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ABSTRACT
In this paper, a method for approximating the Karhunen-Loeve
Transform (KLT) for the purpose of multi-channel lossless elec-
troencephalogram (EEG) compression is proposed. The approx-
imation yields a near optimal transform for the case of Markov
process, but significantly reduces the computational complexity.
The sub-optimal KLT is further parameterized by a ladder factor-
ization, rendering a reversible structure under quantization of coef-
ficients called IntSKLT. The IntSKLT is then used to compress the
multi-channel EEG signals. Lossless coding results show that the
degradation in compression ratio using the IntSKLT is about 3%
when the computational complexity is reduced by more than 60%.

1. INTRODUCTION

In some countries, legally recording of electroencephalogram
(EEG) signals for diagnosis has to be done losslessly for the purpose
of perfect transmission to the expert analysts. For this reason, there
have been interests in lossless EEG signal compression. Generally,
EEG signals are measured from the electrodes at different positions
on the human scalp. A typical number of channels (N) of the sig-
nals can be as high as a few hundred (or may be a few thousand in
the near future), and thus these neighboring channels can be highly
correlated. In order to efficiently compress multi-channel signals,
the inter-channel redundancy must be exploited. Although, these
multi-channel signals seem to be correlated, the correlation models
of the signals are unpredictable due to the unknown combination of
the cortical potentials. Thus, data independent transforms such as
DCT, DST, or DFT [1] usually fail to efficiently decorrelate these
types of signals. This problem can be solved by employing the op-
timal transform to decorrelate these EEG signals by exploiting the
eigenvectors of their correlation matrix. This optimal transform is
known as Kahunen-Loeve Transform (KLT) [1]. However, calculat-
ing N-point KLT can be complicated especially for largeN (number
of electrodes or number of channels).

Several schemes for single-channel lossless EEG compression
have been proposed [2], [3]. However, not many methods exploit
the multi-channel case. An efficient approach to losslessly com-
press multi-channel EEG signals by employing KLT to reduce inter-
channel redundancy is proposed in [4]. KLT is approximated with
finite precision and reversible operations. The key to the approx-
imation of these transforms isladder-type, also known as lifting,
factorization. The method for matrix factorization in [5], [6], [7]
are used. The resulting approximation is called integer KLT (Int-
KLT). According to [7], it is known that, for a given matrix, the
factorization is not unique. Each solution results in a different per-
mutation and dynamic range of coefficients, which are of particular
importance to lossless coding applications. To demonstrate this, let
us consider an example.

Example 1, lifting factorization:Let A be an arbitrary matrix
of size 3×3 such that|detA| = 1 as follows:

A =

[

0.6 −0.64 0.48
−0.8 −0.48 0.36

0 0.6 0.8

]

.

This work was supported in part by NSF Grant ECS-0528964.

Two lifting factorizations ofA can be shown:

A =

[

0 1 0
0 0 1
1 0 0

][

1 0 0
0 1 0

0.33 −0.5 −1

][

1 0 0
0.27 1 −0.8

0 0 1

]

[

1 −0.3 0.6
0 1 0
0 0 1

][

1 0 0
0 1 0

−0.33 0.5 1

][

0 0 1
1 0 0
0 1 0

]

(1)

A =

[

0 1 0
0 0 1
1 0 0

][

1 0 0
0 1 0

3.75 −3.42 −1

][

1 0 0
1.2 1 −0.48
0 0 1

]

[

1 −3.33 0.8
0 1 0
0 0 1

][

1 0 0
0 1 0

−1.25 4.92 1

][

1 0 0
0 1 0
0 0 1

]

(2)

It is clear that both factorizations can be approximated with re-
versibility preserved. The magnitudes of the coefficients in (1) are
all less than or equal to one whereas those in (2) are as high as 4.92.
These large coefficients can significantly impact the dynamic range
of the internal nodes in the transform and thus the lossless coding
performance. The problem is more severe asN increases.

Considerations for using the IntKLT for multi-channel coding
include:
• Approximating a reversible structure, since the factorization of

the KLT is not unique, finding the best solution in the sense of
minimum dynamic range of coefficients is very difficult. An
obvious approach is to compare all the possible factorizations.
This, however, is impractical for a large number of channels
since the number of solutions is of orderO(N!), whereN is the
number of channels.

• Since the KLT is statistically dependent transform, its parame-
ters must be transmitted as side information which is of order
O(N2). Hence, the side information should also be minimized.

• The calculation of the KLT and the implementation of the Int-
KLT are highly complex, especially for largeN.
In this paper, an efficient approximation with reversibility pre-

served for large KLT is proposed. The signals are divided into
groups using the ‘divide-and-conquer’ philosophy. For each group,
the signals are decorrelated by its KLT, referred to asmarginal KLT
in [8]. Each of the small KLTs is realized by a lifting factorization,
rendering a reversible transform with small rational lifting coeffi-
cients. In order to obtain the small lifting coefficients, appropriate
permutation matrices have to be well selected. Finding the right
permutation matrices for factorizing each marginal KLT instead of
full-sized N-point KLT is more practical [7]. As a result, using
the proposed simplified transform can significantly reduce compu-
tational complexity over using IntKLT. For convenience, this pro-
posed transform is called integer sub-optimal KLT (IntSKLT). The
performance of IntSKLT is presented via the decay of its sorted vari-
ances. Since, our focus is on the investigation of IntSKLT for decor-
relating inter-channel redundancy of EEG data. IntSKLT will also
be embedded to the inter-channel decorrelation part of the multi-
channel EEG lossless scheme in [4] (Figure 6) instead of IntKLT to
verify the merit of its coding performance.
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Figure 1: Structure of sub-optimal KLT forN-channel signals

2. SUB-OPTIMAL KLT

In order to solve the complexity issue caused by the large dimension
of the KLT, theN channels of EEG signals are equally divided into
two groups ofN/2 channels along the arbitrary scan order (in this
paper, the scanning orders in Figure 7 are used withN = 64). Each
group is decorrelated by its local marginal KLT, and the outputs are
sorted according to the variances from large to small. To further re-
duce the dependency, the largestN/4 channels from the two groups
are combined, and decorrelated by theirN/2-point KLT. Under the
assumption that, the EEG signals are highly decorrelated, the re-
mainingN/2 channels of small signals are exported directly to the
outputs. Figure 1 shows a block diagram for the case ofN = 64. A
self-similar structure is used to further reduce the complexity where
the same structure is repeated for each of theN/2 KLT. It is noted
that every marginal KLT is updated over the period ofm second
EEG data (in this paper,m = 8 is used).

Figure 1 shows structure of the proposed sub-optimal KLT,
where the details of eachN/2 = 32-point sub-optimal KLT is il-
lustrated in Figure 2 for the case ofN = 64. Figure 2 also demon-
strates that the iteration of dividing the channels stops at8-point
KLT which is a feasible size to optimize for the best parameters.
From the implementation point of view, theN = 64 channels are
clustered into groups of eight processed locally (Figure 7(b)). Op-
timality of the proposed approximation of the KLT depends on the
statistics of the signals and how they are clustered.

2.1 Markov process

In this section, let us consider a special case of Markov process.
Assume that the correlation between thei-th and j-th channels is
given by:

[Rx]i j = E{xix j} = ρ |i− j|, i, j = 0, 1, · · · , N −1.

It can be shown that the maximum achievable coding gain [9] for
this case is

GN =
1
N tr(Rx)

det(Rx)1/N
= (1−ρ2)−(1− 1

N ).

2.1.1 Four-channel case

Consider a simple case ofN = 4 where the signals are decorrelated
using the structure in Figure 3. It is easy to see that the marginal
KLTs T1 andT2 are

Ti =
1√
2

(

1 1
1 −1

)

, (3)

and the corresponding eigenvalues are 1±ρ . The coding gain after

the first stage (zi) is (1− ρ2)−
1
2 . Applying a 2-point KLT to the

larger componentsz0 andz2 results in a sub-optimal coding gain of

Ĝ4 = (1−ρ2)−
1
2

[

1− 1
4

ρ2(1+ρ)2
]− 1

4

.

It can be shown that 0.9036≈
( 2

3

)1/4 ≤ Ĝ4
G4

≤ 1 for 0≤ ρ ≤ 1.
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Figure 3: Approximated 4-point KLT.
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Figure 4:ĜN/GN for the case ofN = 64.

2.1.2 2p-channel case

In extension to the case ofN = 2p, assume that the threeN/2-point
KLTs used in the approximation in Figure 1 are obtained by the
eigenvectors of the correlation matrices of the corresponding inputs,
i.e. the three KLTs are the marginal KLTs. Figure 4 plots the ratio
ĜN
GN

as a function ofρ for the case ofN = 64. It is clear that when
these sub-KLTs are optimal, the degradation in coding gain is very
insignificant (less than 0.3%).

In order to apply the proposed sub-optimal KLT to multi-
channel EEG compression, two points should be noted. First, in
the proposed recursive structure, theN/2-point KLTs are further
approximated, and thus the difference in coding gain accumulates.
Second, and perhaps more importantly, the EEG signals, although
highly correlated, may not be a Markov process. In fact, there ex-
ists some correlation among the neighboring channels. Hence, the
choice in clustering the inputs into groups (Figure 7(b)) also has an
impact on the coding performance.

3. INTEGER KLT

In order to design the reversible structure for each 8-point KLT for
the purpose of constructing a reversible approximation ofN-point
sub-optimal KLT in section 2, a lifting factorization in [7] together
with the slight modification in [4] is exploited. TheN-point KLT
matrix,KN×N , is factorized using single-row non-zero off-diagonal
factorization as,

KN×N = PLSNSN−1 · · ·S1S0PR, (4)

wherePL andPR are the permutation matrices that exchange the
rows and the columns,Sn (n = 1, 2 . . ., N) are single-row non-zero
off-diagonal matrices,S0 is a lower triangular matrix, andN is the
number of inputs. To clarify (4), an example of this factorization
for the case of 4-channel is shown in Figure 5. According to Fig-
ure 5, the magnitudes of the rational lifting coefficients,si j, depend
directly on the selection of the permutation matrices. It should be
noted that, for some choices ofPL andPR, the coefficients ob-
tained inSi can be very large. This can result in degradations of
lossless coding performance. In order to make the problem feasible
for selecting goodPL andPR, the size of smallest KLT is limited
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Figure 2: Structure of sub-optimal KLT for 32-channel signals which iscomposed of 16-point sub-optimal KLTs and 8-point KLTs

to N=8. Therefore, the reversible approximation of the sub-optimal
KLT mentioned in Section 2 can be constructed using the structure
of 8-point IntKLTs.

On the computational complexity, for the case ofN-point Int-
KLT, the number of lifting coefficients used in the structure is
3
2N(N − 1). For the case ofN-point IntSKLT, the number of lift-

ing coefficients is3
28(8−1)×3log2(N/8) = 28

9 Nlog23 ≈ 3.1N1.585. It
is clear that the ratio between the numbers of coefficients from both
cases grows exponentially for largeN.

4. MULTI-CHANNEL EEG LOSSLESS CODER

The performance of the proposed IntSKLT is evaluated in the multi-
channel EEG lossless coder proposed in [4]. The block diagram of
this coder is shown in Figure 6. Different pulse code modulation
(forward difference) is used to remove DC bias in each EEG chan-
nel. Inter-channel decorrelation is then performed using the IntKLT.
The resolution at all internal nodes is fixed to sixteen bits. The
IntDCT-IV [10] is applied to reduce temporal redundancy. Finally,
the statistical redundancy is removed by using the Huffman coding.
As mentioned, using IntKLT may introduce undue computational
complexity to the coder for large number of channels. The problem
is solved by replacing the IntKLT with the IntSKLT. For the details
of the coder, the reader is referred to [4].

5. SIMULATION RESULTS

In the simulation, eight seconds of sixty-four channels of EEG sig-
nals sampled at 1.024 kHz and digitized to sixteen bits are used. In
order to achieve efficient channel partitioning, two types of channel
scanning (spiral and clustering) shown in Figure 7 are applied. Fig-
ure 8 compares the (sorted) variances at the outputs when IntKLT,
IntSKLT and IntDCT are used to decorrelate the inter-channel cor-
relation. Since the IntDCT is signal independent, the majority of

the variances are much higher. On the other hand, the output vari-
ances in the case of IntSKLT are similar to those obtained from
the IntKLT. Figures 8(a) and (b) show the results for two different
cases of spiral and clustering scanning. It is noticeable that the out-
put variances obtained by the IntSKLT in the case of clustering are
closer those of the IntKLT than in the case of spiral scanning.

The lossless coder described in Section 4 is applied to the EEG
data. Table 1 summarizes the compression ratios obtained from
the cases of IntKLT and IntSKLT with different channel scanning.
When there is no inter-channel decorrelation, i.e. the IntKLT block
in Figure 6 is removed, the compression ratio is 2.53. Maximum
compression ratio of 2.84 is achieved when the full 64-point IntKLT
is applied. When the IntSKLT, consisting of twenty-seven eight-
point IntKLTs, is used, compression ratios of 2.80 and 2.82 are ob-
tained for spiral and clustering scanning. Note that when the sig-
nals are randomly grouped, the average compression ratio is 2.78.
This shows that the order of the EEG channels has some impact
on the coding performance. Although, using IntSKLT causes about
3% coding degradation compared with using IntKLT, computational
cost is dramatically reduced by more than 60%. Table 2 compares
coding result of the coder in [4] (except that IntKLT is replaced
with IntSKLT) with the existing algorithm Shorten (Lossless lin-
ear prediction based coder of order 6) [11], lossless JPEG2000 [12]
and GZIP [13]. At the higher computational cost over the exist-
ing lossless algorithms, coding gain is improved by more than 20%.
The proposed coder yields the best compression ratio at 2.82, while
Shorten, lossless JPEG2000 and GZIP yield compression ratios of
2.16, 1.97 and 1.44, respectively.

6. CONCLUSIONS

This paper presents a method for efficiently approximating the KLT
for the purpose of lossless multi-channel EEG compression. The
approximation is done by dividing the signals into small groups
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Figure 5: Example of the structure of factorization used in [4] for the case of 4×4 matrix
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Figure 6: Multi-channel EEG lossless coder

Table 1: Compression ratio (CR) of the 64-channel EEG lossless
compression coder (Figure 6) using IntKLT and IntSKLT for chan-
nel decorrelation

64-channel EEG signals CR

No channel decorrelation 2.53

64-point IntKLT 2.84

64-point IntSKLT (spiral scan data) 2.80

64-point IntSKLT (clustered data) 2.82

64-point IntSKLT (random) 2.78

and using a number of small-size KLTs. A special case of Markov
process is discussed. The sub-optimal KLT is then further approx-
imated by using lifting factorization, resulting in the integer-to-
integer mapping IntSKLT. It is shown that the number of lifting
coefficients of the IntSKLT is of orderO(N1.585) instead ofO(N2)
for the case of IntKLT. Not only is the computational cost reduced,
but also the amount of side information that needs to be transmit-
ted with the compressed data is also reduced by using the IntSKLT.
Despite the complexity reduction, the new transform yields near
optimal results in multi-channel EEG lossless compression perfor-
mance. Optimal channel ordering/mapping requires further study.
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Figure 7: Pattern of scanning scheme: (a) spiral and (b) clustering
(VEOU and HEOL are included in cluster 8).
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Figure 8: Performance analysis of 64-point KLT using: (a) spiral
scan data and (b) clustering scan data, wherex-axis represents the
transform coefficients andy-axis represents their (sorted) variances.
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