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ABSTRACT

In this paper, we propose a new design method of FIR
filters with Signed Power of Two (SP2) coefficients.
In the method proposed here, the design problem of
FIR filters is formulated as a discrete semi-infinite lin-
ear programming problem (DSILP), and the DSILP
is solved using a branch and bound technique. We
will guarantee the optimality of the solution obtained.
Hence, it is possible to obtain the optimal discrete coef-
ficients. It is confirmed that the optimal coefficients of
linear phase FIR filter with the SP2 coefficients could
be designed fast with enough precisions by the compu-
tational experiments.

1. INTRODUCTION

Digital signal processing deals with the representation
of signals as ordered sequencers of numbers and the
processing of those sequences. Typical reasons for sig-
nal processing include: estimation of characteristic sig-
nal parameters, elimination or reduction of unwanted
interference, and transformation of a signal into a form
that is in some sense more informative.

There are two methods for the realization of FIR
filter, one is a software realization method and another
is a hardware realization by using digital circuits. In
hardware implementation of FIR filters, the filter coef-
ficients corresponding to multiplier coefficients are pre-
sented as the finite word length numbers. When the
coefficients are simply rounded to the nearest discrete
number, precision of filters are degraded from the one
with the optimal real coefficients. Therefore, design
methods of FIR filters with discrete coefficients have
been widely researched [12], [6]. There are no design
methods of designing filters that could be easily adapted
to special design specifications. So each filter has to be
designed, in principle, by a complete mathematical de-
sign procedure. It is the aim of all design methods to
approximate a desired frequency response as close as
possible by a finite number of FIR filter coefficients.
Recently, many studies on a design method for linear
phase FIR filters with discrete coefficients have been
published [11], [8] in which, a numerical representation
by a sum of signed power of two (SP2) has been used in
several methods. [7], [13], [9], [8]. It is a reason that a

small number of non-zero digits is often required for a
representation of the coefficients in a VLSI implemen-
tation of the filters. There exist a lot of studies to obtain
an approximated solution for this design problem. See,
for example, Ito et. al [5], W. -S. Lu [11]. They pro-
posed to use a semidefinite programming (SDP) relax-
ation method for the design problem. However, if we
do not have an optimal solution for the design problem,
we cannot mention the performance of the approxima-
tion method precisely.

Since the design problem is formulated as a dis-
crete semi-infinite linear programming problem, the
most practical methods to solve the problem is to use
the branch and bound (B & B) method. And, there are
some methods usingB & B method for the design prob-
lem, for example, based on LP, Remez algorithm, and
so on. Cho et. al [1] proposeda B & B method based on
LP focusing only on the active constraints to decrease
the computational time. However, they did not assure
the optimality of the solution obtained by the algorithm.

In this paper, we propose a new design method of
linear phase FIR filters with SP2 coefficients which
guarantees the optimality of the solution obtained. In
the method proposed, the design problem is formulated
as a discrete semi-infinite linear programming problem
(DSILP) and solved byB & B method. In the B &
B method, a branching tree is generated and, on each
node, it is necessary to solve semi-infinite linear pro-
gramming problem (SILP) [3].

It is shown by the results of some computational
experiments for the filter designing problem, the devel-
oped algorithm is rather practical.

2. PROBLEM FORMULATION

In this section, we introduce the design method of digi-
tal FIR filters with SP2 coefficients.

2.1 Design problem of FIR digital filters with con-
tinuous coefficients

In this paper, we deal with a design problem of FIR
digital filters with SP2 coefficients that minimize the
maximal error, i.e., minimize the following function:

e � max
ω�Ω

�H�e jω��Hd�ω�� (1)



whereHd�ω� is the desired frequency response func-
tion andΩ � �0�ωp�� �ωs�π�. Here, �0�ωp� denotes a
passband and�ωs�π� denotes a stopband.

In the first, we consider the continuous coefficient
case. Then the design function of the FIR filter is:

H�e jω� �
N�1

∑
k�0

hke� jkω� (2)

Now, we assumeN is odd filter number. Given a bud-
get of total number of power-of-two termsM, a certain
number of SP2 terms,mk , is allocated to thek-th target
discrete-coefficientdk. Then we denote the frequency
responseH�ejω� as follows.

H�e jω� �
N�1

∑
k�0

dke� jkω (3)

The allocation of SP2 terms is determined, for example,
by Lu [10], Ito et. al [4].

We assume that the absolute value of each SP2 co-
efficient�dk� is in �0�� �2�U �20� whereU is a natural
number. Then, with a given term allocationmk, the dis-
crete coefficientsdk in the equation(3) can be expressed
as,

dk �
mk

∑
i�1

b�k�i 2�q�k�
i � (4)

Since each SP2 coefficientdk is consisted ofmk non-
zero digits, the relation ofm0� � � � �mk and M is repre-
sented as the following equation.

N�1

∑
k�0

mk � M� (5)

Here, we haveb�k�i � ��1�1� and 1� q�k�i �U� �1 �
i � mk� 0� k � N�1�.

Omitting the linear phase factore��N�1��2 jω, the
frequency response of a symmetrical impulse response
filter with N odd is given by

H�ω� �
K

∑
k�0

dk coskω� (6)

HereK � �N�1��2 and this equation is called a magni-
tude response. Then the number of filter coefficients we
consider isK�1. Suppose a desired responseHd�ω� is
given as follows

Hd�ω� �

�
S� ω � �0�ωp��
0� ω � �ωs�π��

(7)

WhereS is a scaling factor,ωp is the passband cutoff
frequency, andωs is the stopband cutoff frequency, re-
spectively. Then, the optimal problem to approximate
H�ω� to Hd�ω� in a min-max sense can be written as

min
d0�����dK

max
ω�Ω

�H�ω��Hd�ω�� (8)

whereΩ � �0�ωp�� �ωs�π� is the approximation band.
If we introduce a new variableδ that corresponds

to theL∞-approximation error , it is easy to convert the
above min-max problem to the following minimization
problem, that is a semi-infinite programming problem
with SP2 coefficients (DSILP).

min δ
sub�to H�ω��δ � Hd�ω�� ω �Ω�

�H�ω��δ � �Hd�ω�� ω �Ω
(9)

3. AN ALGORITHM FOR SOLVING DSILP

Our aim is to solve DSILP (9), but it is impossible
to solve (9) directly, since it is an NP-hard problem.
Hence, we solve SILP ignoring the constraints that each
coefficient is an SP2. Here we denote again the vari-
ableshk’s instead ofdk ’s. Then DSILP is relaxed to a
standard SILP and we can use several standard meth-
ods to solve the SILP, see for example [3]. Since SILP
is a continuous optimization problem, an obtained opti-
mal solution does not always satisfy the condition that
each coefficient is an SP2. Hence it might be a infea-
sible solution for DSILP. Hence, we have to combine
SILP and a B & B method to obtain an optimal solu-
tion for DSILP. We explain the main idea how to get an
optimal solution for DSILP by combining SILP and B
& B method. If there are somēhi’s that are not SP2 in
an optimal solution for SILP, then select oneh̄ j that is
not SP2 and generate two subproblems, which one has
an additional constrainthj � 	h̄ j
 and the other has an
additional constraintshj � �h̄ j�. Here	h̄ j
 is the max-
imum SP2 coefficients that is less than or equal toh̄ j

and�h̄ j� is the minimum SP2 coefficients that is greater
than or equal tōhj.

To solve SILP problem, we exploited the 3-phase
method, and we introduce the algorithm shortly in the
following.

[An algorithm for solving SILP by 3-phase method]

INPUT: N�ωp�ωs�S�M�m0� � � � �mK

OUTPUT : �̄� �h̄0� � � � � h̄K�� δ̄�
(Phase 1):
Generate a discretized linear programming problem
with discretizing parameterq.
Solve the discretized linear programming problem and
obtain,�̄� δ̄� �̄�ω0� � � � �ωK where�̄ is an optimal primal
variable vector, ¯� is an optimal dual variable vector
for the discretized linear programming problem and
ω0� � � � �ωK are the frequencies that correspond to the
active constraints in the descretized linear program-
ming problem.
(Phase 2):
Delete the variables ¯y�ωi� that are zero. For each pair
�ωi�ωj� whoseωi and ωj are very close and ¯y�ωi�,



ȳ�ωj� 
� 0:
do

ȳ�ωi�� ȳ�ωi�� ȳ�ωj��
yα �ωj�� 0 and delete ¯y�ωj�,
ωi � �ωi �ωj��2.

end
(Phase 3):
Solve the SILP using Newton method or quasi Newton
method with using��̄� δ̄��ȳ�ωi1�� � � � � ȳ�ωik �ωi1� � � � �ωik�
as the initial solution.
Here, ¯y�ωi1�� � � � � ȳ�ωik� and ωi1, � � � �ωik are the vari-
ables left in the operation of phase 2.
Output the solution of the Newton/quasi Newton
method.
Now, we describe the B & B method for solving DSILP
in the following:

[B & B procedure for DSILP]

INPUT: N�ωp�ωs�S�M�m0� � � � �mK
OUTPUT :h0� � � � �hK �δ�
k � 0,
z̄ � high value.
Generate DSILP (9), and set SILPP�0� by relaxing the
condition to be SP2 numbers.
���P�0��.
while� 
� /0 do

SelectP ��.
� ����P�.
Solve SILPP by 3 Phase method.
if δ � z̄
then

if the optimal solution��̄� δ̄� of P is a solution
with SP2 coefficients
then

z̄ � δ̄,
�� � �̄,

else
select j that h̄ j is not an SP2, and generate
P�k�1� by adding a constraint
hj � �h̄ j� to P,
generateP�k�2� by adding a constraint
hj � 	h̄ j
 to P,
� �� ��P�k�1��P�k�2��,
k � k�2.

end if
end if

end while
Outputh�0� � � � �h

�

K � z̄.

4. NUMERICAL EXPERIMENTS

We executed some computational experiments to certify
the performance of the proposed filter design method.
We consider a low pass filter with the odd length and
the symmetric characteristic withS � 1, that is:

Ω � �0�ωp�� �ωs�π�� (10)

Hd�ω� �

�
1� 0� ω� ωp�
0� ωs � ω� π� (11)

The approximation errors from the proposed scheme
are calculated for the following three sets of parameters,
(A), (B), (C) for N � 9� � � � �41. Discretizing parameter
q to generate the discretized linear programming prob-
lem is 4�K �1�.

M ωp ωs U
(A) 2�K �1� 0�3π 0�35π 16,
(B) 2�K �1� 0�4π 0�41π 16,
(C) 2�K �1� 0�4π 0�43π 16,

We set eachmk � 2. The CPU used is mobile Pentium
III 650 MHz and memory is 192 M bytes. We used
glpk (Ver.4.4) [2] to obtain continuous solutions and to
solve subproblems in Branch and Bound. In Figure 1
and 2, we show the objective value of our method and of
continuous solutions forK � 4�6� � � � �20. The expres-
sion ”Continuous” in these figures means the optimal
continuous solution and ”CSD” means the SP2 solution
of our method.

Figure 1:ωp � 0�4π, ωs � 0�41π



Figure 2:ωp � 0�4π, ωs � 0�43π

In these figures, it was confirmed that the objective
values of our method are close to the one of the contin-
uous SILP. In general, it is known that the transferband
gets narrow, it is difficult to design FIR filter, but in
Figure 1, the objective value by our method is still very
close the one of the continuos SILP in spite that trans-
ferband is narrow.
In Figure 3,. . . , Figure 6, the magnitude responses are
shown forωp � 0�4π, ωs � 0�41π and Figure 7,. . . ,
Figure 10 show the magnitude responses forωp � 0�3π,
ωs � 0�35π andωp � 0�4π, ωs � 0�43π.
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Figure 3:K � 14�ωp � 0�4π, ωs � 0�41π
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Figure 4:K � 14�ωp � 0�4π, ωs � 0�41π
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Figure 5:K � 18ωp � 0�4π, ωs � 0�41π
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Figure 6:K � 18ωp � 0�4π, ωs � 0�41π
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Figure 7:K � 20�ωp � 0�3π, ωs � 0�35π

In Figure 3, . . . , Figure 6, it is observed that al-
most equi-ripple characteristic are obtained in both of
two casesK � 14, andK � 18. Especially, in case of
K � 18, it is shown that the magnitude response is al-
most equi-ripple. In Figure 7,. . . ,Figure 10, these mag-
nitude responses show that our method is efficient in not
only stopband but also passband. In case ofK � 14, it is
shown that the magnitude response in passband is small
and in case ofK � 16, the magnitude response in stop-
band is almost equi-ripple.

In these results, it is shown that our method to de-
sign FIR filter is effective on obtaining of equi-ripple
magnitude responses.
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Figure 8:K � 20�ωp � 0�3π, ωs � 0�35π
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Figure 9:K � 16�ωp � 0�4π, ωs � 0�43π
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Figure 10:K � 16�ωp � 0�4π, ωs � 0�43π

5. CONCLUSION

In this paper, we proposed a new design method of FIR
filters with SP2 coefficients. In this method, it is pos-
sible to obtain an optimal discrete coefficients. It is
confirmed that the optimal coefficients of linear phase
FIR filter with the SP2 coefficients could be designed
with enough precisions through the computational ex-
periments.
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