14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

CONTRIBUTIONS TO ICA OF NATURAL IMAGES

Rubén Martin-Clemente, Susana Hornillo-Mellado

Dpto. de Teoria de la Sefial y Comunicaciones
Escuela Superior de Ingenieros, University of Seville,ilgg\&pain
phone: + 34 954 487 335, fax: + 34 954 487 341, emails: ruberg@umusanah@us.es
webs: www.personal.us.es/ruben, www.personal.us sisin

ABSTRACT was argued by Bell and Sejnowski [3] (see also the previous

In this paper we analyze the results provided by the populd¥©Tks [8, 18] and the references therein).

algorithm FastICA when it is applied to natural images, us-  Similar results were obtained with the FastICA algorithm
ing the kurtosis as non-linearity. In this case show that thél5], as shown in [9, 14, 17], under certain operational con-
so-called ICA filters can be expressed in terms of the eigerflitions (in particular, using the nonlinearity(y) = tanh(y)
vectors associated to the smallest eigenvalues of the data c— See [14] for details).

relation matrix, meaning that these filters are all highspas = Our aim is to analyze both the independent components
From this property emerges the sparse distribution of the inand the ICA bases of natural images obtained with the Fas-
dependentcomponents. On the other hand, the use of the ki€ A algorithm, but now using its original version based on
tosis as contrast function causes the appearance of “Spikethe maximization of théurtosis(i.e., using the nonlineari-

in the independent components that make that the ICA baseg gs(y) = y3) [14, 15]. As Hyvérinen argued in [14], the
are very similar to patches of the images analyzed. Somesults obtained with these two approaches are basically th

experiments are included to illustrate the results. same, but the kurtosis has two advantages compared to the
hyperbolic tangent. First, from a theoretical point of vjiéw
1. INTRODUCTION leads to a mathematically more tractable analysis. Second,

from a practical point of view, the number of flops required

Independent Component Analysis (ICA) is a technique fo%re much lower (about nine times lowr)

analyzing multivariate data that has received a great-inter . . .
est in the last years [6, 7]. Let the observed multidimen-  The analysis presented in this paper shows that the so-

sional data be represented as a maXiwith N rows and ~ c@lled “ICA filters” (rows of matrixB — see (1)) can be de-
T columns, wherd\ is the number of variables arfidis the ~ COMPosed as &near combination of the eigenvectors as-
number of observations recorded on each variable. The gogPciated to the smallest eigenvalues of the data correiatio

of ICAis to calculate the square matithat linearly trans- Matrix,_meaning that these filters are &ligh-pass This
formsX into a matrix: property leads to @parsedistribution of the independent

components, whose non-negligible elements correspond to
Y =BX (1) patches that contain lines edgeq.e., high frequency con- .
tent). Besides, the use of the kurtosis as contrast function

The goal of ICA is to calculate th&l x N matrix B that ~ causes the appearancespikes making the ICA bases very
linearly transformsX into Y. Different approaches have similar to patches of the natural images analyzed, als@eorr
been proposed to characterize this model (see, for examp@Ponding teedges
[1,2, 4,15)). The “high-pass nature” of the ICA filters was already ob-
Bell and Sejnowski showed in [3] that when the observedserved in [14, 20], but was related to the “high-pass appear-
data are patches of natural images, ICA provides a spargce” of the ICA bases. The innovation that we introduce
code in terms of a set €A baseshat present oriented and here is thathe ICA bases “look like edges” because the ICA
localized lines or “edges”. In particular, they proposed arfilters are high-pass, not the inverse
unsupervised learning algorithm based on information max- The paper is structured as follows. We first introduce
imization (“infomax” network) to perform the independent the usual preprocessing in Section 2. In Section 3 we de-
component analysis [2] and used a training set of patchesve a closed-form expression in which the first ICA filter is
taken from different natural images. In this case, each colexpressed as the linear combination of the eigenvectors as-
umn of matrixX represents a (square) patch of a natural imsociated to the smallest eigenvalues of the data corralatio

age and can be expressed as follows: matrix. The implications of this result in the case of natu-
ral images are discussed in Section 4, in which we argue the
Xk = a1Yik+ a2k + -+ anYnk (2)  convenience of interpreting ICA as a two-dimensional filter

ing. The extension to the rest of the independent components
Using aMat | ab-like notation,x; is thekth column ofX,  is done in Section 5. Experiments and discussion is given in
Yik is the(j,k)th element of matriXY’ anda;j is the jth col-  Section 6. Final conclusions are provided in Section 7.
umn of matrixA, with j=1,2,....Nandk=1,2,...,T. Bell
and SeanWSki shpwed t-hat the ICA basg;s lOOkeq I-ike 1The kurtosis is very sensitive to outliers, something toald be a prob-
edges while the distribution of the weighting coefficients, lem in many applications [14, 11]. Thisis not our case, bseawr aim is to

Yik, wassparse The connection betV‘_/een thi_S result and theyrovide a sparse representation of natural images (to lnsiusempression
behaviour of some neurons of the primary visual cortex (V1ppplications, for example), and the kurtosis is as validrgsogher method.
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2. PREPROCESSING 4. APPLICATION TO NATURAL IMAGES

There are two quite standard preprocessing steps in ICAquation (9) indicates that the first ICA filter can be written
First, the mean of the data is usually subtracted to cenger thas a linear combination of the eigenvectors of the coratati
data on the origin. Using our notation: data matrix. This is not surprisirggpriori, since these eigen-
. vectors always form an orthogonal basis of the space. When
1 Z =0 Yk 3) the data analyzed are n_atural images, it is \(vell Ignown that
T4 n due to the great correlation among neighboring pixels, most
of the eigenvalues are very close to zero (this is the basis
This does not alter the ICA model (1) except that now theof image compression [16]). The opposite happens with the
independent components are also zero-mean. corresponding factorsl-. Hence, considering that the norm

; g VAn
lat eﬁevgc:ir;dbl?/é sthbi/(ﬁéigéeo;;ﬁ?;%rﬁ;amniﬂ;m\%{ Into UNCormess b1, is bounded to one, we can approximate the first ICA

filter by the weighted sum of the eigenvectors associated to

X=WX=D2ytx (4) thesmallest eigenvalues the data correlation matrix:
H “ ” —1/2 _ N
w_here_t?/e2 supeg/czrlmtme_ans transpose”. HerdD_ = b, O z Vv, 1<<m<N (11)
diaglA; 7%, A7), beingA; > ... > An the eigenval- n=m

ues of the sample data correlation matRy = %XXt;
V = (vq|...|vn) is the matrix containing, by columns, the
corresponding eigenvectoB{vj = Ajvj). The ICA model
(1) can be now written as

Y =BX (5)

For natural images, the eigenvectors associated to thé-smal
est eigenvalues contain the higher-frequency information
(edges, textures, etc.). Consequently, the first ICA filtiir w
have high-pass characteristics.

_ 4.1 ICA as a 2-D “filtering-sampling” process
_ 1 i ; i . .
whereB = BW ™. Itis straightforward to show that matrix Tying into account that each column of this maféixcon-

: : - ! ) , ; _ ) ) i

B is orthogonal, i.e BB = I (L is the identity matrix). tains the pixels of a patch of an image, it is clear to see that
(1) implicitly represents a two-dimensional filtering. g

3. THEICAFILTERS OF FASTICA section we analyze this question and obtain an explicit ex-

Let y1: = [y11,...,y11] be the first independent Componempression of the first independent component as the sampling
and definey3 = [y3,,...,y3;] as the vector which contains of the result of a 2-D filtering of the original image (the ex-

. 1 e . o =~ tension to the rest of independent components will be done in
the entries ofy;. raised to the third power. Similarly, &t . ' : ; . .
be the first row of matrixB. With this notation, the basic the following section). This alternative interpretatidi©A

Fast | CAiteration can be expressed as follows [14]: f:gg;sn;oe tf)oer garu;nn:l;;zsary complication, but it is of great

1 oyie— ?l:X_ _ For convenience, we can also representktieimage
2. by —— 71y3.X' —3by. patch as a 2-D sequenggny, ny), withn;,n; =0, ...,v/N —
3. by. «— by./||by || 1 (in other wordsxg(ny, ny) is the mapping of th&l x 1 vec-
These three steps are repeated until convergencenfieans  tor xy to a+/N x /N matrix). Similarly, by(ng,n,) repre-
“update”). The update logically stops when sents the first ICA filter, so that

by. O %yf:it — 3by. 6) N VN1V

ylk:_ziblixik: > > ba(nng)x(n,nz)  (12)
where ‘0" means “proportional to”. Post-multiplying both = M=o M0

sides with the whitening matri®v, and using thaby: =  The most-right part of this identity clearly remindscon-
b1 W, we get volution To state it more properly, let us define the 2-D
sequenc@?(nl,nz) ashi(ng,ny) rotated 180 counterclock-

glzw U yg:)Et W = byl yg:)Et w (7) wise:

Using the definition oW (see (4)) in (7) we get: b?(ﬂl, o) = bl(\/N— 1-m VN—1— ) (13)

Mv3 Xtp-1/2vyt _
b1 Oy XD v ) After some cumbersome algebra one finds that
from which we get, after some algebra, the essential relatio
) yi=2(VN-1,VN-1) (14)
bi. 05 Vavn (9)  wherez(ng,ny) is the 2-D convolution between the patch
n=1

(N1, nz) andbR(ng,ny). _ o
wherev,, is thenth eigenvector of the data correlation matrix _ In other words, each element gf; is the filtering of an
R, and image patch with the corresponding ICA filter rotated 180
Zl—linkﬁk bin counterclockwise, followed by the sampling of the filter-out
Yh = _\//\— il T (10) putatn; =+/N—-1,n, =+/N—1. Itis straightforward to
_ no_ n show that an equivalent result will be obtained by filtering
Here,byy, is the(1,n)th entry of B and (a) follows from (6).  the whole image (rather than filtering isolated patches).
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Finally, observe that the magnitude responses of the fil- » = == =«

tersbf(ny,nz) andby(ng,np) are the same because the ro- 7. =
tation only affects their phase response. In particular, if e e

bi(n1,ny) is a high-pass filter theby(ny,ny) will be also A |
high-pass. In conclusionCA is equivalent to a high-pass Py pem Py

filtering and a sampling of the image R

5. EXTENSION TO SEVERAL INDEPENDENT

COMPONENTS pn P
In practice, theFast | CA algorithm is executed as many 7 = ™
times as the number of desired independentcomponents [15] = == =
In the jth iteration it is imposed that the corresponding bosi
has to be orthogonal to the., k= 1,...,j — 1 previously o s e

obtained (deflationary orthogonalization). This method ha  _ o
the drawback that estimation errors in the first vector are ac == »=
cumulated in the subsequent ones by the orthogonalization ™~
[14]. The implications of this problem depends on the partic

ular application. In our case, as we will see in the followingFigure 2: Amplitude spectra of the 1212 ICA filters corre-
section, the last independent components are not so sparseponding to the “Barb” image. The darker grey values refers
distributed as the others. to larger amplitudes; zero spatial frequency is at the eeoftr

each patch.

6. EXPERIMENTS AND DISCUSSION

In this section we show and discuss the results obtained Fig. 3 represents some of the independent components
by applying the FastICA algorithm to natural images. We( o ' the rows of matri®y) as well as their histograms (we
present two experiments: in the first one we analyze the res; ot represent all the independent components due to the
sults obtained considering the patches of only one naturgley of space). It is clear to see that the distribution of
grey-scale image; in the second experiment a great ensembie. e 'independent components is sparse (most of the ele-
of natural grey-scale images is considered. In both cases Weans close to zero), which is in agreement with the results
have selected the approach by deflation and the kurtosis gpained by other authors [12, 14]. As we said in the previous
nonlinearity. Section, the last independent component is “not so sparse”,
. . due to the accumulated errors.
6.1 Results with only one natural image This sparse distribution of the independent components
Consider the natural, grey-scale image shown in Fig. 1. Wean be explained as follows. Our previous derivation indi-
divide it into 12x 12 blocks or patches to compose the datecates that ICA performs a high-pass filtering of the image
matrix X (X is of size 144x 1764). Next we rurrast | CA.  data. Carrying out a high-pass filtering of a natural image,
only the edges are enhanced whereas most of the image is
attenuated or even eliminatedSo, when we sample the fil-
FE I s e ter output most samples of the filtered image are expected
" - i to be small: only those samples at the edges will take signi-
ficative values and the resulting independent componeht wil
be, consequently, “sparse”. It also means that the spikes of
the independent components are not randomly placed: they
correspond to “edges” of the image.

Furthermore, most of the independent components have
onevery large element ospike This is expected because
such a solution maximizes the kurtggiad we can not forget
that this is the objective of the FastICA algorithfi0, 14].
Recall the decomposition of each image patghin terms of
the ICA bases represented by (2), re-written here for conve-
nience:

Xk =a1Yik+a2yxk+ - +anynk (15)

Figure 1: The “Barb” image (504 504) (available in [22]). Consider that thejth independent componeny,;:, has a
spike in itsmth sample, i.e., ayjm. This position will be

i iff f i h
To analyze the frequency content of the ICA fiters, Wed| erent from one independent component to another, due to

map the rows oB into 12x 12 matrices and represent the 2Consequently, the filtered image will have a very sparseilligion

magthdes of the_lr 2-D Fourier 'I_'ransform. In Fig. 2 V,Ve characterized byésharp histogram centered around zero Y
show these magnitudes. As predicted, all of them are high- 3yt is easy to show that the unity-variance signal with masximkurtosis
pass. is the signal in which all its elements vanish excepting one.
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the orthogonal relation among the ICA filters, meaning thatithe previous experiment still hold in this case. Regardireg t
ICA bases, they are very different from the ones obtained in
X:m 2~ Yjmaj (16)  the previous experiments

That is, each ICA basis;j is approximately proportional to

an image patclk.n, that corresponds to an “edge”. To illus-
trate this point, in Fig. 4 we show the ICA bases correspond- 7
ing to the “Barb” image. Almost all of them are like patches &

of the image corresponding to the edges, due to the dominant * ': - . 5
element present in each independent component. G A med o
BY o § :
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Visp O sebrapmsbe et 50 I Figure 5: Amplitude spectra of the 3212 ICA filters cor-
T T Ol responding to an ensemble of natural images (24 000 patches
s % in total). The darker grey values refers to larger ampligjde
Vi °MWMWMWM '“ zero spatial frequency is at the centre of each patch.
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Figure 4: “ICA bases” (1% 12) corresponding to the “Barb” 7. CONCLUSIONS
image.

In this paper we have analyzed, both mathematical and exper-
imentally, the results obtained by performing an Indepehde
Component Analysis (ICA) to natural images by means of
the FastICA algorithm. In particular, we have used the kur-
For this experiment we have chosen a set of images from thesis as contrast function. We have shown that the ICA filters
database available in [21], to obtain a total of 240012  can be decomposed in terms of the eigenvectors associated to
patches. These images are characterized by the presencelod smallest eigenvalues of the data correlation matrigme
trees, bushes, leaves, etc. In Fig. 5, Fig. 6 and Fig. 7 wimg that these filters are all high-pass. This leads to a epars
show the ICA filters, some of the independent componentdistribution of the independent components. Moreovertmos
and the ICA bases, respectively. The conclusions related tof the independent components present a quite marked spike

6.2 Results with an ensemble of natural images
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Figure 7: Some of the independent components (and theft5] Hyvarinen, A., Oja, E.A fast fixed-point algorithm for
associated histograms) corresponding to an ensemble-of nat
ural images (24000 patches in total). The scales have been

adjusted to a better visualization.
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that are responsible of the fact that the ICA basis are simila[17]
to the edges of the original image orimages. As a conclusion,

the ICA basis are very dependent of the images analyzed.
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