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ABSTRACT

In this paper we analyze the results provided by the popular
algorithm FastICA when it is applied to natural images, us-
ing the kurtosis as non-linearity. In this case show that the
so-called ICA filters can be expressed in terms of the eigen-
vectors associated to the smallest eigenvalues of the data cor-
relation matrix, meaning that these filters are all high-pass.
From this property emerges the sparse distribution of the in-
dependent components. On the other hand, the use of the kur-
tosis as contrast function causes the appearance of “spikes”
in the independent components that make that the ICA bases
are very similar to patches of the images analyzed. Some
experiments are included to illustrate the results.

1. INTRODUCTION

Independent Component Analysis (ICA) is a technique for
analyzing multivariate data that has received a great inter-
est in the last years [6, 7]. Let the observed multidimen-
sional data be represented as a matrixX with N rows and
T columns, whereN is the number of variables andT is the
number of observations recorded on each variable. The goal
of ICA is to calculate the square matrixB that linearly trans-
formsX into a matrix:

Y = BX (1)

The goal of ICA is to calculate theN×N matrix B that
linearly transformsX into Y. Different approaches have
been proposed to characterize this model (see, for example,
[1, 2, 4, 15]).

Bell and Sejnowski showed in [3] that when the observed
data are patches of natural images, ICA provides a sparse
code in terms of a set ofICA basesthat present oriented and
localized lines or “edges”. In particular, they proposed an
unsupervised learning algorithm based on information max-
imization (“infomax” network) to perform the independent
component analysis [2] and used a training set of patches
taken from different natural images. In this case, each col-
umn of matrixX represents a (square) patch of a natural im-
age and can be expressed as follows:

x:k = a:1y1k +a:2y2k + · · ·+a:N yNk (2)

Using aMatlab-like notation,x:k is thekth column ofX,
y jk is the( j,k)th element of matrixY anda: j is the jth col-
umn of matrixA, with j = 1,2, ...,N andk = 1,2, ...,T. Bell
and Sejnowski showed that the ICA basesa: j looked like
edges, while the distribution of the weighting coefficients,
y jk, wassparse. The connection between this result and the
behaviour of some neurons of the primary visual cortex (V1)

was argued by Bell and Sejnowski [3] (see also the previous
works [8, 18] and the references therein).

Similar results were obtained with the FastICA algorithm
[15], as shown in [9, 14, 17], under certain operational con-
ditions (in particular, using the nonlinearityg1(y) = tanh(y)
– see [14] for details).

Our aim is to analyze both the independent components
and the ICA bases of natural images obtained with the Fas-
tICA algorithm, but now using its original version based on
the maximization of thekurtosis(i.e., using the nonlineari-
ty g3(y) = y3) [14, 15]. As Hyvärinen argued in [14], the
results obtained with these two approaches are basically the
same, but the kurtosis has two advantages compared to the
hyperbolic tangent. First, from a theoretical point of view, it
leads to a mathematically more tractable analysis. Second,
from a practical point of view, the number of flops required
are much lower (about nine times lower)1.

The analysis presented in this paper shows that the so-
called “ICA filters” (rows of matrixB – see (1)) can be de-
composed as alinear combination of the eigenvectors as-
sociated to the smallest eigenvalues of the data correlation
matrix, meaning that these filters are allhigh-pass. This
property leads to asparsedistribution of the independent
components, whose non-negligible elements correspond to
patches that contain lines oredges(i.e., high frequency con-
tent). Besides, the use of the kurtosis as contrast function
causes the appearance ofspikes, making the ICA bases very
similar to patches of the natural images analyzed, also corre-
sponding toedges.

The “high-pass nature” of the ICA filters was already ob-
served in [14, 20], but was related to the “high-pass appear-
ance” of the ICA bases. The innovation that we introduce
here is thatthe ICA bases “look like edges” because the ICA
filters are high-pass, not the inverse.

The paper is structured as follows. We first introduce
the usual preprocessing in Section 2. In Section 3 we de-
rive a closed-form expression in which the first ICA filter is
expressed as the linear combination of the eigenvectors as-
sociated to the smallest eigenvalues of the data correlation
matrix. The implications of this result in the case of natu-
ral images are discussed in Section 4, in which we argue the
convenience of interpreting ICA as a two-dimensional filter-
ing. The extension to the rest of the independent components
is done in Section 5. Experiments and discussion is given in
Section 6. Final conclusions are provided in Section 7.

1The kurtosis is very sensitive to outliers, something that could be a prob-
lem in many applications [14, 11]. This is not our case, because our aim is to
provide a sparse representation of natural images (to be used in compression
applications, for example), and the kurtosis is as valid as any other method.
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2. PREPROCESSING

There are two quite standard preprocessing steps in ICA.
First, the mean of the data is usually subtracted to center the
data on the origin. Using our notation:

1
T

T

∑
n=1

xkn = 0 ∀k (3)

This does not alter the ICA model (1) except that now the
independent components are also zero-mean.

Secondly, the data are usually transformed into uncorre-
lated variables by means of awhiteningmatrix,W:

X̄ = WX = D−1/2Vt X (4)

where the superscriptt means “transpose”. Here,D−1/2 =

diag(λ−1/2
1 , ...,λ−1/2

N ), being λ1 ≥ . . . ≥ λN the eigenval-
ues of the sample data correlation matrix,Rx = 1

T XXt ;
V = (v1| . . . |vN) is the matrix containing, by columns, the
corresponding eigenvectors (Rxv j = λ j v j ). The ICA model
(1) can be now written as

Y = B̄X̄ (5)

whereB̄ = BW−1. It is straightforward to show that matrix
B̄ is orthogonal, i.e.,̄BB̄t = I (I is the identity matrix).

3. THE ICA FILTERS OF FASTICA

Let y1: = [y11, . . . ,y1T ] be the first independent component
and definey3

1: = [y3
11, . . . ,y

3
1T ] as the vector which contains

the entries ofy1: raised to the third power. Similarly, let̄b1:
be the first row of matrixB̄. With this notation, the basic
FastICA iteration can be expressed as follows [14]:
1. y1:←− b̄1:X̄

2. b̄1:←− 1
T y3

1:X̄
t −3b̄1:

3. b̄1:←− b̄1:/‖b̄1:‖
These three steps are repeated until convergence (←−means
“update”). The update logically stops when

b̄1: ∝
1
T

y3
1:X̄

t −3b̄1: (6)

where “∝” means “proportional to”. Post-multiplying both
sides with the whitening matrixW, and using thatb1: =
b̄1:W, we get

b̄1:W ∝ y3
1:X̄

t W ⇒ b1: ∝ y3
1:X̄

t W (7)

Using the definition ofW (see (4)) in (7) we get:

b1: ∝ y3
1:X̄

t D−1/2Vt (8)

from which we get, after some algebra, the essential relation:

bt
1: ∝

N

∑
n=1

γnvn (9)

wherevn is thenth eigenvector of the data correlation matrix
Rx and

γn =
∑T

k=1 x̄nky3
1k√

λn

(a)
∝

b̄1n√
λn

(10)

Here,b̄1n is the(1,n)th entry ofB̄ and (a) follows from (6).

4. APPLICATION TO NATURAL IMAGES

Equation (9) indicates that the first ICA filter can be written
as a linear combination of the eigenvectors of the correlation
data matrix. This is not surprisinga priori, since these eigen-
vectors always form an orthogonal basis of the space. When
the data analyzed are natural images, it is well known that
due to the great correlation among neighboring pixels, most
of the eigenvalues are very close to zero (this is the basis
of image compression [16]). The opposite happens with the
corresponding factors1√

λn
. Hence, considering that the norm

of b̄1n is bounded to one, we can approximate the first ICA
filter by the weighted sum of the eigenvectors associated to
thesmallest eigenvaluesof the data correlation matrix:

bt
1: ∝

N

∑
n=m

γnvn , 1 << m≤ N (11)

For natural images, the eigenvectors associated to the small-
est eigenvalues contain the higher-frequency information
(edges, textures, etc.). Consequently, the first ICA filter will
have high-pass characteristics.

4.1 ICA as a 2-D “filtering-sampling” process

Taking into account that each column of this matrixX con-
tains the pixels of a patch of an image, it is clear to see that
(1) implicitly represents a two-dimensional filtering. In this
section we analyze this question and obtain an explicit ex-
pression of the first independent component as the sampling
of the result of a 2-D filtering of the original image (the ex-
tension to the rest of independent components will be done in
the following section). This alternative interpretation of ICA
seems to be an unnecessary complication, but it is of great
relevance for our analysis.

For convenience, we can also represent thekth image
patch as a 2-D sequencexk(n1,n2), with n1,n2 = 0, ...,

√
N−

1 (in other words,xk(n1,n2) is the mapping of theN×1 vec-
tor x:k to a

√
N×
√

N matrix). Similarly,b1(n1,n2) repre-
sents the first ICA filter, so that

y1k =
N

∑
i=1

b1i xik =

√
N−1

∑
n1=0

√
N−1

∑
n2=0

b1(n1,n2)xk(n1,n2) (12)

The most-right part of this identity clearly remindsa con-
volution. To state it more properly, let us define the 2-D
sequencebR

1(n1,n2) asb1(n1,n2) rotated 180◦ counterclock-
wise:

bR
1(n1,n2) = b1(

√
N−1−n1,

√
N−1−n2) (13)

After some cumbersome algebra one finds that

y1k = z(
√

N−1,
√

N−1) (14)

where z(n1,n2) is the 2-D convolution between the patch
xk(n1,n2) andbR

1(n1,n2).
In other words, each element ofy1: is the filtering of an

image patch with the corresponding ICA filter rotated 180◦

counterclockwise, followed by the sampling of the filter out-
put atn1 =

√
N− 1,n2 =

√
N− 1. It is straightforward to

show that an equivalent result will be obtained by filtering
the whole image (rather than filtering isolated patches).
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Finally, observe that the magnitude responses of the fil-
tersbR

1(n1,n2) and b1(n1,n2) are the same because the ro-
tation only affects their phase response. In particular, if
b1(n1,n2) is a high-pass filter thenbR

1(n1,n2) will be also
high-pass. In conclusion:ICA is equivalent to a high-pass
filtering and a sampling of the image.

5. EXTENSION TO SEVERAL INDEPENDENT
COMPONENTS

In practice, theFastICA algorithm is executed as many
times as the number of desired independent components [15].
In the jth iteration it is imposed that the correspondingb̄ j :

has to be orthogonal to thēbk:, k = 1, ..., j − 1 previously
obtained (deflationary orthogonalization). This method has
the drawback that estimation errors in the first vector are ac-
cumulated in the subsequent ones by the orthogonalization
[14]. The implications of this problem depends on the partic-
ular application. In our case, as we will see in the following
section, the last independent components are not so sparsely
distributed as the others.

6. EXPERIMENTS AND DISCUSSION

In this section we show and discuss the results obtained
by applying the FastICA algorithm to natural images. We
present two experiments: in the first one we analyze the re-
sults obtained considering the patches of only one natural
grey-scale image; in the second experiment a great ensemble
of natural grey-scale images is considered. In both cases we
have selected the approach by deflation and the kurtosis as
nonlinearity.

6.1 Results with only one natural image

Consider the natural, grey-scale image shown in Fig. 1. We
divide it into 12×12 blocks or patches to compose the data
matrixX (X is of size 144×1764). Next we runFastICA.

Figure 1: The “Barb” image (504×504) (available in [22]).

To analyze the frequency content of the ICA filters, we
map the rows ofB into 12× 12 matrices and represent the
magnitudes of their 2-D Fourier Transform. In Fig. 2 we
show these magnitudes. As predicted, all of them are high-
pass.

Figure 2: Amplitude spectra of the 12×12 ICA filters corre-
sponding to the “Barb” image. The darker grey values refers
to larger amplitudes; zero spatial frequency is at the centre of
each patch.

Fig. 3 represents some of the independent components
(i.e., the rows of matrixY) as well as their histograms (we
can not represent all the independent components due to the
lack of space). It is clear to see that the distribution of
these independent components is sparse (most of the ele-
ments close to zero), which is in agreement with the results
obtained by other authors [12, 14]. As we said in the previous
Section, the last independent component is “not so sparse”,
due to the accumulated errors.

This sparse distribution of the independent components
can be explained as follows. Our previous derivation indi-
cates that ICA performs a high-pass filtering of the image
data. Carrying out a high-pass filtering of a natural image,
only the edges are enhanced whereas most of the image is
attenuated or even eliminated2. So, when we sample the fil-
ter output most samples of the filtered image are expected
to be small: only those samples at the edges will take signi-
ficative values and the resulting independent component will
be, consequently, “sparse”. It also means that the spikes of
the independent components are not randomly placed: they
correspond to “edges” of the image.

Furthermore, most of the independent components have
onevery large element orspike. This is expected because
such a solution maximizes the kurtosis, and we can not forget
that this is the objective of the FastICA algorithm3 [10, 14].
Recall the decomposition of each image patchx:k in terms of
the ICA bases represented by (2), re-written here for conve-
nience:

x:k = a:1 y1k +a:2y2k + · · ·+a:N yNk (15)

Consider that thejth independent component,y j :, has a
spike in itsmth sample, i.e., aty jm. This position will be
different from one independent component to another, due to

2Consequently, the filtered image will have a very sparse distribution,
characterized by a sharp histogram centered around zero

3It is easy to show that the unity-variance signal with maximum kurtosis
is the signal in which all its elements vanish excepting one.
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the orthogonal relation among the ICA filters, meaning that:

x:m≃ y jma: j (16)

That is, each ICA basis,a: j is approximately proportional to
an image patchx:m that corresponds to an “edge”. To illus-
trate this point, in Fig. 4 we show the ICA bases correspond-
ing to the “Barb” image. Almost all of them are like patches
of the image corresponding to the edges, due to the dominant
element present in each independent component.

Figure 3: Some of the independent components correspond-
ing to the “Barb” image. The scales have been adjusted to a
better visualization.

Figure 4: “ICA bases” (12×12) corresponding to the “Barb”
image.

6.2 Results with an ensemble of natural images

For this experiment we have chosen a set of images from the
database available in [21], to obtain a total of 24000 12×12
patches. These images are characterized by the presence of
trees, bushes, leaves, etc. In Fig. 5, Fig. 6 and Fig. 7 we
show the ICA filters, some of the independent components
and the ICA bases, respectively. The conclusions related to

the previous experiment still hold in this case. Regarding the
ICA bases, they are very different from the ones obtained in
the previous experiments

Figure 5: Amplitude spectra of the 12×12 ICA filters cor-
responding to an ensemble of natural images (24000 patches
in total). The darker grey values refers to larger amplitudes;
zero spatial frequency is at the centre of each patch.

Figure 6: 12×12 ICA bases corresponding to an ensemble
of natural images (24000 patches in total). The branches and
leaves that characterize the images appear in the bases.

7. CONCLUSIONS

In this paper we have analyzed, both mathematical and exper-
imentally, the results obtained by performing an Independent
Component Analysis (ICA) to natural images by means of
the FastICA algorithm. In particular, we have used the kur-
tosis as contrast function. We have shown that the ICA filters
can be decomposed in terms of the eigenvectors associated to
the smallest eigenvalues of the data correlation matrix, mean-
ing that these filters are all high-pass. This leads to a sparse
distribution of the independent components. Moreover, most
of the independent components present a quite marked spike
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Figure 7: Some of the independent components (and their
associated histograms) corresponding to an ensemble of nat-
ural images (24000 patches in total). The scales have been
adjusted to a better visualization.

that are responsible of the fact that the ICA basis are similar
to the edges of the original image or images. As a conclusion,
the ICA basis are very dependent of the images analyzed.
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