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ABSTRACT

This paper presents bias reduction techniques for the
scan-based least-squares emitter localization algorithm.
Scan-based emitter localization exploits constant scan
rate of the radar antenna main beam to allow determi-
nation of the emitter location by three or more receivers.
It does away with high-precision timing requirements
for time of arrival measurements for intercepted radar
beams and does not require high-sensitivity receivers to
pick up sidelobes of the radar beam pattern. The paper
develops a weighted least-squares estimator and an it-
erative maximum likelihood estimator to overcome the
least-squares estimation bias. The improved bias per-
formance is illustrated with simulation examples.

1. INTRODUCTION

Passive emitter localization is an important research
problem with many civilian and military applications in-
cluding user location in wireless mobile communication
systems, and target location and tracking in electronic
warfare systems.

Several techniques are available for passive location
of an emitter, each with certain advantages and dis-
advantages. This makes the identification of a single
best localization approach for all applications very dif-
ficult. As a result the localization research has mainly
focused on the development of high-performance tech-
niques tailored for particular applications. Most pas-
sive localization techniques utilize angle-of-arrival (bear-
ings), Doppler shift, time of arrival, time difference of
arrival, and received signal energy measurements. Hy-
brid approaches employing a combination of these are
also available. A critique of time difference of arrival
techniques, which are well suited to locating uncoop-
erative emitters, is the requirement of high-precision
time of arrival measurements and highly synchronized
clocks at multiple receivers. The receivers are also as-
sumed to be capable of picking up the same emitted
signal at different locations. The scan-based localiza-
tion technique was recently proposed to do away with
some of these difficulties for locating a particular type
of radar, viz., pulsed radar with constant rotation-speed
antenna beam [1]. The scan-based localization tech-
nique is closely related to rotating directional beacon
techniques presented in [2, 3].

This paper presents bias reduction techniques for the
scan-based least-squares emitter localization algorithm.
Two new algorithms are developed for multiple scan
measurements; viz., weighted least squares algorithm
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Figure 1: The subtended angle α12 depends on the scan
rate ω and arrival times of the radar pulses at the re-
ceivers. Throughout this report the time delay due to
range difference is ignored.

and maximum likelihood estimator. The performance
improvement achieved by these algorithms is illustrated
with several simulation examples. The paper is orga-
nized as follows. The scan-based emitter localization
algorithm is described in Section 2. The noise effects
are studied in Section 3. In Section 4 the case of four or
more receivers is considered and the linear least squares
algorithm is developed. The maximum likelihood es-
timator is presented in Section 5. Section 7 presents
comparative simulation studies.

2. SCAN BASED EMITTER
LOCALIZATION ALGORITHM

The scan based emitter localization algorithm [1] ex-
ploits constant scan rate of the radar antenna main
beam. Assuming that the scan rate (angular velocity)
ω is known or estimated, it uses the pulse arrival times
at multiple receivers as the radar beam sweeps across
them (see Fig. 1). Given a pair of receivers at known
locations p1 and p2, the subtended angle is given by

α12 = ω|t2 − t1| (1)

where t1 and t2 are the time of arrival (TOA) measure-
ments for the centroid of the main lobe of the radar
beam at receivers p1 and p2. Here the additional time
delay due to range difference between the two receivers
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Figure 2: Scan-based emitter localization using three re-
ceivers. The ghost emitter may be eliminated by making
use of directional information or prior knowledge of di-
rection of rotation for the emitter.
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Figure 3: Closed-form solution to the emitter location.

is neglected since it is usually quite small compared with
the time it takes for the beam to sweep across from one
receiver to another. Given α12 and the receiver loca-
tions p1 and p2, the loci of all possible locations for the
emitter form a circular arc with centre point c12 and
radius r12:

c±12 =
p1 + p2

2
+ R

±π/2
12

p2 − p1

2 tanα12
, r12 =

‖p2 − p1‖2

2 sin α12
(2)

where ‖ · ‖2 denotes the Euclidean norm and R
±π/2
12 is

the ±90◦ rotation matrix

R
±π/2
12 =

[

0 ∓1
±1 0

]

. (3)

Only one of the circle centres c±12 corresponds to the
true emitter location. The true circle centre can be de-
termined from additional information such as direction
of arrival. Denote the true circle centre by c12.

Consider now the scenario of three receivers at loca-
tions p1, p2 and p3 (see Fig. 2). The emitter location p

can be obtained from the following nonlinear equations

‖p − c12‖2 = r12 (4a)

‖p − c23‖2 = r23. (4b)

A closed-form geometric solution to the emitter location
can be formulated by considering the triangle formed by
the circle centres and the emitter location (Fig. 3):

a =
r2
12 − r2

23 + ‖c23 − c12‖
2
2

2‖c23 − c12‖2
(5a)

h =
√

r2
12 − a2 (5b)

u =
c23 − c12

‖c23 − c12‖2
(5c)

φ = tan−1 h

a
(5d)

R±φ =

[

cos φ ∓ sin φ
± sin φ cos φ

]

(5e)

p = c12 + r12R
±φu (5f)

where R±φ is the ±φ rotation matrix, which gives two
possible solutions for p. One of these solutions is p2
which can easily be eliminated.

Equation (4) can be linearized by taking the square
of both sides of the equations:

‖p − c12‖
2
2 = r2

12 (6a)

‖p − c23‖
2
2 = r2

23. (6b)

Subtracting the second equation from the first one gives

‖p − c12‖
2
2 − ‖p − c23‖

2
2 = r2

12 − r2
23 (7a)

(p − c12 − p + c23)
T (p − c12 + p − c23) = r2

12 − r2
23
(7b)

2(c23 − c12)
T p = r2

12 − r2
23 + ‖c23‖

2
2 − ‖c12‖

2
2 (7c)

which is now linear in the unknown parameter p.

3. NOISE ANALYSIS

Up to now the TOA noise has been assumed to be zero.
In practice TOA measurements are corrupted by addi-
tive noise:

t̂i = ti + ni (8)

where ni is assumed to be an i.i.d. Gaussian random
variable with zero mean and variance σ2

n. Noisy TOA
measurements lead to noisy subtended angles:

α̂ij = αij + nij (9)

where
nij = ω(nj − ni) (10)

is a zero-mean Gaussian random variable with variance
2ω2σ2

n. The nij are no longer independent due to com-
mon noise terms. The circle centre and radius values
computed using noisy subtended angles become

ĉij = cij + vij , r̂ij = rij + wij (11)
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Figure 4: Scan-based emitter localization using four re-
ceivers.

where vij and wij are additive circle centre and ra-
dius noise terms. For noisy parameters, (7c) can be
re-written as

(ĉ23 − v23 − ĉ12 + v12)
T p =

1

2

(
(r̂12 − w12)

2

− (r̂23 − w23)
2 + ‖ĉ23 − v23‖

2
2 − ‖ĉ12 − v12‖

2
2

)
(12a)

(ĉ23−ĉ12)
T p =

1

2

(
r̂2
12−r̂2

23+‖ĉ23‖
2
2−‖ĉ12‖

2
2

)
+η (12b)

where η is the equation noise given by

η = (v23−v12)
T p− r̂12w12 + r̂23w23 + ĉ

T
12v12− ĉ

T
23v23

+
1

2
(w2

12 − w2
23 − ‖v12‖

2
2 + ‖v23‖

2
2). (13)

For sufficiently small TOA noise, the squared noise
terms and products of noises can be ignored, yielding

η ≈ (v23 − v12)
T p − r12w12 + r23w23 + cT

12v12 − cT
23v23

(14a)

≈ (p − c23)
T v23 − (p − c12)

T v12 + r23w23 − r12w12.
(14b)

It is interesting to note that η is proportional to the
radius of the circles.

4. LINEAR LEAST-SQUARES ESTIMATOR

A matrix equation linear in the unknown parameter p
can be formed by stacking (12b) for multiple TOA mea-
surements at successive radar scans. This will tend to
create an ill-conditioned least-squares (LS) problem un-
less receiver 2 moves very fast during radar scan periods,
thereby creating a geometry where multiple circles in-
tersect only in the vicinity of the emitter. Otherwise the
locations of receiver 2 where TOA measurements were
taken remain to be a possible LS solution in addition to
the emitter. This makes the LS problem ill-conditioned,
causing its solution to be extremely sensitive to noise.

The ill-conditioning or rank deficiency problem is
avoided if four or more receivers are used for locating
the emitter. The ghost emitters are also eliminated.
A localization geometry for four receivers is shown in
Fig. 4. In the remainder of this paper we will focus

on the case of four receivers with no lack of generality.
Extension to more receivers is straightforward.

Using multiple subtended angle measurements
α̂12(k), α̂23(k), α̂34(k), k = 1, . . . ,K, collected by the
four moving receivers, (12b) can be stacked to give













(ĉ23(1) − ĉ12(1))T

(ĉ34(1) − ĉ23(1))T

(ĉ23(2) − ĉ12(2))T

(ĉ34(2) − ĉ23(2))T

...
(ĉ23(K) − ĉ12(K))T

(ĉ34(K) − ĉ23(K))T













︸ ︷︷ ︸

A

p =

1

2













r̂2
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r̂2
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2
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2
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2

r̂2
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︸ ︷︷ ︸

b

+













η1(1)
η2(1)
η1(2)
η2(2)

...
η1(K)
η2(K)













︸ ︷︷ ︸

η

. (15)

An LS solution to the approximate matrix equation
Ap ≈ b is given by

p̂LS = (AT A)−1AT b. (16)

Here A is assumed to be full rank.
The correlation between the data matrix A and the

noise vector η makes the LS estimate biased. The bias
of the LS estimate is

β = E{p̂LS − p} = −E{(AT A)−1AT η}. (17)

The large-sample bias may be approximated by β ≈
−E{AT A}−1E{AT η}. Again the fact that E{AT η}
does not vanish as K → ∞ makes the LS estimator
biased even if K → ∞.

In long range situations, the noise covariance matrix
K = E{ηηT } up to a scaling factor is approximately
given by

K ≈












1 −1/2 0
−1/2 1 −1/2

. . .
. . .

. . .
. . .

. . .
. . .

−1/2 1 −1/2
0 −1/2 1












.

(18)
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Because the TOA noise is i.i.d., the measurements at dif-
ferent radar scans are uncorrelated; i.e., E{ηi(k)ηj(l)} =
0 for i, j ∈ {1, 2} and k 6= l. Assuming a long range
geometry with almost identical circle radii, and uncorre-
lated vij(k) and wij(k), we have E{η2

1(k)} ≈ E{η2
2(k)}

and E{η1(k)η2(k)} ≈ −0.5E{η2
1(k)}.

Using the noise covariance matrix K given in (18) a
weighted LS estimator can be formulated as follows:

p̂WLS = (AT K−1A)−1AT K−1b. (19)

5. MAXIMUM LIKELIHOOD ESTIMATOR

The conditional joint probability density function (pdf)
of the subtended angle measurements α̂12(k), α̂23(k),
α̂34(k) given an emitter location x is

f(α̂|x) =
1

(2π)K |Σ|1/2
exp

{

−
1

2
(α̂ − α(x))T Σ−1

× (α̂ − α(x))

}

(20)

where α̂ is the vector of measured angles at multiple
radar scans

α̂ = [α̂12(1), α̂23(1), α̂34(1), · · · , α̂12(K), α̂23(K), α̂34(K)]T

α(x) is the subtended angles vector as a function of the
emitter location x

α(x) =


















cos−1 ‖p
1
(1)−x‖2

2
+‖p

2
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2
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2
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1
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2
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1
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2
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(21)
and Σ is the covariance matrix of subtended angle mea-
surements

Σ = 2ω2σ2
n
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(22)
Maximizing the log-likelihood function over x gives

the ML estimate p̂ML = arg minx JML(x) where

JML(x) = eT (x)Σ−1e(x), e(x) = α̂ − α(x). (23)

The ML optimization problem does not have a
closed-form solution. Thus an iterative search algo-
rithm, such as the Gauss-Newton (GN) algorithm [4],

is required to find a numerical solution. The GN algo-
rithm has the following form:

p(i+1) = p(i)− (JT (i)Σ−1J(i))−1JT (i)Σ−1e(p(i)),

i = 0, 1, . . . (24)

where J(i) is the Jacobian matrix of e(x) with respect
to x evaluated at x = p(i):

J(i) =

[

∂e12(1)

∂x

∂e23(1)

∂x

∂e34(1)

∂x

· · ·
∂e12(K)

∂x

∂e23(K)

∂x

∂e34(K)

∂x

]T
∣
∣
∣
∣
∣
∣
x=p(i)

(25)

with e(x) = [e12(1), e23(1), e34(1), . . . , e12(K), e23(K),
e34(K)]T .

The GN algorithm is identical to the Taylor series
method [5]. The initial guess for the GN algorithm,
p(0), must be close to the ML estimate to avoid unde-
sirable divergence problems. An initial guess may be
obtained from the geometric solution given in (5) af-
ter replacing cij and rij with their noisy counterparts
ĉij(k) and r̂ij(k), respectively, at one of the angle mea-
surements, say, k = 1. A better alternative is to use
the WLS estimate. Other search techniques such as the
Nelder-Mead simplex method [6] can also be employed
to find the ML estimate.

6. SIMULATION STUDIES

In the simulations the radar to be located is assumed
to be placed at p = [10, 20]T km in two-dimensional
Cartesian coordinates. The sweep rate of the radar is
ω = π rad/s. The speed of propagation for emitted
radar pulses is assumed to be c = 3 × 105 km/s. The
four moving receivers collect K = 10 TOA measure-
ments roughly every 2 s which is the rotation period
for the radar. The initial locations of the receivers are
p1(1) = [−10, 5]T , p2(1) = [2,−2]T , p3(1) = [10, 0]T

and p4(1) = [20, 2]T km. The receivers are assumed
to move with constant velocity [−.01, .04]T , [.02, .03]T ,
[.01, .04]T and [−.01, .04]T km/s.

The ML estimator was implemented using the
Nelder-Mead simplex method with an initial guess ob-
tained from the WLS estimate. The bias and mean-
square error (MSE) performance of the LS, WLS and
ML estimators was simulated using 1000 Monte Carlo
simulation runs. The circles corresponding to a realiza-
tion of K = 10 noisy TOA measurements at σn = 1 ms
are plotted in Fig. 5. Fig. 6 shows the 68% error el-
lipses (confidence regions) for LS and WLS estimates.
The WLS estimate exhibits a significant bias reduction
in comparison with the LS estimate. The bias and MSE
results for the LS, WLS and ML estimates are shown
in Figs. 7 and 8, respectively, for a range of TOA noise
standard deviation. Fig. 8 also plots the Cramer-Rao
lower bound (CRLB). The simulations reveal the bene-
fit of employing a weighting matrix in the LS estimator
in terms of bias and MSE reduction. The best bias and
MSE performance is obtained from the ML estimator.
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Figure 5: The circles for a realization of K = 10 sets of
TOA measurements collected at four moving receivers.
The TOA noise standard deviation is σn = 1 ms.

In terms of computational complexity, the ML estimator
is the most demanding algorithm while the complexities
of LS and WLS are comparable.

7. CONCLUSION

WLS and ML estimators were developed for scan-based
emitter localization using multiple scan measurements.
Significant performance improvement for these algo-
rithms was demonstrated by way of computer simula-
tions. Other bias reduction techniques such as instru-
mental variables and total least squares will be consid-
ered in future work.
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function of TOA noise standard deviation.
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