
TEACHING SIGNAL PROCESSING APPLICATIONS WITH “JOPAS”: JAVA TO
OCTAVE BRIDGE

J. Vicente, B. García, A. Mendez, I. Ruiz, O. Lage

ESIDE, University of Deusto
Avda/ Universidades 24, 48007, Bilbao, Spain

phone: + (34) 944139000, fax: + (34) 944139101, email: jvicente,mbgarcia,ibruiz,amendez,olage@eside.deusto.es
web: http://www.eside.deusto.es/grupos/eside_pas/

ABSTRACT
This paper introduces the "joPAS" programming API, which
has been developed by the PAS research team at the Univer-
sity of Deusto. “joPAS” enables the use of “octave” vari-
ables and functions through a JAVA program. Therefore, this
API makes it possible to not only develop signal processing
applications quickly by implementing the application's
graphic interfaces in Java language but also to carry out the
scientific calculation in “Octave”. Students can easily learn
the implementation of digital signal processing applications
with this API.

1. INTRODUCTION

The development of the “joPAS” programming API arose
from the PAS research team's need to develop prototypes of
the algorithms used with a user's interface in its research
areas. One of the main lines of research followed by the PAS
research team is the regeneration of the oesophageal voice,
in which several algorithms for improvement -already pre-
sented at a number of congresses [1][2][3][4]- have been
developed. These algorithms were developed in “Octave”
language, which, despite being ideal for signal processing
algorithms, lacks a user interface. Therefore, so as to pro-
gram a demo application of the work carried out by the
team, we saw it necessary to re-implement the code in an-
other programming language that enables the programming
of graphic interfaces. This meant that the team would lose
out on research performance in order to devote more time to
less productive tasks. Thus the need for a tool allowing the
reuse of “Octave”-developed algorithms as well as provid-
ing the possibility of user interfaces. This gave rise to
“joPAS”, a bridge between "java" and "octave" for the rapid
development of signal processing applications.

Once "joPAS" had been developed, the great potential
this API had not only for research work and application de-
velopment, but also for the sphere of education, due to its
user friendliness. This API provides us with a tool that en-
ables our students to carry out their own signal processing
applications in a fast, simple way. When using “joPAS”, the
student can focus his/her attention on the development of
digital processing signal algorithm as the graphic interface
implementation is simplified by using "joPAS".

2. AIMS

The main aim of the "joPAS" application is to make a tool
available that can enable the rapid development of applica-
tions with a user interface that use signal processing algo-
rithms implemented with other tools (octave). This being the
main aim, a number of secondary objectives could also be
achieved:

1. A reduction in the cost of licences for mathematical

programs, through the use of free software, such as
Octave, which specialises in digital signal process-
ing.

2. Motivating students developing projects using digi-
tal signal processing techniques by avoiding pro-
gramming difficulties.

3. An increase in the integration of an algorithm's re-
sults in a graphic environment of simple program-
ming.

4. Favouring the creativity of students when carrying
out the projects and dissertations necessary for their
university degree.

3. METHODS

3.1 OCTAVE

“Octave” is a high-level language for numerical calculation,
whose syntax is compatible with Matlab, but is developed
by the free software community [5].

But what makes "octave" different from other programming
languages?

“Octave” is particularly oriented towards the scientific
world. Among its main differences from other programming
languages, the following stand out:

1. Native matrix operation.
2. Native operation with complex numbers.
3. Language is interpreted.

These characteristics mean that scientific algorithms can be
developed in a far shorter time then in other programming

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

languages. Therefore, "octave" is the ideal language for the
development of digital signal processing algorithms, digital
image processing, control systems, statistics...etc.
Furthermore, there a great many toolboxes that allow the
user to avoid having to start from scratch when wishing to
deal with a particular subject matter. For instance, if some-
body wants to develop a digital voice-processing algorithm
and needs to filter the signal by means of a Butterworth fil-
ter, he/she needn't implement this function as it already ex-
ists in the signal processing toolbox, which means that its
use is unnecessary in the algorithm. This kind of toolbox, so
highly specialised in scientific matters, cannot usually be
found in other programming languages, which is yet another
advantage for the development of this type of applications in
"octave".

But what are the Disadvantages of “Octave”?

Although “octave” is an ideal language for the development
of scientific applications as they can be carried out in a short
time, it has some drawbacks, one of which is linked to the
speed of computation. Being an interpreted programming
language, “Octave” is slower than a compilable language,
due to the fact that the latter generates native instructions for
the processor, which takes less time.
The second disadvantage is related to the graphic environ-
ment. Applications with "octave" are executed on console
with the single possibility of making graphic data displays.
Therefore, this makes it impossible to develop user inter-
faces that he/she can interact with the application.

Therefore, “octave” is an extremely powerful programming
language for the fast development of scientific algorithms,
but one which is not used for the development of final appli-
cations due to its lack of graphic interface. So "octave" is
usually used to validate algorithms. However, these algo-
rithms are then translated into another programming lan-
guage in order to obtain an application that enables the user
to interact with it.

3.2 JAVA

Java is an object-oriented programming language developed
by James Gosling and colleagues at Sun Microsystems in
the early 1990s [6]. The language, which was designed to be
platform independent, is a derivative of C++ with a simpler
syntax, a more robust runtime environment and simplified
memory management.

Operating on multiple platforms in heterogeneous networks
invalidates the traditional schemes of binary distribution,
release, upgrade, patch, and so on. To survive in this jungle,
the Java programming language must be architecture neu-
tral, portable, and dynamically adaptable.

The system that emerged to meet these needs is: simple, so it
can be easily programmed by most developers; familiar, so
that current developers can easily learn the Java program-
ming language; object oriented, to take advantage of modern
software development methodologies and to fit into distrib-
uted client-server applications; multithreaded, for high per-
formance in applications that need to perform multiple con-
current activities, such as multimedia; and interpreted, for
maximum portability and dynamic capabilities.

Primary characteristics of the Java programming language
include a simple language that can be programmed without
extensive programmer training while being attuned to cur-
rent software practices. The fundamental concepts of Java
technology are grasped quickly; programmers can be pro-
ductive from the very beginning.

Programmers using the Java programming language can
access existing libraries of tested objects that provide func-
tionality ranging from basic data types through I/O and net-
work interfaces to graphical user interface toolkits. These
libraries can be extended to provide new behaviour.

Even though C++ was rejected as an implementation lan-
guage, keeping the Java programming language looking like
C++ as far as possible results in it being a familiar language,
while removing the unnecessary complexities of C++. Hav-
ing the Java programming language retain many of the ob-
ject-oriented features and the "look and feel" of C++ means
that programmers can migrate easily to the Java platform
and be productive quickly.

Can Java be used for scientific computation?

For scientific computation, there are more precise languages
than Java and with more possibilities of calculation. In ad-
dition, these languages operate natively with matrixes and
complex numbers, and Java does not do so. Therefore, lan-
guages like Matlab and “octave” are used in scientific com-
putation. It is much more difficult to program scientific
calculations in Java than in scientific languages, which im-
plies a great disadvantage for Java.

Even so, there are people who use Java to develop programs
that include scientific computation. In order to program sci-
entific calculations in Java, it is necessary to spend much
more time than in scientific languages, but Java has many
options for the development of user interfaces. Free scien-
tific languages such as “octave” only can be used in the
command line and applications cannot be created with them
either.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

4. DESIGN

Taking the need to reuse the code of algorithms developed in
"octave" as a premise (instead of encoding them into another
programming language), and also considering that we had
capable graphic user interfaces, the best possible proposal
was searched for. It was resolved to develop the graphic
interfaces in JAVA and to continue carrying out the scientific
calculation in “OCTAVE”; however, no link existed between
the two programming languages. Work was therefore started
on the “joPAS” API, which was to serve as a link between
JAVA and “OCTAVE”. “joPAS” enables the exchange of
variables between both languages as well as the execution of
“octave“ sentences from JAVA. The methodology for work-
ing with JAVA is as follows:

1. Program the required algorithm in “OCTAVE”, us-

ing all the power available.
2. Reduce the algorithm into “OCTAVE” functions so

that its calculation is performed within these func-
tions; functions to which only fundamental parame-
ters need to be passed and which return the final re-
sults to the algorithm.

3. Create the graphic interface for the application in
JAVA. This step can be simplified by using a devel-
opment environment such as Netbeans.

4. The data necessary for the graphic interface are
gathered in the user interface event functions and
the corresponding “OCTAVE” variables are gener-
ated. .

5. The desired “OCTAVE” functions are invoked with
the variables generated from the JAVA application,
thus generating the exit variables.

6. After executing the “OCTAVE” algorithms, the exit
variables obtained are requested from JAVA by
passing the variables from “octave” to JAVA.

7. To end, the results can be seen on the graphic inter-
face and, if some kind of graphic display were nec-
essary, the functions added to the “joPAS” API
would be invoked.

In short, the work procedure with “joPAS” would be as fol-
lows: develop the application in “octave”, as one would nor-
mally, and supply the “OCTAVE”-developed algorithm with

a JAVA-developed bundle/wrapper which provides the user
graphic interface. Therefore, the time spent implementing the
the application with the graphic environment is minimised as
only the application windows are used in JAVA and the logia
of the application is obtained from invoking the functions
developed in “OCTAVE”.

5. THE “joPAS” STRUCTURE

As already mentioned “joPAS” is a JAVA API that contains
numerous classes; the most important would be the follow-
ing:

• Jopas This is the fundamental API class; it is in

charge of administering the communication with “oc-
tave” in three following methods, load, save y execute.

• Matrix This class contains the kind of data that un-
derstands the jopas class. It is a container of matrixes
that can be either real or complex. The jopas class ad-
mits this kind of data in the load method and in the save
method it always returns a Matrix-type object.

• JopasLabel This class is a modified Label with an
important print method. The print method is in charge of
performing the graphic display of a signal on the label.

Below a brief code fragment can be observed, in which

the above mentioned classes are used.
 Double b = 2;
 Matrix mA= new Matrix (a,"a");
 jopas.Load(mA);
 jopas.execute(“b=a+4”);
 Matrix mB = jopas.Save("b");

List 1. Example of “joPAS” use

In the list 1 fragment, it can be seen how a matrix object

that will contain a scaled number is created. This matrix is
loaded in “octave” with the Load method. Then an
“OCTAVE” sentence is executed, which adds a unit to the
generated variable. To finish, the result that has been ob-
tained is recovered in “octave”, generating a matrix object in
JAVA.

The API structure has been simplified in such a way that
one only needs to know how to use three classes to be able to
develop applications with a graphic interface. The API per-
forms all the process of communication between java and
"octave"- loading variables from java to "octave", executing
"octave" sentences and saving variables from "octave" to
java- in a transparent way for the user. Therefore, only a
minimum time is needed by students who are able to pro-
gramme in “OCTAVE” and in JAVA to learn how to use
“joPAS”; which is our case.

6. RESULTS

As already mentioned, the implementation of signal process-
ing applications using “joPAS” is extremely simple. Below a
design application of Chevichev low pass filters, carried out

1.- Program the algorithm in octave

2.- Reduce the algorithm to funciones

3.- Create the graphic interface

4.- Change the variables from JAVA to OCTAVE

5.- Execute the OCTAVE functions

6.- Change the OCTAVE variables to JAVA

7.- Make graphic displays in JAVA

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

as a demo of “joPas” use for our students, is described. The
user interface implemented in JAVA can be seen in figure 1.

Figuer 1. Application user interface

First, one looks for “OCTAVE” sentences allowing the de-
sign of a Chevichev low pass filter as well as calculating its
frequency response. The necessary instructions can be seen
below (list 2)

[N,W]=cheb1ord(FC/10000,FR/10000,R,A);
[B,A]=cheby1(N,R,W);
[H,F]=freqz(B,A,512,20000);
modulodB=20*log10(abs(H));
fase=unwrap(angle(H));
Fc=W*10000;

List 2. “OCTAVE” codes

On the one hand, the application user interface is designed, a
task that can be simplified with the use of an IDE that allows
the creation of JAVA graphic interfaces in a visual form. On
the other hand, the algorithm for the design of a digital filter
will be implemented in “OCTAVE”.

The user interface is made up of:

• Two JopasLabel: in the top one, the frequency response
module of the designed filter will be displayed, and in
the bottom one, the frequency response phase of the fil-
ter.

• Four TextEntries, in which the following parameters will
be introduced

1. Filter cutoff frequency.
2. Filter rejection frequency.
3. Ripple effect in pass band.
4. Rejection band attenuation.

• Two TextEntries, in which the following data can be
seen:

1. Filter order
2. Designed filter cutoff frequency.

• A button to launch the process of the filter design. The
actionPerformed method will make the necessary calls
to implement the filter. In list 3, the sentences using

“joPAS” to communicate the data in JAVA and
“OCTAVE” can be seen.

//Read the values of the inut textFields of the GUI
String FC = jTextField1.getText();
String FR = this.jTFFrecCorte.getText();
String R = this.jTextField3.getText();
String A = this.jTextField4.getText();

//Generate de OCTAVE variables
jopas.Load(Double.parseDouble(FC), "FC");
jopas.Load(Double.parseDouble(FR), "FR");
jopas.Load(Double.parseDouble(R), "R");
jopas.Load(Double.parseDouble(A), "A");

 //Executes the Octave commands using local variables
jopas.Execute("[N,W]=cheb1ord(FC/10000,FR/10000, R , A)");
jopas.Execute("[B,A]=cheby1(N," + R + ",W)");
jopas.Execute("[H,F]=freqz(B,A,512,20000)");
jopas.Execute("modulodB=20*log10(abs(H))");
jopas.Execute("fase=unwrap(angle(H))");
jopas.Execute("Fc=W*10000");

//Write the values at the output textFields
this.jTextField6.setText(Double.toString(jopas.Save("N").getRealAt(0, 0)));
this.jTextField5.setText(Double.toString(jopas.Save("Fc").getRealAt(0,0)));

//Plot the graphic representation of the frequency response
this.jopasLabel2.paintLabel("F", "modulodB", "Módulo",
"Frequency (Hz)", "Module (dB)");
this.jopasLabel1.paintLabel("F", "phase", "Phase", "Frequency (Hz)",
"Phse (rad)");
List 4. JAVA code for the GUI button method.

As can be seen in this example, by using “joPAS”, applica-
tions can be designed in a faster and a more simple way.
Therefore, its use is quite straightforward for the students.

7. FUTURE PLANS

Our immediate aim for “joPAS” is that students continue
using this API in their final year projects. We can therefore
ensure that most of the time they devote to their final year
projects will be spent on implementing processing algo-
rithms in “OCTAVE”, the programming language they have
the greatest knowledge of; thus minimising the time and
effort required for the development of the graphic part of the
application. This does not mean that the resulting applica-
tions will lack a quality graphic user interface, but, thanks to
the use of “joPAS”, they will be obtained at in a faster way.

On the basis of the experiences undergone by our students
using “joPAS”, points for improvement, which can be incor-
porated into the API, Hill be identified. A crucial step has
been taken with the current version of “joPAS”; and it is our
intention to keep “joPAS” going, to develop and improve it.
The latter can be achieved by refuelling our minds with the
feedback received from students’ experiences, which will not
only encourage us to become even more deeply concerned
with our students’ development process, but will also make
them feel more deeply involved in the project.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

8. CONCLUSIONS

Finally, it is appropriate to highlight the benefits obtained
from using the “joPAS” API for the design of signal process-
ing applications requiring a graphic user interface. These
advantages are, on the one hand, that by means of this API
the implementation of the digital processing signal algo-
rithm can be carried out in "OCTAVE", a suitable processing
language for this task. On the other hand, it enables the im-
plementation of the user interface in JAVA, which is the
most appropriate programming language for this kind of
task. By dividing the process into the separate algorithm and
visualisation parts, the applications can be designed more
quickly, the “joPAS” API being the element enabling this
link to be carried out.

9. ACKNOWLEDGEMENTS

The authors of this paper would like to thank the students, E.
Arroyo, F. Becerra, X. Eguiluz and E. Zubiaur, for providing
us with feedback on their “joPAS” API experiences, as they
are using “joPAS” in the simulation of digital systems part
of their projects. The project consists of designing an appli-
cation for the graphic programming of dsPIC digital signal
microcontrollers [7]. We would also like to express our
gratitude to Sourceforge for letting us house the "joPAS"
API in their servers, so that everybody can download it from
the URL http://jopas.sourceforge.net, should they wish to do
so.

REFERENCES

 [1] B. García, J. Vicente, I. Ruiz, A. Alonso, E. Loyo, "Regeneration
Model for Esophageal Voices'' in Proc. BIOMED 2005, Innsbruck, Austria,
2005.
[2] B. García, J. Vicente, I. Ruiz, A. Alonso, E. Loyo, "Esophageal Voices:
Glottal Flow Regeneration'' in Proc. ICASSP ‘05, Philadelphia, EEUU,
2005.
[3] B. García, J. Vicente, I. Ruiz, A. Alonso, E. Loyo, "Noise Reduction
Algorithm for Esophageal Voices'' in Proc. IWSSIP’04, Poznan, Polonia,
2004.
[4] B. García, J. Vicente, "Adaptative Pitch Scaling Algorithm for Esophag-
eal Speech'' in Proc. BioSignal 2004, Brno, Czech Republic, 2004.
[5] Kurt Hornik, Friedrich Leisch, Achim Zeileis, "Ten Years of Octave
Recent Developments and Plans for the Future'' in Proc. DSC 2003, Vi-
enna, Austria, 2004.
[6] Ken Arnold and James Gosling, " The Java Programming Language''
The Java Series. Addison-Wesley, Reading, MA, 1996.
[7] J, Angulo, B. García, J, Vicente, I. Angulo, Microcontroladores avanza-
dos dsPIC'', International Thomson Editors, 2005.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

http://jopas.sourceforge.net/

	TEACHING SIGNAL PROCESSING APPLICATIONS WITH “JOPAS”: JAVA TO OCTAVE BRIDGE
	ABSTRACT
	1. INTRODUCTION
	2. AIMS
	3. METHODS
	3.1 OCTAVE
	3.2 JAVA

	4. DESIGN
	5. THE “joPAS” STRUCTURE
	6. RESULTS
	7. FUTURE PLANS
	8. CONCLUSIONS
	9. ACKNOWLEDGEMENTS
	REFERENCES

