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ABSTRACT small number of non-zero digits is often required for a

In this paper, we propose a new design method of Fl presentation of the coefficients in a VLSI implemen-

. . . . ation of the filters. There exist a lot of studies to obtain
filters with Signed Power of Two (SP2) coefficients. approximated solution for this design problem. See
In the method proposed here, the design problem (?gr example, Ito et. al [5], W. -S. Lu [11]. They pro- '
FIR filters is formulated as a discrete semi-infinite lin- ! ' o :

car programming problem (DSILP), and the DSILEROSS? 0 US€ & semidefie programming (DF) el
is solved using a branch and bound technique. gn p : '

will guarantee the optimality of the solution obtained. 0 not ha\;e an ?pt'n:ﬁl soluft|on for the ;Jltehygn probl_em,
Hence, it is possible to obtain the optimal discrete coe ?(?ncrire"t]r?o dmerre]:(I:(i)snel € performance ot In€ approxima-
ficients. It is confirmed that the optimal coefficients of Si thpd ElY. bl s f lated dis-
linear phase FIR filter with the SP2 coefficients could ince the design problem IS formulated as a dis

e i s ey b S S o Py P, B
tational experiments. P P

the branch and bound (B & B) method. And, there are
some methods usirg & B method for the design prob-
1. INTRODUCTION lem, for example, based on LP, Remez algorithm, and

Digital signal processing deals with the representatiofi® On- Cho et. al [1] proposeuB & B method based on

of signals as ordered sequencers of numbers and thB focusing only on the active constraints to decrease

processing of those sequences. Typical reasons for s?ﬁ computational time. However, they did not assure

nal processing include: estimation of characteristic sighe optimality of the solution obtained by the algorithm.

nal parameters, elimination or reduction of unwanted I this paper, we propose a new design method of

interference, and transformation of a signal into a forfin€ar phase FIR filters with SP2 coefficients which

that is in some sense more informative. guarantees the optimality of the solution obtained. In
There are two methods for the realization of FIRthe method proposed, the design problem is formulated

filter, one is a software realization method and anothé}S 2 discrete semi-infinite linear programming problem

is a hardware realization by using digital circuits. In(PSILP) and solved by8 & B method. In the B &

hardware implementation of FIR filters, the filter coef-B method, a branching tree is generated and, on each

ficients corresponding to multiplier coefficients are prel0de, it is necessary to solve semi-infinite linear pro-

sented as the finite word length numbers. When th@"@mming problem (SILP) [3]. _

coefficients are simply rounded to the nearest discrete It is shown by the results of some computational

number, precision of filters are degraded from the on@XPeriments for the filter designing problem, the devel-

with the optimal real coefficients. Therefore, desigrPPed algorithm is rather practical.

methods of FIR filters with discrete coefficients have

been widely researched [12], [6]. There are no design 2. PROBLEM FORMULATION

methods of designing filters that could be easily adaptqg s section, we introduce the design method of digi-

to spemal (_1eS|gn spemflcatlons. So each filter has to BE FIR filters with SP2 coefficients.

designed, in principle, by a complete mathematical de-

sign pr_ocedure. Itis the aim of all design methods tg 1 Design problem of FIR digital filters with con-

approximate a _dgswed frequency response as _Closetﬁﬁ.lous coefficients

possible by a finite number of FIR filter coefficients. _ _ ]

Recently, many studies on a design method for linedP this paper, we deal with a design problem of FIR

phase FIR filters with discrete coefficients have beefligital filters with SP2 coefficients that minimize the

published [11], [8] in which, a numerical representatiormax'mal error, i.e., minimize the following function:

by a sum of signed power of two (SP2) has been used in

. — joy
several methods. [7], [13], [9], [8]. It is a reason that a e=max|H(e') — Ha(w)| )



whereHg(w) is the desired frequency response funcwhereQ = [0, wp] U [ws, 71 is the approximation band.

tion andQ = [0, wp] U [ws, 11]. Here, [0, wyp] denotes a If we introduce a new variablé that corresponds
passband anfu, 711 denotes a stopband. to theL«-approximation error , it is easy to convert the

In the first, we consider the continuous coefficienabove min-max problem to the following minimization
case. Then the design function of the FIR filter is: problem, that is a semi-infinite programming problem

N1 with SP2 coefficients (DSILP).
jw — jkw
H(e'?) = I(Zohke Ko, ) min 5
subto H(w)+d > Hy(w), weQ, (9)

Now, we assumé is odd filter number. Given a bud- ~H(w)+3 > —Hg(w), weQ

get of total number of power-of-two ternid, a certain

number of SP2 termsyy , is allocated to thé&-th target 3. ANALGORITHM EOR SOLVING DSILP
discrete-coefficientk. Then we denote the frequency o L )
responséd (6/©) as follows. Our aim is to solve DSILP (9), but it is impossible

to solve (9) directly, since it is an NP-hard problem.
0 N-1 ke Hence, we solve SILP ignoring the constraints that each
H(e"®) = Z}dke (3)  coefficient is an SP2. Here we denote again the vari-
k= ableshy’s instead ofde’s. Then DSILP is relaxed to a
The allocation of SP2 terms is determined, for examplestandard SILP and we can use several standard meth-
by Lu [10], Ito et. al [4]. ods to solve the SILP, see for example [3]. Since SILP
We assume that the absolute value of each SP2 cig-a continuous optimization problem, an obtained opti-
efficient {dy} is in {0} U[27Y, 2% whereU is a natural mal solution does not always satisfy the condition that
number. Then, with a given term allocatiam, the dis- each coefficient is an SP2. Hence it might be a infea-
crete coefficientsk in the equation(3) can be expressedsible solution for DSILP. Hence, we have to combine
as, SILP and a B & B method to obtain an optimal solu-
dh — i pKo—q ) tion for DSILP. We explain the main idea how to get an
K= ; i ' optimal solution for DSILP by combining SILP and B
» & B method. If there are som®’s that are not SP2 in
an optimal solution for SILP, then select dmethat is
not SP2 and generate two subproblems, which one has
an additional constrairtyy < |h;| and the other has an
N-1 additional constraintl; > [h;]. Here|h;] is the max-
Z)mk =M. (®)  imum SP2 coefficients that is less than or equai;to
k= andfh;] is the minimum SP2 coefficients that is greater

Here, we havds® € {—1,1} and 1< ¥ <U, (1< than or equal tt;.

i<m, 0<k<N-1). To solve SILP problem, we exploited the 3-phase
Omitting the linear phase factar (N-1/2i® the method, and we introduce the algorithm shortly in the

frequency response of a symmetrical impulse respon&@iowing.
filter with N odd is given by
K
H(O.)) = kZOdkCOSkO.). (6) INPUT: N’(i)p,o‘%_,s’ Marlba--_-amK
_ o _OUTPUT : h = (hy,...,«), 3,
HereK = (N —1)/2 and this equation is called a magni-(Phase 1):
tude response. Then the number of filter coefficients Wgenerate a discretized linear programming problem
consider iK + 1. Suppose a desired respoi€w) is  with discretizing paramete.

Since each SP2 coefficiedf is consisted ofn non-
zero digits, the relation ofry,...,my andM is repre-
sented as the following equation.

[An algorithm for solving SILP by 3-phase method]

given as follows Solve the_discretized linear programming problem and
S, we [0, w) obtain,h,d,y, wy, ..., w whereh is an optimal primal
Ha(w) = { 0 we [a;s n]’ (7)  variable vector,y is an optimal dual variable vector
’ Y for the discretized linear programming problem and

WhereSis a scaling factorgy, is the passband cutoff w,...,ax are the frequencies that correspond to the
frequency, andw is the stopband cutoff frequency, re-active constraints in the descretized linear program-
spectively. Then, the optimal problem to approximatening problem.
H(w) to Hq(w) in @ min-max sense can be written as (Phase 2):
. Delete the variableg(w) that are zero. For each pair
i hax [H () —Ha(w)| ®)  (w,w) whosew and w; are very close ang(a),



y(wy) #0: 4. NUMERICAL EXPERIMENTS
d

0
y(@) ¢ y(w) +y(w), We executed some computational experiments to certify
ya(wj) and delety/(cy), the performance of the proposed filter design method.

— (W +wj)/2. We consider a low pass filter with the odd length and
end the symmetric characteristic with= 1, that is:

(Phase 3):

Solve the SILP using Newton method or quasi Newton
method with usingh, 8, (y(w,),...,y(@,, @, .., «,)
as the initial solution.

Here,y(w,),...,y(w,) and @w,, ...,w, are the vari- Q = [0, wp] U [ws, T, (10)
ables left in the operation of phase 2. 1, 0<w< ap
Output the solution of the Newton/quasi Newton Hd(w):{ 0 W< < i (11)

method.

Now, we describe the B & B method for solving DSILP

in the following:
The approximation errors from the proposed scheme
are calculated for the following three sets of parameters,
(A), (B), (C)forN =09,...,41. Discretizing parameter

[B & B procedure for DSILP] q to generate the discretized linear programming prob-
lemis 4K +1).
INPUT: N, wp, w5, S M, m, ..., mg
OUTPUTZho,...,hK,é, M Wp ws U
k<0, (A) 2(K+1) 03m 035t 16,
Z<« high value. (B) 2(K+1) 0.4m 041w 16,
Generate DSILP (9), and set SIERO0) by relaxing the (C) 2(K+1) 0.4m 0.43m 16,
condition to be SP2 numbers.
P+ {P(0)}.
while & £ 0 do
SelectP € &. We set eacm, = 2. The CPU used is mobile Pentium
P +— P\{P}. Il 650 MHz and memory is 192 M bytes. We used
Solve SILPP by 3 Phase method. glpk (Ver.4.4) [2] to obtain continuous solutions and to
ifd<z solve subproblems in Branch and Bound. In Figure 1
then and 2, we show the objective value of our method and of
if the optimal solutior(h, 3) of P is a solution  continuous solutions foK = 4,6, ...,20. The expres-
with SP2 coefficients sion "Continuous” in these figures means the optimal
then _ continuous solution and "CSD” means the SP2 solution
Z+0,_ of our method.
h* < h,
ese

select ] that h; is not an SP2, and generate
P(k+ 1) by adding a constraint
hj > “’]j—| to P, . a *
generateP(k+ 2) by adding a constraint : ., =
hj < U’]jJ to P, ok L
P+ PU{Pk+1),P(k+2)}, ¢ 04 u
K<+ k+2. - e
end if = W
end if . e
end while
Outputhy,... hg,z

Figure 1:w, = 0.411, s = 0.41mT



Figure 2:wp = 0.411, ws = 0.4311

In these figures, it was confirmed that the objective
values of our method are close to the one of the contin-
uous SILP. In general, it is known that the transferband
gets narrow, it is difficult to design FIR filter, but in
Figure 1, the objective value by our method is still very
close the one of the continuos SILP in spite that trans-

ferband is narrow.

In Figure 3,..., Figure 6, the magnitude responses are
shown forw, = 0.4, ws = 0.41mr and Figure 7... .,
Figure 10 show the magnitude responsesdp+ 0.37,

ws = 0.35m and wy, = 0.471, ws = 0.431T.
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Figure 3:K = 14, wy, = 0.411, ws = 0.41m1
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Figure 4:K = 14, wy, = 0.411, ws = 0.41m1
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Figure 5:K = 18wy = 0.471, ws = 0.41m1
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Figure 6:K = 18wy = 0.471, ws = 0.41m1
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Figure 7:K = 20, ay = 0.311, ws = 0.3511

In Figure 3,..., Figure 6, it is observed that al-
most equi-ripple characteristic are obtained in both of
two caseXK = 14, andK = 18. Especially, in case of
K =18, it is shown that the magnitude response is al-
most equi-ripple. In Figure 7, . ,Figure 10, these mag-
nitude responses show that our method is efficient in not
only stopband but also passband. In cad¢ ef14, itis
shown that the magnitude response in passband is small
and in case oK = 16, the magnitude response in stop-
band is almost equi-ripple.

In these results, it is shown that our method to de-
sign FIR filter is effective on obtaining of equi-ripple
magnitude responses.
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Figure 8:K = 20, w, = 0.311, ws = 0.3511
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Figure 9:K = 16, w, = 0.411, ws = 0.4311
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Figure 10:K = 16, w, = 0.411, ws = 0.4311

5. CONCLUSION

In this paper, we proposed a new design method of FIR
filters with SP2 coefficients. In this method, it is pos-

sible to obtain an optimal discrete coefficients. It is

confirmed that the optimal coefficients of linear phase
FIR filter with the SP2 coefficients could be designed

with enough precisions through the computational ex-
periments.
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