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ABSTRACT

In this paper we propose a method for suppressing discrete
disturbers in data communication systems where the modu-
lation scheme is implemented using the FFT (Fast Fourier
Transform) algorithm. Similar to radio frequency interfer-
ence (RFI) cancelation in the frequency domain, the compen-
sation is performed after the FFT in the receiver. As opposed
to the RFI methods it is not necessary to reserve some of
the subchannels for the compensation purpose. However, the
new method requires at least one reference tone and all dis-
crete disturbers impairing the data transmission performance
must be related to it. For example, this is the case for har-
monics where the fundamental acts as reference tone. A
detailed derivation of the compensation method is presented
and illustrated by means of an example.

1. INTRODUCTION

Discrete disturbers are a serious problem for any kind of data
transmission systems. Especially in FFT/IFFT based systems
they impair not only the small frequency region at the center
frequency but also the vicinity due to the leakage effect of
the rectangular window [1]. This problem was addressed in
detail in the context of RFI suppression [2]. RFI is consid-
ered to be a severe impairment for broadband transmission
systems. In this paper we derive a new frequency domain
compensation scheme for discrete disturbers which are har-
monics of a strong signaling tone. This occurs for example
in integrated voice and data applications where both data and
voice are present at the same time on a single pair of copper
wires.

In order to compensate for the harmonics in the fre-
quency domain, the compensation for the leakage effect
which arises whenever the center frequency of the disturber
does not lie on the FFT grid will be analyzed in the next sec-
tion. Then, the cancelation method for the harmonics can be
derived and applied to a data communication system.

2. COMPENSATION FOR LEAKAGE

A sinusoidal disturber at the line can be expressed as

d[n] = |A|cos(ω0n+ϕ) = Re(Ae jω0n) =

=
Ae jω0n +A∗e− jω0n

2
, (1)

whereA is the complex amplitude andω0 the center fre-
quency of the disturber. The corresponding discrete-time
Fourier transformD(e jω) is simply a pair of impulses at+ω0

and−ω0 which are repeated periodically with period 2π:

D(e jω) =
∞

∑
k=−∞

Aπδ (ω −ω0 +2πk)+

+
∞

∑
k=−∞

A∗πδ (ω +ω0 +2πk). (2)

However, ifd[n] is multiplied by a rectangular window

dw[n] = d[n]w[n] (3)

with

w[n] =

{
1, 0≤ n ≤ N −1,
0, otherwise (4)

the corresponding Fourier transformDw(e jω) shows spectral
smearing introduced by the windowW (e jω) (see [1]):

W (e jω) =
1− e− jωN

1− e− jω . (5)

Dw(e jω) is depicted in Fig. 1 and can be expressed as

Dw(e jω) =
A
2

1− e− j(ω−ω0)N

1− e− j(ω−ω0)
+

A∗

2
1− e− j(ω+ω0)N

1− e− j(ω+ω0)
. (6)

The shape becomes obvious if we consider thatDw(e jω) re-
sults from a convolution ofD(e jω) andW (e jω). Next, the
N-FFT can be easily calculated:

Dw[k] = Dw(e j 2π
N k) = Aw1 +A∗w2, (7)

wherew1 andw2 are given by

w1 =
1
2

1− e− j( 2π
N k−ω0)N

1− e− j( 2π
N k−ω0)

, (8)

w2 =
1
2

1− e− j( 2π
N k+ω0)N

1− e− j( 2π
N k+ω0)

. (9)

Eq. (7) can be rewritten as a matrix multiplication if all com-
plex numbers are split in their real and imaginary parts:

[
Re(Dw[k])
Im(Dw[k])

]
= (10)

=

[
Re(w1)+Re(w2) Im(w2)− Im(w1)
Im(w1)+ Im(w2) Re(w1)−Re(w2)

][
Re(A)
Im(A)

]

= W(k,ω0)

[
Re(A)
Im(A)

]
. (11)
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Figure 1: Dw(e jω) (black, solid line), left hand part of
Dw(e jω) (red circles), right hand part ofDw(e jω) (blue
crosses).

The notationW(k,ω0) is used to express that the relation-
ship betweenDw[k] and the complex amplitudeA is a matrix
multiplication which depends onk andω0. Note that a mul-
tiplication of two arbitrary complex numbersx andy can be
expressed by a matrix multiplication with special symmetry
properties:

[
Re(x) −Im(x)
Im(x) Re(x)

][
Re(y)
Im(y)

]
. (12)

These symmetry properties are not given in Eq. (11) except
if the termA∗w2 in Eq. (7) is neglected. However, the com-
putational complexity (2 multiplications, 2 additions) isthe
same in all cases.

From Eq. (7), Eq. (8) and Eq. (9) it is clear that the DFT
Dw[k], k = 0, . . . ,N−1, can be calculated if the complex am-
plitudeA and frequencyω0 of the sinusoidal signal is known.
From the reversed relationship it is possible to expressA if at
least oneDw[k] andω0 is known:

[
Re(A)
Im(A)

]
= W

−1(k,ω0)

[
Re(Dw[k])
Im(Dw[k])

]
. (13)

Now, to compensate the leakage at the carrierl, the car-
rier k is multiplied byW

−1(k,ω0) to get the real and imag-
inary part of the amplitudeA. A further multiplication by
W(l,ω0) gives the desired signal which must be subtracted
from the carrierl. This procedure is shown in Fig. 2 where
s[n] represents the desired data signal andd[n] the disturber
as given in Eq. (1). Of course, the two multiplications can be
combined to reduce the computational complexity.

The presented technique can mainly be used if the dis-
turber lies outside the frequency band of the data signals[n].
If this is not the case one or more in-band tones must be re-
served to detect the disturber and therefore, they cannot be
used to transmit data [2].

In the next section we will consider the situation where
not only the interference of the fundamental tone but also its
harmonics should be canceled.

W−1(k,ω0)
Dw[k]

W (l,ω0)

Sw[l]+Dw[l]

s[n]+d[n]
FFT

Figure 2: Leakage compensation.

3. COMPENSATION FOR HARMONICS

To compensate for the harmonics of a sinusoidal disturber
after the FFT it is necessary that we establish a constant rela-
tionship between the carrier corresponding to the sinusoidal
disturber and the carriers corresponding to the harmonics.
For simplicity reasons it is first assumed that the sinusoidal
disturber lies on the FFT grid which means that

ω0 = k
2π
N

, k ∈ N. (14)

The disturbing signal is given by

d[n] = |A1|cos(ω0n+ϕ1)+
M

∑
i=2

|Ai|cos(iω0n+ϕi). (15)

The phase difference of the carriersk andk · i is

∆Φ = Φ1−Φi = (ω0n+ϕ1)− (iω0n+ϕi) =

= (1− i)ω0n+ϕ1−ϕi. (16)

From Eq. (16) we see that∆Φ is dependent on the time in-
dex n. Therefore a direct compensation for the harmonic is
hardly possible. However, in order to obtain a constant phase
difference the argumentΦ1 = ω0n + ϕ of the fundamental
has to be multiplied by the factori because then the time in-
dexn cancels in the difference∆Φ:

∆Φ = iΦ1−Φi = i(ω0n+ϕ1)− (iω0n+ϕi) =

= iϕ1−ϕi = const. (17)

This means that the phase of the carrierk must be multiplied
by i. This phase shifting operation can be efficiently imple-
mented by using the CORDIC algorithm [3]. More easily,
the i-th power of the carrierk could be computed instead of
the phase shifting. Additionally, the power operation has the
advantage that the amplitude is also corrected. This becomes
obvious if the amplitudes of the harmonics of a sinusoidal
signal are considered after it is processed by a polynomial
(this polynomial should represent the nonlinearity generat-
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ing the undesired harmonics):

x[n] = B1cos(ωn) (18)

y(x) = b1x+b2x2 +b3x3 + · · · (19)

d[n] = y(x[n]) =
1
2

b2B2
1 +

3
8

b4B4
1 + . . . (20)

(B1b1 +
3
4

b3B3
1 + . . .)cos(ωn)+ . . .

(
1
2

B2
1b2 +

1
2

B4
1b4 + . . .)cos(2ωn)+ . . .

(
1
4

B3
1b3 +

5
16

B5
1b5 + . . .)cos(3ωn)+ . . .

If for example only the third and fifth harmonic are dom-
inant and the fifth harmonic is smaller than the third one
Eq. (20) can be simplified

y([x[n])≈ B1b1cos(ωn)+
1
4

B3
1b3cos(3ωn)+ . . . =

= A1cos(ωn)+A3cos(3ωn)+ . . . (21)

From Eq. (21) it is clear that the amplitudeA3 = 1
4B3

1b3 is
proportional to the third power of the amplitudeB1 of the
fundamental. Therefore, the power operation compared to
the phase shifting operation is advantageous, as was stated
before.

Next, the case where the sinusoidal disturber does not lie
on the FFT grid will be analyzed. To solve this problem the
results from the previous sections will be used. The proce-
dure can be split into 5 steps:
1. Calculate the complex amplitudeA1 from Dw[k] by multi-

plication withW
−1(k,ω0) wherek is the nearest integer

to ω0N
2π .

2. Perform the amplitude and phase compensation by cal-
culation of thei-th power.

3. Multiply by a complex factorci = Ai/Ai
1. The output then

corresponds to the complex amplitudeAi of the i-th har-
monic. Generally, the factorci must be set via an adaptive
algorithm, because it depends on many unknown quan-
tities (nonlinear behavior of the power amplifier which
generates the disturber, transfer function of the whole re-
ceive path, temperature,. . .).

4. Map the signal with complex amplitudeAi onto the car-
rier l. This can be performed by an multiplication with
W(l, iω0) wherel is the nearest integer toiω0N

2π .
5. Subtract the correction term from carrierl.
Fig. 3 shows the compensation scheme fori = 3 (3rd har-
monic). The leakage effect caused by the fundamental tone
is compensated for as well. As we will see in Sec. 4 this
procedure leads to a high attenuation of the undesired har-
monics. In practice, this is not always necessary. Therefore,
the scheme in Fig. 3 could be simplified at the cost of re-
duced performance. For that purpose, the matrix multiplica-
tion (W−1(k,ω0)) used to estimate the complex amplitude
A1 is replaced by a complex multiplication withw−1

1 . This
means that the termA∗w2 in Eq. (7) is neglected. As we can
see in Fig. 1 the influence of the left spectral peak is more and
more negligible the higher the center frequencyω0 is. Next,
the ordering of the multiplication and the third power oper-
ation can be exchanged andw−1

1 must be replaced byw−i
1 .

Dw[k]

Sw[l]+Dw[l]

s[n]+d[n]

W−1(k,ω0) (·)3

c3

FFT

W (l,3ω0)W (l,ω0)

Figure 3: Compensation of 3rd harmonic.

It should be noted that generally, a matrix multiplication and
a ith power operation do not commute. Only if the matrix
multiplication corresponds to a complex multiplication (see
Eq. (14)) can the ordering be exchanged. Finally, all remain-
ing multiplications can be combined into one single matrix
multiplication:

Ci =

[
c11ic12i
c21ic22i

]
= w−i

1 ciW(l, iω0). (22)

In addition, the two matrix multiplications for the leakage
compensation can be combined into one single matrix multi-
plication:

W̃(k, l,ω0) = W
−1(k,ω0)W(l,ω0). (23)

The simplified scheme is depicted in Fig. 4. In this case only
one matrix multiplication is used for the compensation of the
i-th harmonic. However, the 4 coefficients of the matrixCi
have to be tuned via an adaptive algorithm. Generally, is it
recommendable to make the adaptive filter order as small as
possible to get the best convergence behavior and smallest
misadjustment [4]. Fig. 5 shows a configuration where only
2 coefficients (real and imaginary part ofc̃i) are adapted as it
is the case in Fig. 3. The coefficientc̃i is given by

c̃i = w−i
1 ci. (24)

Sw[l]+Dw[l]

Dw[k]

FFT
s[n]+d[n]

W̃ (k, l,ω0)

[
c113c123

c213c223

]

(·)3

Figure 4: Simplified scheme for the compensation of the 3rd
harmonic (i = 3), 4 coefficients.
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Dw[k]

Sw[l]+Dw[l]

s[n]+d[n]
FFT

W̃ (k, l,ω0)

(·)3

c̃3

W (l,3ω0)

Figure 5: Simplified schemes for the compensation of the 3rd
harmonic (i = 3), 2 coefficients.

4. EXAMPLE

In the following we will describe the impact of a signaling
tone on the performance of a data transmission system. In
Fig. 6 a simplified scheme of the considered system is shown.
The used frequency bands are depicted in Fig. 7. From this
it is clear that the signaling tone itself can be filtered out via
a highpass (HP) but its harmonics will still impair the data
transmission. Now, to compensate for the impact of the sig-
naling tone, the methods introduced in the last section can be
applied. For each harmonic the nearest affected carrier and
if necessary also carriers in the neighborhood must be com-
pensated. Some simulation results for the third harmonic are
shown in Tab. 1. Different setups are considered:

• Setup 1: Configuration according to Fig. 3
• Setup 2: Configuration according to Fig. 4
• Setup 3: Configuration according to Fig. 5
• Setup 4: Configuration according to Fig. 4 but without

the left hand leakage compensation branch.
• Setup 5: Configuration according to Fig. 5 but without

the left hand leakage compensation branch.

In the case where a high attenuation of the harmonics is re-
quired setup 1 must be employed. Furthermore, we can ob-
serve that if the ratioA3/A1 is too high, the attenuation per-
formance (for setup 1) degrades because not only the funda-
mental but also the harmonic causes leakage. Due to the fact
that the harmonic overlaps with the data frequency spectrum
a compensation for its leakage effect is rather difficult. Ifthe
ratio A3/A1 is small, only the leakage effect of the funda-
mental must be considered. If it is not compensated for, the
attenuation is reduced significantly to very low values of 8
dB (see setup 4 and 5). As expected, the additional degree of
freedom in setup 2 compared with setup 3 (4 adaptive coeffi-
cients instead of 2) does not improve the attenuation figures.
From a practical point of view, the simplified configurations
(setup 2 and 3) present a good compromise between perfor-
mance and computational complexity. All results given in
Tab. 1 correspond to the average attenuation over 50 FFT
frames. The adaptation is performed by a signed LMS algo-
rithm [4] where the difference between output and input of
the decision device of the affected carrier is used as an error
signal. Note that in this example the frequency of the dis-
turber was selected in such a way that its third harmonic lies
quite accurately on a carrier and, therefore, it is not necessary
to compensate for carriers in the neighborhood.

5. CONCLUSION

We derived a new method for the compensation of harmon-
ics of a signaling tone which impair the performance of a
data communication system. The method operates in the fre-
quency domain and was illustrated by means of an example.
Generally, the proposed technique can be applied whenever
discrete disturbers which are related to a reference tone in-
terfere with the desired signal.

nonlinearity)
(polynomial

amplifier

d[n]

HP

signaling tone

data FFT based
receiver

Figure 6: Simplified scheme of a data transmission system
interfered with a discrete disturber.

f

disturber dataharmonics

P
S

D

Figure 7: PSD (Power Spectral Density) of data signal and
disturber.

Table 1: Attenuation figures depending on the ratioA3/A1
for different compensators

A3/A1 setup 1 setup 2 setup 3 setup 4 setup 5

att. [dB] att. [dB] att. [dB] att. [dB] att. [dB]

0.1 42.7 18.0 17.9 8.0 8.0

0.5 28.8 18.4 18.4 18.9 18.9

1.0 22.8 17.6 17.5 18.0 18.0
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