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ABSTRACT

This paper proposes a blind image separation method us-
ing wavelet transform and an entropy-maximization algo-
rithm. Our blind separation algorithm is an improved version
of the entropy-maximization algorithms presented by Bell-
Sejnowsky and Amari. These algorithms work well for sig-
nals having a supergaussian distribution, such as speech and
audio. The proposed method is to apply the improved algo-
rithm to the wavelet coefficients of a natural image, whose
distribution is close to supergaussian. Our method success-
fully reconstruct twelve images hidden in another twelve im-
ages which are similar each other.

1. INTRODUCTION

Blind image separation has attracted much attention in im-
age processing. Many algorithms for blind source separation
have been developed based on independent component anal-
ysis (ICA), and applied to signal processing such as audio
source separation [3], separation of natural images [5], and
information hiding [4]. Bell-Sejnowsky’s method, which is
one of ICA techniques, is an information-maximization ap-
proach to blind separation. This method does not require
input data distributions, and is based on maximizing the en-
tropy of neural network outputs. Actually, the method is re-
alized as an algorithm for changing the connection weights
of the neural network. Bell-Sejnowsky’s algorithm is ef-
fective in blind separation of supergaussian data. However,
their method does not work well for images, because the his-
togram of pixels has an irregular distribution.

In this paper, we first improve the entropy-maximization
algorithms for training a neural network, presented by Bell-
Sejnowsky [2] and Amari [1], since their algorithms have
slow convergence for many signals. Next, we compute high-
pass components by applying wavelet transform to mixing
images, which have a supergaussian distribution. A neural
network is trained by applying our improved algorithm to the
computed wavelet coefficients. The reconstruction of hidden
images is performed by computing linear combinations of the
mixing images and the learned weights of the neural network.

In experiments, we make twelve mixing images by hiding
eleven natural images in one natural image. Since the mixing
rate is very low, the produced images look like the same. We
try to reconstruct the hidden source images from the mixing
images exploiting our method.

The outline of the paper is as follows. In Section 2, we in-
troduce biorthogonal wavelet transform. Section 3 describes
the entropy-maximization method. In Section 4, we present
our blind separation method. Section 5 involves experimen-

tal results. We close in Section 6 with concluding remarks
and plans for future work.

2. WAVELET TRANSFORM OF IMAGES

Let hl and gl be low-pass and high-pass analysis filters of
biorthogonal wavelet, respectively. We denote an image by
C0,i, j . Then, wavelet decomposition formula onC0,i, j can be
written as

Cp,i, j = ∑
k,l

hkhlCp−1,2i+k,2 j+l ,

Dp,i, j = ∑
k,l

hkglCp−1,2i+k,2 j+l , (1)

Ep,i, j = ∑
k,l

gkhlCp−1,2i+k,2 j+l , (2)

Fp,i, j = ∑
k,l

gkglCp−1,2i+k,2 j+l , (3)

wherep moves from 1 toL. TheCp,i, j indicate low-pass co-
efficients ofC0,i, j in p-resolution level. TheDp,i, j , Ep,i, j and
Fp,i, j represent high-pass coefficients ofC0,i, j in p-resolution
level, in horizontal, vertical, and diagonal directions, respec-
tively. It is known experimentally that the low-pass coeffi-
cients for a natural image have an irregular distribution, but
the histogram of its high-pass coefficients behaves like a su-
pergaussian distribution. In Fig.1, we illustrate high-pass co-
efficients obtained by wavelet decomposition of an example
image. Figure 2 shows their histograms. In this paper, we
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Figure 1: (a) Original image, (b) wavelet decomposition.

use such a property of wavelet coefficients.

3. ENTROPY-MAXIMIZATION METHOD

We employ basically the entropy-maximization method pro-
posed by Bell and Sejnowski for blind separation [2].
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Figure 2: Histograms of (1)C1,i, j , (2) D1,i, j , (3) E1,i, j , (4)
F1,i, j , (5)C2,i, j , (6) D2,i, j , (7) E2,i, j and (8)F2,i, j .

3.1 Bell-Sejnowski’s algorithm

Let sν , ν = 1, . . . ,N, be unknown signal sources, and define
a vector

s = (s1, . . . ,sN)T ,

where ‘T ’ denotes a transpose. We assume thatsν are sta-
tistically independent, and that the mixing signalsxν , ν =
1, . . . ,N, can be written by a linear combination ofsν , i.e.,

xν =
N

∑
µ=1

aνµsµ , ν = 1, . . . ,N. (4)

A vector form of (4) is

x = As.

Here,x = (x1, . . . ,xN)T andA = (aνµ) is anN×N matrix.
ICA is to obtain the inverse matrixA−1 from the vectorx.
To solve this problem, Bell and Sejnowski exploited a neural
network withN input andN output nodes,

yν = g(Wν ·x−θν), ν = 1, . . . ,N. (5)

HereWν = (wν1, . . . ,wνN)T denote weight vectors,θν biases,
g(u) a sigmoid function, and ‘·’ inner product. This neural
network is shown in Fig. 3.
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Figure 3: Neural network.

The entropy-maximization method is to determine the
weight matrixW and the bias vectorθ so as to maximize
the entropy

H(y) =< ln |J| > . (6)

Here ‘<>’ denotes an expected value andJ represents the
determinant

J = det


∂y1
∂x1

∂y2
∂x2

· · · ∂y1
∂xN

...
...

. . .
...

∂yN
∂x1

∂yN
∂x2

· · · ∂yN
∂xN

 .

The problem (6) is equivalent to minimizing a minus of
H(y). For the sigmoid function

g(u) =
1−e−u

1+e−u ,

Bell-Sejnowski’s algorithm for changingW andθ is written
as

W(t+1) = W(t) + γ(((W(t))T)−1−2y(t)x(t)T)W(t), (7)

θ (t+1) = θ (t) +2γy(t). (8)

Hereγ is a sufficiently small positive number. In this algo-
rithm, the inverse matrix((W(t))T)−1 has to be calculated per
iteration.

3.2 Amari’s natural gradient method [1]

From the viewpoint of information geometry, Amari derived
a natural gradient algorithm

W(t+1) = W(t) + γ(E−2y(t)(u(t)+θ (t)))W(t) (9)

instead of (7), whereE denotes anN×N unit matrix and

u(t) = W(t)x(t)−θ (t). (10)

This algorithm does not need to calculate the inverse ma-
trix ((W(t))T)−1. However, it does not produce good conver-
gence results for a lot of mixing images, even if we choose
initial values of the matrixW and the bias vectorθ carefully.

3.3 Improved version

We resolve the difficulty above by adding a penalty term to
(9). From (9), the condition for convergence is

E = 2y(t)(u(t)+θ (t))T .
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This suggests that at least off-diagonal elements of the right
hand side should be zero. Therefore, we add the penalty term
F , which is given by (12), to get

W(t+1) = W(t) + γ((E−2y(t)(u(t)+θ (t))T)W(t) −CF). (11)

HereC is a penalty constant andF is

F =


0 y1(u2 +θ2) · · · y1(uN +θN)

y2(u1 +θ1) 0 · · · y2(uN +θN)
...

... · · ·
...

yN(u1 +θ1) yN(u2 +θ2) · · · 0

 .

(12)

4. OUR BLIND SEPARATION METHOD

Bell-Sejnowski’s algorithm works well in the case that the
probability density function of mixing signals is closed to
supergaussian such as speech and audio. Since that of an
image is irregular as shown in Fig.2(1), it is not suitable to
apply Bell-Sejnowski’s type of ICA to images themselves.
Fortunately, the histogram of wavelet coefficients for a natu-
ral image behaves like a supergaussian distribution. So, we
apply our improved algorithm in Section 3.3 to them for blind
separation.

Our blind separation algorithm involves the following
steps:
1. PrepareN mixing imagesCν

0,i, j , ν = 1, · · · ,N.

2. Compute the high-pass componentsDν
p,i, j , Eν

p,i, j and
Fν

p,i, j , defined by (1), (2) and (3), respectively, by using
the biorthogonal wavelet filters.

3. ConstructN high-pass images whoseν-th image consists
of Dν

p,i, j , Eν
p,i, j andFν

p,i, j .
4. Scan the high-pass images both top and bottom, left and

right, and construct the input datax1(t), · · · , xN(t) of the
neural network.

5. Inputtingx1(t), · · · , xN(t) into our blind separation al-
gorithm successively, learn the weight matrixW and the
bias vectorθ .

6. Compute
z(t) = Wc(t)−θ (13)

using the learnedW andθ , wherec(t) is a vector whose
components represent the pixels of the mixing images at
the locationt.

Figure 4 illustrates an overview of our algorithm.

5. EXPERIMENTAL RESULTS

In simulation, we use two groups of 12 mixing images, as
shown in Figs.5 and 7, respectively. Each image has the size
of 256×256 , and 8 bits expression. The training images in
each group are generated by mixing 12 source images differ-
ent from each other, using the mixing rates shown in Table
1.

For wavelet transform, we employ the B-spline wavelet
filers, which are listed in Table 2. The wavelet decomposition
was executed until 8 resolution levels.

The input vectors(x1(t), · · · ,x12(t))T of the neural net-
work (5) were constructed from the high-pass images pro-
duced by wavelet transform. We determine the weight matrix
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Figure 4: Overview of our algorithm.

Table 1: Mixing rates.
A 1 2 3 4 5 6 7 8 9 10 11 12

1 0.89 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
2 0.78 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
3 0.78 0.01 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01
4 0.78 0.01 0.01 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01
5 0.78 0.01 0.01 0.01 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.01
6 0.78 0.01 0.01 0.01 0.01 0.06 0.03 0.03 0.02 0.02 0.01 0.01
7 0.78 0.01 0.01 0.01 0.01 0.01 0.06 0.03 0.03 0.02 0.02 0.01
8 0.78 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.03 0.03 0.02 0.02
9 0.78 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.03 0.03 0.02

10 0.78 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.03 0.03
11 0.78 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.03
12 0.78 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.06

W and the bias vectorθ in the neural network by using the it-
erations (11) and (8). The iteration was started fromW = E,
whereE is theN×N unit matrix, andθ = 0, and the step
sizeγ and the penalty constantC were chosen asγ = 10−8

andC = 1000.
As a result of the iteration, we obtained the trained weight

matrix and the bias vector as shown in Tables 3 and 4. To
extract the hidden images, we computedzν ,ν = 1, · · · ,12 by
using (13). The separated images are illustrated in Fig. 6 for
group 1, and Fig. 8 for group 2.

We denote a raster-scanned signal of theν-th source im-
age bysν(t),0 ≤ t ≤ M −1. The mean square error (MSE)
betweensν(t) and the raster-scanned signalzν(t) is written

Table 2: B-spline wavelet filters
l hl gl

-1 0.5000 0.0833
0 1.0000 -0.5000
1 0.5000 0.8333
2 0.0000 -0.5000
3 0.0000 0.0833
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Table 3: Trained weights and biases for group 1.
W 1 2 3 4 5 6

1 0.9751 -0.1947 -0.2406 0.0746 -0.1423 0.0110
2 -1.0613 3.0504 -0.9267 -0.7035 -0.0052 -0.1344
3 -1.1149 -0.0377 3.2171 -0.9985 -0.8515 -0.0178
4 -1.2535 -0.0305 -0.0260 3.2560 -1.2099 -0.5018
5 -1.2365 -0.0619 -0.0311 0.0255 3.0748 -0.9364
6 -1.0845 -0.1886 -0.1091 -0.0864 -0.0129 3.3473
7 -0.9320 0.0084 -0.0349 -0.0905 0.0262 -0.1033
8 -1.0692 0.2355 0.0011 -0.1408 -0.0364 0.0391
9 -1.1011 -0.2067 0.1700 -0.0410 -0.0682 -0.1206

10 -1.1372 -0.0141 -0.1669 0.1692 0.0500 -0.0930
11 -1.1993 -0.9257 -0.0853 -0.1371 0.3189 -0.0580
12 -0.9332 -1.1029 -0.7077 -0.1033 -0.1700 0.0628

θ 0.0067 0.0016 -0.0003 -0.0008 -0.0032 0.0000

W 7 8 9 10 11 12

1 0.0498 0.0723 -0.1944 0.0411 0.1428 0.2677
2 0.2727 0.0047 -0.0030 -0.0843 -0.1255 -0.1285
3 -0.1275 0.2938 0.0396 -0.1002 -0.0553 -0.0882
4 -0.0343 -0.1958 0.2723 -0.0055 -0.1097 0.0361
5 -0.7849 0.1419 -0.2077 0.1998 -0.0916 0.0741
6 -1.1133 -0.7884 0.0169 -0.1388 0.1569 0.1544
7 3.0861 -1.1610 -0.6883 0.0715 -0.2194 0.1810
8 0.0262 3.1391 -1.1199 -0.7166 0.0612 -0.2006
9 0.0538 0.0788 3.1833 -1.0908 -0.7013 -0.0103

10 -0.0708 -0.0347 0.0243 3.3006 -1.1423 -0.7259
11 -0.0815 -0.1196 -0.0017 0.0035 3.2857 -0.8397
12 0.0891 -0.1233 -0.0480 -0.0343 -0.1390 3.3694

θ -0.0003 0.0009 -0.0013 -0.0001 -0.0011 0.0008

as

MSE=
1
M

M−1

∑
t=0

(zν(t)−sν(t))2.

The image quality is often measured by using the MSE-based
evaluation standard

PSNR= 10log10
255×255

MSE
.

The value of PSNR is shown in the bottom of each recon-
structed image in Figs. 6 and 8. As seen from these results,
the hidden images are almost perfectly reconstructed.

Simulation was performed on the laptop computer with
Pentium M 1.2 GHz and 768MB SDRAM. Training time was
about 290 sec..

6. CONCLUSION

We proposed a blind separation method in order to recon-
struct hidden images. Our method combines biorthogo-
nal wavelet transform with an improved version of Bell-
Sejnowski’s blind separation algorithm. We computed
the high-pass components of the mixed images exploiting
wavelet transform. Using the obtained wavelet coefficients,
we trained a neural network based on our blind separation
algorithm to find source images. The learned weight matrix
and bias vector were utilized to recover hidden images.

In simulation, we attempted to reconstruct hidden images
from two groups, each of which includes 12 mixed images.
In both groups, we could reconstruct the hidden images al-
most perfectly. It is future work to apply our algorithm to

Table 4: Trained weights and biases for group 2.
W 1 2 3 4 5 6

1 1.1569 -0.0595 -0.0555 -0.0550 -0.0743 -0.0686
2 -0.8925 2.5837 -1.0023 -0.6443 0.1208 -0.0996
3 -0.7818 -0.0091 2.5997 -1.0471 -0.6349 0.0915
4 -0.4796 0.0364 -0.0284 1.8321 -0.7381 -0.5494
5 -0.8520 -0.0374 0.0451 -0.0140 2.3726 -0.9337
6 -1.0706 -0.1403 -0.0506 -0.0153 0.0224 2.8991
7 -1.1659 -0.0140 -0.1266 -0.0312 -0.0332 -0.0769
8 -1.2078 0.3119 0.0294 -0.1175 -0.0533 -0.0519
9 -1.1924 -0.1545 0.2860 0.1007 -0.1608 -0.1063

10 -1.1639 0.1125 -0.1604 0.3870 -0.0109 -0.1032
11 -0.9866 -0.6431 0.0879 -0.1338 0.3116 -0.0383
12 -0.9061 -1.0283 -0.6342 0.1184 -0.1423 0.0063

θ -0.0119 -0.0021 -0.0027 0.0023 -0.0043 0.0038

W 7 8 9 10 11 12

1 0.1919 -0.0883 0.0134 0.0590 -0.1993 -0.0333
2 0.2432 0.0352 -0.1114 -0.0694 -0.0207 -0.0042
3 -0.2137 0.2101 -0.0092 -0.1228 0.0684 -0.0292
4 0.0648 -0.0435 0.0343 0.0685 -0.0714 -0.0200
5 -0.5139 0.1268 -0.1493 0.1105 0.0213 -0.0463
6 -0.8531 -0.7288 -0.0163 -0.2064 0.3439 0.0197
7 3.2471 -1.1209 -0.6670 -0.1065 -0.1363 0.3759
8 -0.0214 3.1556 -0.9992 -0.5915 -0.0736 -0.1820
9 -0.1737 -0.0523 3.2767 -0.6437 -0.9727 -0.0253

10 0.0163 -0.0817 -0.1208 3.3816 -1.2840 -0.8037
11 -0.1089 0.1702 -0.0160 -0.1547 2.6884 -1.0399
12 -0.0451 -0.1270 -0.0367 -0.01402 0.03772 2.6169

θ 0.0035 -0.0037 0.0037 -0.0050 -0.0011 -0.0025

other problems such as the separating reflections and blind
separation from a single image.
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Figure 5: 12 mixing images in group 1.
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Figure 6: Images separated from the 12 mixing images in
group 1.
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Figure 7: 12 mixing images in group 2.
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Figure 8: Images separated from the 12 mixing images in
group 2.
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