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ABSTRACT
In this paper we assume that both the radar cross section and
the speckle noise in SAR images are spatially correlated. We
develop a wavelet domain linear minimum mean square er-
ror filter to remove the speckle noise. The autocorrelation
functions in the wavelet domain are estimated from the sin-
gle look complex SAR image. Preliminary studies show that
proposed filter introduces less bias compared to performed
the filtering in the image domain, but does not achieve the
same level of smoothing. The proposed filter does not de-
pend on sliding windows to avoid boundary effects.

1. INTRODUCTION

Speckle is a phenomenom inherent in coherent imaging sys-
tems with spatial resolution greater than the wavelength.
Synthetic aperture radar (SAR) is an example of such an
imaging system. Due to the roughness of the imaged sur-
face, each resolution cell will contain several scatterers, and
the resulting image will have a granular appearance due to
constructive and destructive interference. Speckle appears as
spatially correlated, multiplicative noise that is statistically
independent of the image intensity, although it is a radio-
metric feature of the imaged object. The granular nature of
speckled images makes them hard to interpret, both for the
human eye and automated segmentation and classification al-
gorithms.

Over the years, speckle noise has been widely stud-
ied, and several methods have been developed to reduce the
speckle noise, and hence increase the usability of speckled
images in e.g. classification. The simplest method is mul-
tilooking, or incoherent averaging, which increase the SNR
at the cost of reduced spatial resolution. Filters that assume
statistical models for the speckle and use maximum a pos-
teriori (MAP) filtering, like the Gamma-MAP filter [1], are
quite common for despeckling. Other filters are based on
spectral models for the speckle statistics and use local linear
minimum square error (LLMMSE) filtering to remedy the
speckling effect [2].

During the last decade, many speckle filters utilizing the
wavelet transform (WT) [3] have been proposed by several
authors. The WT has many feasible properties, like pos-
sibility to multi-scale filtering, which makes it well suited
for noise reduction in a number of applications. Further, the
WT is a sparse transform, compressing the signal energy to
a small number of wavelet coefficients and leaving the ma-
jority of the wavelet coefficients with values close to zero. A
disadvantage with the discrete wavelet transform (DWT) is
that it does not preserve translation invariance due to the sub-
sampling performed. Therefore the stationary wavelet trans-
form (SWT) [4], often referred to as the a Trous Algorithm,
is usually applied. The SWT is a special version of the DWT,
which uses upsampled versions of the filters in the filterbank

between the scales in the tree, instead of decimating the co-
efficients at each scale. The cost of preserving the translation
invariance is an overcomplete representation of the input sig-
nal. For images, the number of wavelet coefficients are three
times the number of pixels in the input image for each level
in the transform tree.

Examples of a speckle filter that perform MAP filtering
on the wavelet coefficients of SWT filtered SAR images are
found in [5, 6]. A LLMMSE filter operating on SWT trans-
formed images is presented in [7]. The latter filter assumes
that the image pixels are uncorrelated, and preforms despeck-
ling by scaling each wavelet coefficient with the ratio of the
variance of the noisy wavelet coefficient to the noise free one.

In this work we will also apply LLMMSE filtering of
wavelet coefficients, but we assume that both the speckle
free image and the speckle contribution are spatially corre-
lated. We review a method for estimating the spectra of the
radar cross section (RCS) and speckle from the single look
complex (SLC) SAR image [8], and use these to derive the
autocorrelations in the wavelet domain directly.

As most speckle filters, the filter proposed in this work
assumes homogeneous areas. Thus, the SAR image is di-
vided into blocks where the statistics can be considered to
be homogeneous. However, we do not utilize sliding win-
dows, which are popular for other methods. Instead, an
adaptive quad-tree algorithm is applied to divide the SAR
image into homogeneous regions. Unlike image-domain
LLMMSE filters, filtering in the wavelet domain does not in-
troduce boundary effects when filtering on non-sliding win-
dows. This is because the wavelet coefficients are correlated,
and each coefficient contains information on a neighborhood
of pixels.

2. LMMSE FILTERING OF SPECKLE

In this section we review the linear minimum square error
speckle filter.

The observed intensity I in a SAR image can be modeled
as

I = σn, (1)

where the underlying RCS σ and the speckle noise n are as-
sumed to be statistically independent. Further, it is assumed
that E{n} = 1, i.e. that the true RCS is the expected value
of the observed intensity. The model in (1) is only a useful
model if the autocorrelation Rσ (r) is slowly varying com-
pared to the system impulse response [8], i.e. for (locally)
homogeneous areas.

As most methods for denoising signals generally are de-
veloped for additive noise, we have to express the speckle
contribution as an additive term:

I = σ + σ(n−1) = σ +v, (2)
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where the speckle term v is signal dependent. This formula-
tion enables the use of the linear property of the WT, which
we will apply in section 4.

The minium mean square error (MMSE) estimate of σ is
denoted as E{σ |I}, which requires full knowledge of the sta-
tistical distributions of σ and I. The linear MMSE (LMMSE)
estimator is found by making a first order Taylor-Expansion
of E{σ |I} around E{σ}, and is defined as [9]:

σ̂ = E{σ}+Cσ IC
−1
I [I−E{I}]

(
Cσ IC

−1
I

)T
. (3)

The multiplication with the rightmost factor
(
Cσ IC

−1
I

)T
is

necessary since I is an image matrix, and we must apply the
filter in both horizontal and vertical directions.

The cross-covariance matrix Cσ I can not be found di-
rectly, especially since we do not know σ . By closer investi-
gation, we find that

Cσ I = Rσ I−E{σ}E{I}= Rσ − σ̄ σ̄T = Cσ , (4)

since the cross-correlation is expressed as

Rσ I = E
{

σIT}= E
{

σ (σ +v)T
}

= Rσ +Rσv, (5)

Rσv = 0 due to statistical independence between σ and n
and from the model (1) we have E{n}= 1.

By inserting (4) into (3), we express the LMMSE filter in
the image domain as

σ̂ = σ̄ +CσC−1
I [I− σ̄ ]

(
Cσ C−1

I
)T
. (6)

3. ESTIMATION OF COVARIANCE MATRICES

In this section we show how to estimate the autocorrelation
matrices Cσ and CI used in the filter equation (6).

Assuming that the statistics of the SAR image is at least
wide sense stationary, the Wiener-Khinchin relation can be
used to obtain the autocorrelation functions RI(r), Rσ (r) and
Rn(r) from the autospectra SI(f), Sσ (f) and Sn(f), respec-
tively.

in [8] Madsen has shown how to obtain the autospectra
of the RCS and the speckle processes. Assuming a homoge-
neous SAR image, these can be computed as follows:

Sn(f) = δ (f)

∣∣∣∣
∫
|H(ξ )|2 dξ

∣∣∣∣
2

+
∫
|H(ξ + f)|2|H(ξ )|2 dξ ,

(7)
where |H(f)|2 = Ss(f)/σ̄ , and s is the complex observed
SAR image, i.e. I = s ◦ s∗. Here ◦ denotes the Hermitian
(element-wise) product.

Sσ (f) =
1

T (0,0)

{
SI(f)− T ′(f ,0)

2T (0,0)

∫
SI(ξ )dξ

}
, (8)

where

T (r, f) =

∣∣∣∣
∫

h(a)h∗(a− r)exp(− j2πf ·a)da

∣∣∣∣
2

, (9)

and
T ′(f ,0) =

∫
|H(ξ + f)|2|H(ξ )|2 dξ . (10)

The SAR system’s impulse response is denoted by h(r) =
F−1 {H(f)}, where F{·} denotes the Fourier transform.

In practice, deriving Sσ (f) from (8) is difficult since the
integration has to be performed numerically and inaccuracies
in estimating SI(f) are inevitable, especially if the estimation
is based on small number of samples. We obtain better accu-
racy in the estimate of Rσ (r) by considering

RI = E
{

σn(σn)T}= E
{

σσ T}E
{
nnT}= Rσ ◦Rn.

(11)
Assuming homogeneous regions, we get

Rσ (r) =
RI(r)

Rn(r)
. (12)

To achieve optimal accuracy in the estimation of the cor-
relation matrices, we avoid numerical integration whenever
possible. First, we observe that

Sn(f) = δ (f)T (0,0)(2π)2 + T ′(f ,0). (13)

From (9) we have that

T (0,0) =

∣∣∣∣
∫

h(a)h∗(a)da

∣∣∣∣
2

=

∣∣∣∣
∫
|h(a)|2 da

∣∣∣∣
2

=

∣∣∣∣
1

(2π)2

∫
|H(f)|2 df

∣∣∣∣
2

=

∣∣∣∣
1

(2π)2

∫ 1
σ̄

Ss(f)df

∣∣∣∣
2

.

(14)

Applying the following property of a power density spectrum

1
(2π)2

∫
Ss(f)df = A

{
E
{
|s(r)|2

}}
, (15)

and assuming that the process s(r) is ergodic, we get

T (0,0) =

∣∣∣∣
1
σ̄

E
{
|s|2
}∣∣∣∣

2

= 1. (16)

Next, we recognize the integral in (10) as a convolution,
which can be expressed with Fourier transforms as

T ′(f ,0) = |H(f)|2 ? |H(f)|2

= F
{(

F−1{|H(f)|2
})2
}
.

(17)

By inserting (17) and (16) into (13), Sn(f) can be derived
from SI(f) and Ss(f), which both can be estimated from the
SLC SAR image. Thus Sn(f) can thus be estimated without
numerical integrations.

We assume that the speckle and the terrain are isotropic,
i.e. that the lag vector r in the autocorrelation function Rn(r)
can be replaced by the modulus,

Rn(r) = Rn(|r|) = Rn(r). (18)

The same is true for Rσ (r) and RI(r). This implies that the
autocorrelation matrix RI and therefor also the covariance
matrix CI , will be a symmetric Toeplitz matrix, i.e.

RI =




RI [0] RI [1] · · · RI [N]
RI [1] RI [0] · · · RI [N−1]

...
...

. . .
...

RI [N] RI [N−1] · · · RI [0]


 . (19)
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The same is true for Rσ and Cσ .
We apply the averaged periodogram estimator to esti-

mate the autospectra SI( f ) and Sn( f ). As a consequence of
the isotropic assumption (18), these spectra are also radially
symmetric. Thus the averaged periodogram can be computed
by estimating the spectrum in range direction and averaging
in azimuth, or vice versa1. For a N×M sample of SAR data
the spectrum SI(r) is estimated as

ŜI( f ) =
1
M

M

∑
m=1

∣∣∣∣∣
1

2π

N

∑
n=1

I(n,m)exp(− j2 f n/N)

∣∣∣∣∣

2

. (20)

To ensure that RI(r) and Rσ (r) are valid autocorrelation
functions, i.e. Rσ (0) ≥ Rσ (r),∀r, we apply an exponential
model;

RI(r) = ab−r + c, (21)

and similar for Rσ (r). This is a common model in the im-
age processing literature [10], and the exponential correla-
tion function is often found to fit well to measured surfaces
[11]. To estimate the parameters in (21), we use a nonlinear
least-squares algorithm [12].

4. FILTERING IN WAVELET DOMAIN

In this section we develop the wavelet domain LMMSE
speckle filter, equivalent to the image domain filter (6).

Because the WT is a linear transform, the wavelet coeffi-
cients of a SAR image can be viewed as

wI = wσ +wv, (22)

where wσ and wv are the wavelet coefficients of the RCS
and the additive, signal dependent speckle contribution, re-
spectively. The LMMMSE filtering in the wavelet domain is
performed in the same manner as in the image domain. Thus
the wavelet domain analogy to (3) will be

ŵσ = E{wσ}+CwσIC
−1
wI

[wI−E{wI}]
(
CwσI C

−1
wI

)T
.

(23)
Since the wavelet transform is a sparse transform, most
wavelet-coefficients will have small values close to zero and
E{wσ}= E{wI}= 0. This implies Cwσ = Rwσ and CwI =
RwI Applying this in (23), the wavelet domain LMMSE filter
becomes

ŵσ = RwσI R
−1
wI

wI
(
RwσI R

−1
wI

)T
. (24)

The autocorrelation matrices Rwσ and RwI in the wavelet
domain will be Toeplitz matrices like their image domain
cousins, since the RCS and speckle processes are assumed
to be wide sense stationary, and the WT is a linear transform.
The one dimensional autocorrelation functions in the wavelet
domain at scale j will be given by

R j
wI

(r) = R j−1
wI

(r)∗gi
j(−r)∗gi

j(r), i ∈ {h, l}, (25)

where gh
j(r) and gl

j(r) are the highpass (wavelet) and lowpass
(scaling) filters to obtain the detail and scaling coefficients at
scale j, repsceticely. The transform is similar for R j

wσ (r).

1A non-exhaustive test performed on Envisat ASAR and EMISAR data,
showed no significant change in filtering performance when the direction of
estimation was changed.

5. APPLYING THE FILTER LOCALLY

So far, we have considered the statistics of the SAR image
to be homogeneous, which is generally not the case for real
data. To remedy this, we apply the filter locally on blocks
which can be considered to be homogeneous. The size of
each block should be as large as possible, while still main-
tain homogeneity. The variance of the averaged periodogram
estimator can be shown to be

var
{

ŜI( f )
}
' 1

M
S2

I ( f ). (26)

Thus, the accuracy of the estimated spectra will increase with
increasing window size, and so does the performance of the
filter.

We determine the window size by an adaptive method.
First we start with a window of size 128×128 pixels. If the
statistics in this window is found to be inhomogeneous, the
window is divided in four parts and the procedure is repeated
until homogeneity is achieved in all blocks. This is some-
times referred to as a quad-tree algorithm. We consider a
window to be inhomogeneous if one of the following occurs:
i) The least squares algorithm [12] is unable to estimate the

parameters in the exponential correlation model (21).
ii) The variance in the window is mores than twice of what

we could expect in a homogeneous area, i.e. ENL =

E{I}2 /var{I} ≤ 0.5.
Figure 1 shows the resulting blocks structure for the input

SAR image we have used in this paper.

Figure 1: Input SAR image, displaying the local windows
resulting from the quad-tree algorithm.

6. EXPERIMENTAL RESULTS

We compare the LLMMSE filtering in the wavelet domain
(24) with the image domain equivalent (6) on a Envisat SAR
image covering the area around the ESA calibration site in
Flevoland. The test image is displayed in the top panels of
Figure 2 and 3 in dB and amplitude, respectively.

In the wavelet domain filter, we utilize the SWT imple-
mented in the Rice Wavelet Toolbox [13], with Daubechies
DB2 wavelet filters. The depth of the SWT is limited to
four levels, as filtering on lower levels yields no significant
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A

B

Figure 2: Original SAR image (top), filtered with proposed
filter (middle) and filtered with LLMMSE filter in intensity
domain (bottom). All images are displayed in dB.

change in performance. Filtering is applied to all wavelet co-
efficients at the levels of the transform where the length of
the wavelet filters gi

j(r) is less than the block size.
Investigating (23), we observe that the matrix multipli-

cations actually means that we filter the wavelet coefficients
by convolving each row and column of wI by one column
of CwσI C

−1
wI

. To avoid introducing unnecessary artifacts on
the boundary between the local blocks, we have to avoid to
convolve these filters with zero data outside the edges of the
blocks. We do this by using information from pixels in the
neighboring blocks, where applicable.

We observe that both filters remove speckle, while pre-
serving the point scatterers located in the upper left hand part
of the image. From Figure 2 it seems that the image domain
filter smooths more on the homogeneous areas over land, in
the left hand part of the image. The image domain filter is
also found to introduce more blurring than its wavelet do-
main cousin. Especially, we notice the boundary effects in-
troduced by the image domain filter in the dike shown in the
middle of the SAR image. These boundary effects are not
introduced by the wavelet domain filter. The boundary ef-
fects is the reason why Kuan et al. suggested to use 12×12
overlapping windows for the image domain filter [2].

Figure 4 shows the estimated speckle contribution esti-
mated from the two speckle filters, denoted as n̂ = I/σ̂ . We
observe that both speckle images represent looks like true
speckle. In the areas surrounding strong scatterers in the
SAR image, we observe that the speckle images are constant
at 0dB, i.e. that no filtering has occurred. This is expected

Figure 3: Original SAR image (top), filtered with proposed
filter (middle) and filtered with LLMMSE filter in intensity
domain (bottom). All images are displayed in amplitude

since dominant scatterers do not introduce speckle.

Filter Region A Region B
ENL Bias E{n} ENL Bias E{n}

None 0.97 — — 0.99 — —
(24) 10.8 -9.07% 0.97 12.9 8.9% 0.84
(6) 20.9 -17.2 % 1.13 2.36 44% 0.71

Table 1: Comparison between LLMMSE despeckling in the
image and wavelet domain.

Some qualitative measurements on the performance of
the two speckle filters are shown in Table 1, computed for the
two regions A and B shown in Figure 2. Note that the image
domain filter performs poorly in region B, due to the bound-
ary effects. As observed, previously, Table 1 shows that the
in the large homogeneous region A, the image domain fil-
ter has best smoothing. The wavelet domain filter introduces
less bias than the image domain filter, and yields a speckle
image with mean closer to the theoretical value E{n}= 1.

7. CONCLUSIONS AND FURTHER WORK

In this work we have developed a LLMMSE filter for SAR
images operating in the wavelet domain. We have assumed
that the speckle free image and the speckle contribution are
spatially correlated. The correlation of both the RCS and
speckle noise are estimated from the SLC images, which in
turn are used to derive the autocorrelations in the wavelet
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Figure 4: Resulting speckle images. Proposed filter (top)
and intensity domain LLMMSE filter (bottom). The speckle
images are displayed in dB.

domain.

We have proposed to apply the filtering on image blocks
of unequal size, derived by a quad-tree algorithm. This
increase computation time dramatically compared to slid-
ing windows, which is common for image domain filters.
Though, information from neighboring blocks are used to en-
sure convolution with valid data, but the percentage of over-
lap is small, especially for larger blocks. Applying the adap-
tive block-size strategy on image domain LLMMSE filtering
still introduce some boundary effects, which are avoided by
filtering in the wavelet domain.

Compare to its image domain equivalent, the wavelet do-
main LLMMSE filter introduces less bias, but yields less
smoothing of homogeneous areas. To increase the smoothing
of homogeneous areas further, a check on the level of homo-
geneity can be implemented and harder filtering performed
for homogeneous ares, like for e.g. the Gamma-MAP filter
[1].

In future work, the performance of the proposed filter will
be tested more extensively against other speckle filters. Es-
pecially other wavelet based LLMMSE filters, like the one
proposed in [7], to further explore the effect of taking into
account the correlation of the wavelet coefficients.

A. GENERATION OF INTENSITY IMAGES FROM
SLC DATA

ASAR SLC data are typically oversampled to occupy around
80% of the bandwidth in range and azimuth. Squaring the
magnitude directly will therefore introduce aliasing since
I = s◦ s∗ is equivalent to convolving s with itself in the fre-
quency domain, which doubles the bandwidth of the signal.
In this work we have oversampled the SLC data with 100%
before processing. In this way we ensure no aliasing when
generating the intensity images.
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