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ABSTRACT
The problem of signals detection with known templates
in coloured Gaussian interference is especially relevant for
radar applications. The optimum detector requires knowl-
edge of the true interference covariance matrix, which is
usually unknown. In practice, the matrix is estimated from
target-free training data that must be statistically homoge-
neous with the test data. Traditional approaches, like the
GLRT and AMF, require the availability of such training
data. These conditions are normally not always satisfied,
which degrades the detection performance. Recently, two
single data set approaches that deal only with the test data,
namely the GMLED and MLED were introduced. In this
paper, we examine the performance of these detection algo-
rithms and their reduced-dimension counterparts under steer-
ing vector mismatches. We investigate the cases where there
is a mismatch in the spatial and temporal steering vectors.

1. INTRODUCTION

The detection of signals with known steering vectors in zero-
mean coloured Gaussian interference is particularly relevant
to the radar community. The work reported in this paper is
primarily concerned with the application of space-time adap-
tive processing (STAP) to radar target detection in interfer-
ence (clutter plus noise).

The signal model used is as follows: Consider a radar
system utilizing an Ns-element array with inter-element spac-
ing d. The radar transmits an Mt -pulse waveform in its co-
herent processing interval (CPI). The received data can then
be partitioned in both space and time, by using a sliding win-
dow, into an (N×M) space-time snapshot X′. This partition-
ing will result in KT = (Ns −N + 1)(Mt −M + 1) snapshot
matrices being generated for processing.

The columns of these space-time snapshots are then
stacked into inter-leaved column vectors xk of size (NM×1).
The KT columns are then arranged as the columns of the
(NM×KT ) matrix X. The signal model used is then:

X = αstT +N (1)

where both s and t are space-time vectors and α is a complex
amplitude.

N is the (NM × KT ) zero-mean Gaussian clutter-plus-
noise matrix with independent and identically distributed
(iid) columns nk ∼ CN (0,C). The space-time clutter-
plus-noise covariance matrix is defined as C, where C =

E[NNH] and E[∗] is the expectation operator. Generally,
the detection problem is treated as a hypothesis test with the
null and alternative hypotheses:

H0 : X = N (2)

H1 : X = αstT +N (3)

The optimum processor weights are given as wopt =

βC−1s in [1]. For a data snapshot x, which can be any one
columns of X, the resulting filter output y is:

y = wHx = β ∗sHC−1x (4)

and β is a complex arbitrary constant. The optimum proces-
sor can be viewed as a whitening filter stage followed by a
matched filter stage [2]. The filter output power, Y = |y|2, is
then compared to a threshold γ , for a certain probability of
false alarm Pf a. The detection test becomes

Y
H1
≷
H0

γ (5)

For any signal detection algorithm, a highly desirable
property is the constant false alarm rate (CFAR) property. By
selecting a suitable value of β , the optimum processor can
be made to possess the CFAR property. The CFAR matched

filter (MF) is obtained by setting β =
(
sHC−1s

)− 1
2 in the

hypothesis test of equation (5).
Traditional detection algorithms, such as the generalised

likelihood ratio test (GLRT) [3] or the adaptive matched filter
(AMF) [4], require target-free training data that must be ho-
mogeneous with the test data. They can also be known as the
two data set (TDS) algorithms since they require a separate
set of training data to estimate the noise covariance matrix.

To implement the detection test, an estimate of the in-
terference covariance matrix, Ĉ = 1

Kt
∑Kt

k=0 zkz
H
k , is obtained

from the secondary data zk of size Kt . These Kt snapshots
are usually obtained from other range cells [5], thus making
the algorithms vulnerable to heterogeneity problems and re-
sulting in a degradation in detection performance [6]. Their
respective detection statistics are:

YGLRT =
|sHĈ−1g|2

sHĈ−1s
(

1+ 1
Kt

gHĈ−1g
) (6)



YAMF =
|sHĈ−1g|2

sHĈ−1s
(7)

where g is the sample mean vector

g =
1
|t|

Xt∗ =
1
|t|

KT

∑
k=1

xkt
∗(k) (8)

Two alternative approaches, the generalised maximum
likelihood estimation detector (GMLED) and maximum like-
lihood estimation detector (MLED) were proposed in [7].
They only require the set of test data and thus can be called
the single data set (SDS) algorithms. The signal-to-noise ra-
tio (SNR) loss performance under steering vector mismatch
of these two algorithms were studied in [8]. They operate
solely on the test data and therefore eliminate the heterogene-
ity problem. The respective detection statistics are

YGMLED =
|sHQ−1g|2

sHQ−1s(1+gHQ−1g)
(9)

YMLED =
|sHQ−1g|2

sHQ−1s
(10)

where

Q =
KT

∑
k=1

xkx
H
k −ggH (11)

The reduced-dimension counterparts of the four above-
mentioned detection algorithms were analysed in [9] and [10]
and their detection statistics are as follows:

YJDL−GMLED =
|̃sHQ̃−1g̃|2

s̃HQ̃−1s̃
(

1+ g̃HQ̃−1g̃
) (12)

YJDL−MLED =
|̃sHQ̃−1g̃|2

s̃HQ̃−1s̃
(13)

YJDL−GLRT =
|̃sH ˜̂

C
−1

g̃|2

s̃H ˜̂
C

−1
s̃

(
1+ 1

Kt
g̃H ˜̂

C
−1

g̃

) (14)

YJDL−AMF =
|̃sH ˜̂

C
−1

g̃|2

s̃H ˜̂
C

−1
s̃

(15)

where the ∼ indicate the angle-Doppler quantities, trans-
formed from the space-time domain by a two-dimensional
(2-D) discrete Fourier transformation (DFT) for the joint-
domain localized (JDL) algorithm. Thereafter the angle-
Doppler data is grouped into a (Na ×Md) localized process-
ing region and adaptive processing is restricted to this region.

The reduced-dimension detectors reduce the required
sample support, thus increasing the robustness against het-
erogeneity, as presented in [5] and [11]. They are partic-
ularly applicable to heterogeneous environments where the

clutter homogeneity assumption does not hold or indepen-
dent training data is not readily available. Even so, for the
TDS detectors, the detection performance may still degrade
significantly in heterogeneous environments. In this sense,
the SDS detectors will not encounter the heterogeneity prob-
lem since the data is obtained from the test data set.

Another advantage of using the reduced-dimension de-
tectors is the reduction in computational complexity, due
to the inversion of a smaller-dimensional matrix of size
(NaMd × NaMd) as compared to a matrix of size (NM ×
NM). This reduction in computational complexity, from or-
der O(NM)3 to O(NaMd)

3, becomes significant when the or-
der of NM becomes large.

In this paper, we examine the performance of the vari-
ous detection algorithms under steering vector mismatch by
using the receiver operating curves. It is assumed that there
exists a set of independent training data {zk}

Kt
k=1, that is ho-

mogeneous with the test data. In addition, for the purpose of
analysis, it is also assumed that although the test data snap-
shots are obtained using a sliding window, the columns of X
are statistically independent.

The contribution of this paper is to present the receiver
operating curves of the various detectors to complement the
SINR performance curves presented in [8] and to present the
reduced-dimension detectors as a follow-on to the SDS algo-
rithms presented in [7]. The paper is organised as follows:
In Section 2, we discuss the effects of the three types of mis-
matches. The simulation results are shown in Section 3, with
a brief conclusion in Section 4.

2. STEERING VECTOR MISMATCH

When the presence of the target signal is unknown, the test
signal steering vector has to sweep through the whole range
of Doppler and angle frequencies. There may be a mismatch
between the test steering vector and target steering vector and
this results in a degradation in the detection performance.

In this paper, we discuss the effects of three types of
mismatch by using the receiver operating curves. The mis-
matches are namely: a mismatch in s, a mismatch in t and
a mismatch in both s and t. The presentation of the analysis
will follow closely to that in [8].

The general expressions for the probability of false alarm
Pf a and probability of detection Pd are:

Pf a(γ) =
∫ 1

0
(1+ τ)−L fβ ,L+1,nm−1(η)dη (16)

and

Pd =
∫ 1

0
h(η) fβ ,L+1,nm−1(η)dη (17)

where fβ ,L+1,nm−1(η) is the type I beta distribution,

h(η) = 1− (1+ τ)−L
L

∑
l=1

(
L
l

)
τ lGl

(
λ

1+ τ

)
(18)

and

Gl(q) = e−q
l−1

∑
p=0

qn

p!
(19)



with n = N, m = M, λ = KT NMρ for the full-dimension de-
tectors and n = Na, m = Md , λ = KT NaMdρ for the reduced-
dimension detectors respectively. The specific parameter val-
ues for each algorithm are summarised in Table 1. ρ is the
SNR of the filter output y and η has a type I beta distribution
with (L + 1) and nm degrees of freedom. A detailed discus-
sion of ρ and η can be found in [7] and [10].

Table 1: Summary of the Pf a and Pd expressions

Algorithm Pf a Pd L τ
AMF eq (16) eq (17) Kt −NM +1 1

Kt
ηγ

GLRT eq (16) eq (17) Kt −NM +1 γ
Kt−γ

MLED eq (16) eq (17) KT −NM ηγ
GMLED eq (16) eq (17) KT −NM γ

1−γ
JDL-AMF eq (16) eq (17) Kt −NaMd +1 1

Kt
ηγ

JDL-GLRT eq (16) eq (17) Kt −NaMd +1 γ
Kt−γ

JDL-MLED eq (16) eq (17) KT −NaMd ηγ
JDL-GMLED eq (16) eq (17) KT −NaMd

γ
1−γ

For the GLRT and AMF, the effects of the first mismatch
were discussed in [4] and [12]. For the GMLED and MLED,
the effects of the three mismatches on the SINR performance
were presented in [8]. The difference between the TDS and
SDS algorithms stems from the fact that the latter project the
received data into the signal and noise subspaces based on t.
This maximum likelihood separation between the noise and
signal estimates results in a greater loss for the SDS algo-
rithms when there is a steering vector mismatch.

2.1 Mismatch in s

The first mismatch is in the space-time vector s. As seen in
Section 1, this mismatch does not affect g, g̃, Q or Q̃. There-
fore, the extent of the losses for all the detection algorithms
are similar.

2.2 Mismatch in t

The second mismatch is in the space-time vector t used to
combine the snapshots coherently. For the full-dimension
and reduced-dimension TDS detection algorithms, this mis-
match will only affect g and g̃ respectively. However, this
mismatch results in an additional loss for the SDS algorithms
since t is used to project the received data into the signal and
noise subspaces. The noise covariance matrix Q or Q̃ is ob-
tained from this noise subspace, as seen in equation (11).

Therefore, in addition to the loss in g and g̃, the signal
leaks into the noise subspace and affects Q and Q̃. The filter
is then biased and there is a degradation in the detection per-
formance as some parts of the signal will be filtered out. For
the TDS algorithms, the noise covariance matrix C or C̃ are
obtained from an independent training set and are thus not
affected by this additional loss.

2.3 Mismatch in both s and t

When there is a mismatch in both s and t, the total effects
will be the sum of the effects due to the individual mismatch
in s and t.

3. SIMULATION RESULTS

The detection algorithms in this paper were implemented and
simulated under the various scenarios of mismatch discussed.
The receiver operating curves are used to illustrate the effects
of the different mismatches. We show results for N = 10,
M = 1 and Na = 3 and Md = 1. For the full-dimension and
reduced-dimension detection algorithms, KT = Kt = 2N and
KT = Kt = 2Na respectively and a Pf a of 10−2 was used. The
simulation results were averaged over 30 realisations (each
consisting 40000 Monte Carlo runs of the interference ma-
trix.

−25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)
P

ro
ba

bi
lit

y 
of

 D
et

ec
tio

n

GLRT
AMF
GMLED
MLED
GLRT: Mismatch s

s
=0.4

AMF: Mismatch s
s
=0.4

GMLED: Mismatch s
s
=0.4

MLED: Mismatch s
s
=0.4

GLRT: Mismatch s
s
=0.6

AMF: Mismatch s
s
=0.6

GMLED: Mismatch s
s
=0.6

MLED: Mismatch s
s
=0.6

Figure 1: Probability of detection vs SNR for full-dimension
detectors: KT = 20 and Kt = 20 under mismatch in s of 0.4

N
and 0.6

N .
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Figure 2: Probability of detection vs SNR for full-dimension
detectors: KT = 20 and Kt = 20 under mismatch in s of 0.4

N
and 0.6

N when using non-iid snapshots.

The GLRT, AMF, GMLED and MLED, all with a known
steering vector template, are given by the solid lines with
triangles, crosses, diamonds and circles respectively. For the



reduced-dimension detectors, the same denotations are used.
In all the figures, two sets of simulation results, in terms of
the different mismatches of 0.4

N and 0.6
N , are shown by the

dashed and dotted lines.
Figures 1 and 2 show the effects on the detection per-

formance, when the iid assumption of the snapshots are vio-
lated. It can be observed that when the iid assumption is not
met, there is a general degradation for all the detectors in ad-
dition to the mismatch effect. At higher SNR, the generalised
detectors (GLRT, GMLED, JDL-GLRT and JDL-GMLED)
perform worse-off than the non-generalised detectors (AMF,
MLED, JDL-AMF and JDL-MLED). It should be empha-
sised that the degradation is associated with both the SDS
and TDS algorithms.
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Figure 3: Probability of detection vs SNR for reduced-
dimension detectors: KT = 6 and Kt = 6 under mismatch in
s of 0.4

N and 0.6
N .

Figures 1 and 3 show the deterioration in detection per-
formance when there is a mismatch in s. As the magnitude
of the mismatch is increased, the detection curves move to
the right. The effects of the mismatch become more severe
and eventually the Pd curves will tend to the Pf a.

From these two figures, it can be seen that the deteriora-
tion in the detection performance, caused by the mismatch,
are more severe for the SDS algorithms. The extent of the de-
terioration effects are also greater for the reduced-dimension
detectors than their full-dimension counterparts. Another im-
portant point to note is that, in each figure, the generalised
detectors have a worse detection performance than the non-
generalised detectors. This observation is consistent with
what had been reported in [12].

Next, Figures 4 and 5 show the effects of a mismatch
in t. As mentioned in Section 2.2, the deterioration in the
detection performance will be greater for the SDS detectors.
This is due to the additional loss incurred from estimating the
noise covariance matrix from the data.

As with the previous mismatch, the degradation effects
are more severe for the reduced-dimension detectors (JDL-
GLRT, JDL-AMF, JDL-GMLED and JDL-MLED). How-
ever, in this case, the generalised detectors perform better
in the presence of a mismatch in t.

The mismatch in t causes a greater degradation in the de-

tection performance than the mismatch in s. For the former,
the detection curves tend faster to the Pf a when the absolute
value of the mismatch is increased. This observation is con-
sistent with what had been reported in [8].
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Figure 4: Probability of detection vs SNR for full-dimension
detectors: KT = 20 and Kt = 20 under mismatch in t of 0.4
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and 0.6
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Figure 5: Probability of detection vs SNR for reduced-
dimension detectors: KT = 6 and Kt = 6 under mismatch in
t of 0.4

N and 0.6
N .

Finally, Figures 6 and 7 show the detection performance
under both mismatches. The effects on the various detectors
are a combination of the two mismatches. From Figure 6, it
can be observed that the GMLED performs better than the
MLED at low SNR. However, at high SNR, the opposite is
true due to the effects of a mismatch in s. There is a criss-
crossing of the detection curves as the SNR increases. We
note that the Pd curves tend to the Pf a when the mismatch is
more severe in Figure 7. This observation can also be seen in
Figure 5.

In summary, for the reduced-dimension detectors, the
reduction in required sample support provides robustness



against heterogeneity and there is also a significant reduction
in computational complexity. Although we had used KT = 6
for the reduced-dimension SDS detectors in our simulations,
more sample support can be used in heterogeneous environ-
ments since the SDS detectors will not be affected by the
heterogeneity problems.
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Figure 6: Probability of detection vs SNR for full-dimension
detectors: KT = 20 and Kt = 20 under mismatches in s and t
of 0.4

N and 0.6
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Figure 7: Probability of detection vs SNR for reduced-
dimension detectors: KT = 6 and Kt = 6 under mismatches
in s and t of 0.2

N and 0.4
N .

4. CONCLUSION

In this paper, we have examined the performance of the SDS
and TDS detectors under steering vector mismatches. Three
types of mismatches were discussed and the receiver oper-
ating curves were used to illustrate the effects of these mis-
matches. For the mismatch in s, the observations were con-
sistent with those reported in the current literature. As for
the mismatch in t, the SDS detectors were shown to suf-

fer an additional loss from estimating the noise covariance
matrix directly from the data. When there is a mismatch in
both space-time vectors, the resulting effects are a combina-
tion of the individual mismatch in each vector. The reduced-
dimension SDS detectors are particularly applicable to het-
erogeneous environments where the clutter homogeneity as-
sumption deos not hold or independent training data is not
readily available.
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