind
equalization technique, since it provides rapid convergence. The
only assumption is that the input is a non-Gaussian independent
and identically distributed (i.i.d.) signal. Using this algorithm,
the effects of analog imperfections in the analog circuits can be
digitally estimated and possibly compensated without any depen-
dance on the types and the sources of the analog imperfections.
It provides the possibility to have an online compensation of
the imperfections (realization errors, drifts, etc.). The analog
imperfections have been estimated with a precision of ±0.2%
and ±1.3% for the exemplary RC and RLC circuits respectively.

I. INTRODUCTION

Analog electronic circuits are always subject to some ran-
dom deviations from the nominal values of their components.
Analog imperfections cause some unknown deviations from
typical values of the coefficients related to the nominator and
denominator of the transfer function associated with the LTI
analog circuit. These unknown deviations are originated from
various sources. The imperfections related to fabrication are
generally independent of time. There are also some time-
varying contributions in the deviations from typical values as
well. Time-varying imprecisions like temperature drifts appear
because of ambiance conditions. In practice, there are many
applications in which high sensitivity to the parameters of
the associated analog circuits is a bottleneck. As an exam-
ple, the high sensitivity to analog imperfections is a major
problem in sigma-delta A/D converters [1]. The proposed
solutions for handling this problem are mostly based on the
calibration techniques which are costly and not efficient [2].
Moreover, these methods are very dependent on the type and
the source of the analog imperfections [3]. Hybrid Filters
Banks (HFB) are exploited in the architecture of the wide
band A/D converters [4] but HFB-based A/D converters have
not been practically used because of intolerable amount of
sensitivity to analog imperfections [4]. Calibration method has

been proposed but is not a generic solution and is dependent on
the source of the imperfection [4]. Accordingly, the necessity
of a general digital solution for the estimation of analog
imperfections is apparent. So, analog imperfections could be
compensated through the estimated deviations. The objective
of this work is to estimate the imperfections of the analog
circuits and thus the respective actual transfer function using
only the samples of the analog system output.The estimation
algorithm has to be independent of the types and the sources
of the analog imperfections. Second-Order Statistics (SOS)
have been previously used to provide a nonlinear model for
the analog circuits imperfections [5]. Since the variations of
the signal power associated with the analog imperfections
are so little and the proposed model is based on signal
powers (variances), then that model is not totally satisfactory.
In this paper, Higher-Order Statistics (HOS) parameters are
used for the estimation of the analog imperfections through
a blind equalization technique. The input signal is supposed
to be i.i.d. and non-Gaussian at the next sections as HOS
(> 2) parameters of Gaussian processes are null [6]. Blind
equalization technique is the core of the proposed algorithm.

II. ESTIMATION OF ANALOG IMPERFECTIONS AND BLIND

EQUALIZATION

A. Problem definition

Considering fig. 1, it is supposed that the Nyquist sampling
rate has been respected. It is assumed that the sampled

H(s)
analog circuit
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T

y(t)x(t) y[n]

Fig. 1. An arbitrary LTI analog circuit with transfer function of H(s). y[n]
represents the output after sampling.

version y[n] of the output is the only available signal. Transfer
function of the analog circuit H(s) includes some unknown
imperfections. It is supposed that there are totally K unknown
coefficients in the nominator and the denominator of H(s).
Real value of ith unknown coefficient αi can be considered
as:

αi = αi◦(1 + δαi
) 1 ≤ i ≤ K (1)
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where αi◦ stands for the typical (or nominal) value of this
coefficient. δαi

is the relative imperfection (or relative de-
viation from typical value) associated with αi. The prob-
lem is here to estimate the unknown relative imperfections
{δα1 , δα2 , · · · , δαK

} using only the samples y[n] of analog
output. In practice, the nominal values {α1◦ , α2◦ , · · · , αK◦}
are a priori known, although they are not necessarily required
for the proposed algorithm. The structure of the analog circuit
(or simply the order of the nominator and the denominator
of H(s)) is known since it is defined at the design phase.
The extraction of the unknown relative imperfections from the
inverse FIR filter (result of blind equalization) is facilitated
through this information (see section III).

B. Blind equalization for the estimation of imperfections

Blind deconvolution or equalization is referred to the case
when the input of an unknown LTI system is required to be
reconstructed using only the output signal. SOS-based methods
are not useful unless the unknown LTI system is minimum-
phase [6]. Thus, the equalization is mostly implemented us-
ing HOS-based techniques. Regarding to the properties of
HOS, cumulants and polyspectra are blind to any Gaussian
process because all cumulants of the order higher than two
are equal to zero for a Gaussian process [6]. Accordingly,
the input would be supposed a non-Gaussian i.i.d. process
for implementing the blind equalization. Equalization problem
is simply equal to finding the inverse filter of an unknown
system. This inverse filter is often considered as an FIR filter
called equalizer filter (fig. 2). To realize this procedure, a

Unknown filter Equalizer filter

hn fn

xn
yn x̂n

Fig. 2. Blind equalization system. Equalizer filter fn is an FIR filter with
length L. x̂n approximates the unknown input signal xn in this system.

criterion or objective function is considered. Equalization is
realized through optimizing the equalizer filter f [n] so that the
criterion function is maximized (or minimized for Constant
Modulus Algorithm (CMA) criterion) [6]. Criteria are some
specific functions in terms of the cumulants due to y[n] and
x̂[n]. The third order cumulants are null for the signals with
symmetric distributions [6]. Therefore, fourth order cumulant
of x̂[n] is used in this paper as the analog input has been
considered with a uniform distribution. Super-Exponential
Algorithm (SEA) proposed by Shalvi and Weinstein has been
used in order to have a rapid convergence [7]. This algorithm
provides an iterative procedure for updating the coefficients
of equalizer filter. Before implementation of the updating
algorithm, it is required to calculate the vector of input/output
cross cumulant (fourth-order cumulant) d and the matrix of
output covariance R. The current value of the equalizer filter
f = [f0, f1, · · · , fL−1]T is used in these calculations. L is

the length of the equalizer filter f . Using cumulant operation
cum(·), the ith element di of the vector d(L× 1) is obtained
as follows:

di = cum(x̂n, x̂n, x̂n, yn−i) 0 ≤ i ≤ L − 1 (2)

Each element Rij of the covariance matrix R (L × L) is
calculated as following:

Rij =
cum(yn−i, yn−j)

σ2
x

(3)

where σ2
x stands for the variance of unknown input. If σ2

x is
not a priori known, it can be substituted with any positive real
number in (3). In this case, there would exist an ambiguity
on the amplitude. In other words, the estimated inverse filter
f [n] would be an amplitude-scaled version of the exact inverse
filter. Now, the iterative algorithm of SEA for finding the
updated value of equalizer fnew is implemented as follows [7]:

V = R−1d (4)

fnew =
1√

V+RV
V

where (·)+ denotes for transpose-conjugate operation and
V (L×1) is an intermediate vector. It should be noted that the
old value of equalizer vector is implicitly incorporated in (4)
through taking part in the calculation of d and R. Covariance
matrix R is positive definite (existence of inversematrix) and
there is only one converging point which is associated with
the inverse filter [6]. However, this algorithm may in practice
converge to false results (spurious local maxima) for reasons
such as inappropriate length of equalizer L, insufficient num-
ber of data utilized in the cumulant calculation, nonlinearities
of the system and thus some initializations of the equalizer [6].
Initialization problem can be handled in the estimation of
analog imperfections because the nominal analog system a
priori is known. Hence, respective typical equalizer have been
used as the initial equalizer.

III. IMPLEMENTATION OF THE ESTIMATION PROCEDURE

A. Estimation algorithm

Figure 3 shows the implementation. Equalizer filter F (z)
is supposed to be an FIR filter with length L. For estimating
the imperfections of analog circuit, the procedure is realized
in two phases. Firstly, blind equalization method (SEA proce-
dure) is applied to the system as explained in the preceding
section. It provides an FIR filter f [n] which approximates the
inverse filter associated with the analog circuit. At the second

LTI
analog circuit

y[n]

T
x[n]F(z)x(t)

H(s)

Fig. 3. An LTI analog circuit with transfer function of H(s) to which the
equalizer F (z) has been applied.

phase, the real coefficients of H(s) are estimated. To better
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explain this stage, G(s) is considered as the inverse function
of H(s) with unknown coefficients. The nominator and the
denominator orders of G(s) are equal to the denominator and
the nominator orders of H(s) respectively. The coefficients of
G(s) are found through minimizing the error expression which
follows:

Gopt(s) = arg min ‖G(s) − F (ejω)‖s=j ω
T

w ∈ ρ (5)

where T is the sampling period utilized in the first phase
and ρ is the frequency band of interest. Depending on the
transfer function of the analog system, ρ is appropriately
selected so that the contribution of the unknown parameter
is emphasized. For example, it can be concentrated about the
nominal resonance frequency for an RLC circuit. The real
coefficients of H(s) and evidently the respective deviations
from nominal values are obtained from Gopt(s).

B. Simulation results

The algorithm that was explained in the previous section is
now applied to several first- and second-order analog circuits.
Firstly, a first-order RC circuit is considered. There are two
parameters describing the transfer function of a general RC
circuit: DC-gain g (gain at the zero frequency) and cut-off
frequency ωc. Respective transfer function can be described
as follows:

H(s) =
gωc

s + ωc
(6)

For estimating the parameter of DC-gain (scale factor), it is
required to know a priori the variance of the analog input (refer
to section II-B). The first stage (blind equalization) was real-
ized 1000 times for each deviation from nominal values using
an FIR equalizer (L = 9). The algorithm converged to spurious
local maxima (false results) in 5% of the times. Using an initial
equalizer associated with nominal RC circuit (no deviation
from nominal values) at the initialization procedure of blind
equalization, the algorithm always converged to the global
maximum. Figure 4 shows the histogram of the results for the
realization of the algorithm supposing an RC circuit having
20% and 10% deviations from nominal cut-off frequency and
DC-gain respectively. This histogram is in terms of the ratio
of the estimated to real deviation from the nominal value.
The histogram illustrates the distribution of the results due
to 1000 sample paths of the noise. The average values of the
results estimate the unknown deviations from nominal values
(for DC-gain and cut-off frequency) with an error of 0.05%
and 0.11% respectively. This simulation was implemented for
different deviations from nominal values as well. The average
estimation errors are shown in fig. 5. The mean estimation
error is always lower than 0.25% for 1000 sample paths
of noise. Using larger repetition number in the simulation,
the mean values will better approximate the deviation from
nominal values. The algorithm was implemented for an RLC
circuit as well (refer to fig. 6). Related transfer function is
described as following:

H(s) =
ωr

Q s

s2 + ωr

Q s + ω2
r

(7)
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Fig. 4. Histogram due to the ratio of estimated to real deviation from nominal
values after 1000 sample paths of noise for an RC circuit. The real deviation
from the nominal values are 20% and 10% for the cut-off frequency and the
DC-gain respectively.
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Fig. 5. Average errors of the estimation due to the DC-gain (solid) and
the cut-off frequency (dashed) versus the real values of the deviation from
nominal cut-off frequency for the general RC circuits.
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Fig. 6. The arbitrary RLC circuit used in the simulations. {R◦, L◦, C◦} are
the design values to which the unknown realization errors {δR, δL, δC} are
applied.

Deviations from nominal values for quality factor (Q) and
resonance frequency (ωr) were supposed as the unknown
parameters. There is no need for the variance of input at the
algorithm because the unknown parameters are independent of
any scaling factor. Using a random initialization, the algorithm
of blind equalization (first phase) converged to the spurious
local maxima in 35% of times. Using nominal equalizer
(related to the circuit with no deviations from nominal values),
the rate of convergence to spurious local maxima changed.
The percentage of convergence to the global maximum in
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terms of deviations from nominal frequency of resonance is
shown in fig. 7. However, converging to spurious local maxima
causes no problem in practice even with random initialization
because the incorrect equalizers are conveniently detected and
put aside. Figure 8 illustrates the histogram of the results
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Fig. 7. The percentage of convergence to the global maximum. Horizontal
axis shows the percentage of deviation from nominal frequency of resonance.
Deviation from nominal quality factor is fixed (10%) and the algorithm is
initialized by nominal values.

when deviations from nominal frequency of resonance and
quality factor are supposed 20% and 10% respectively. The
algorithm is repeated 500 times using an equalizer length of
L = 41. The average error of estimation are 0.01% and −1.3%
for frequency of resonance and quality factor respectively.
Figure 9 shows the mean errors due to several implementation
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Fig. 8. Histogram due to the ratio of estimated to real deviation from nominal
values after 500 sample paths of noise for an RLC circuit. The real deviation
from the nominal values are 20% and 10% for the resonance frequency and
the quality factor respectively.

of the algorithm supposing different values of deviations from
nominal values. It is discerned that this algorithm (first phase)
is very sensitive to the sampling period. In fact, the higher is
the sampling frequency, the longer equalizer is required for
compensating the lower levels of the spectrum amplitude at
the frequency extremes (the frequencies near to ± π

T ). This
is approved through analysis of the distribution of the mean
errors particularly in fig. 9. In the RLC case, the presence of a
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Fig. 9. Average errors of the estimation due to the quality factor (solid) and
the resonance frequency (dashed) versus the real values of the deviation from
nominal resonance frequency for the RLC circuits.

zero situated on the null frequency (ω = 0) augmented the rate
of convergence to spurious local maxima since the algorithm
tries to compensate this zero (infinite gain for equalizer at
zero frequency). In practice, the series resistance of the real
inductance removes the associated zero in the spectrum.

IV. CONCLUSION

A method for estimating the imperfections of analog circuits
(or their actual transfer function as well) was proposed in this
paper using only the samples of the output and without any
access to the input signal nor to the system components. This
estimation method was proposed using blind equalization tech-
niques. SEA algorithm for blind equalization was exploited
to have a fast convergence. Several implementations of this
method were realized using first- and second-order circuits.
The analog imperfections of RC circuits were estimated with
a mean error of −0.05% and 0.11% for DC-gain and cut-off
frequency respectively. In the RLC case, the mean errors of
estimation were 0.01% and −1.3% for frequency of resonance
and quality factor respectively. This demonstrates the feasibil-
ity of digital compensation of analog imperfections.
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