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ABSTRACT

Generally, speech recognition systems are based on one layer
of acoustic HMM states where the recognition process con-
sists on selecting a sequence of those states providing the
best match with the speech utterance. In this paper we pro-
pose a new approach based on two layers. The first layer
implements a standard acoustic modeling. The second layer
models the path followed by the speech signal along the ac-
tivated states of the acoustic models, defining a set of state-
probability based HMMs. This method presents two main
advantages in front of conventional recognizers: a consistent
pruning of the possible paths preceding and following each
state in the recognition process, and the possibility of model-
ing high-level information in the second layer in a somewhat
independent fashion from the acoustic training. A testing
database from a real voice recognition application has been
used to study the performance of the system in a changeable
environment.

1. INTRODUCTION

A standard speech recognition system is based on a set of so
called acoustic models that link the observed features of the
voice signal with the expected phonetics of the hypothesis
sentence. The most usual implementation of this process is
probabilistic, namely HMM [1].

Most current speech recognition systems are based in
either continuous or semicontinuous HMM, using a repre-
sentation of the signal space by means of a set of param-
eters (normally spectrum, delta spectrum, delta-delta spec-
trum and energy). These systems provide fine recognition
performance in concrete tasks or working in a controlled en-
vironment. But when conditions are changeable results be-
come discouraging. In the search of a new speech recog-
nition architecture that deals with all the information avail-
able at recognition time without being restricted by HMM
acoustic constraints, we present a new layered speech recog-
nition system. The proposed architecture suggests a modular
framework allowing a two-steps search process. Some refer-
ences to layered architectures for speech recognition [2], or
meta-models [3] can be found in the literature (implemented
for LVCSR and for confidence estimation in speech recogni-
tion, respectively).

Following the first approach [2], we will split the recog-
nition scheme into two levels developing a set of HMMs for
each level. In the first level we will perform a conventional
HMM based acoustic analysis. Then, in the second level we
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will model the path followed by the speech utterance along
the activated states of the acoustic HMMs. This way we pro-
vide an open field for the introduction of information present
at recognition time that cannot be treated in existing one-
layer architectures, as well as relaxing constraints for acous-
tic optimization. Moreover, a layered architecture where
each level is defined by its own set of HMM offers another
advantage: the reduction of speaker dependency by training
each layer with a different set of recordings, approaching to
similar conditions as those of the testing stage or when facing
the recognition of unknown speakers.

2. LAYERED SPEECH RECOGNITION

HMM based speech recognition systems rely on the model-
ing of a set of states and transitions using the probability of
the observations associated to each state. These probabili-
ties being independent, the path followed by the signal is not
modeled. In our approach we try to model this “path” in or-
der to associate recognition to the best matching path. This
will help with the recognition of acoustic units regardless of
their variations when uttered in different environments, by
different speakers or affected by different background noises.

Following the idea of breaking the recognition architec-
ture into two layers, we will keep a conventional acoustic
modeling step for the first layer and consign to the second
layer modeling the evolution followed by the speech signal.
This evolution will be defined as the path through the
different states of the sub-word acoustic models defined in
the first layer.

In semicontinuous HMM, a VQ codebook is used to map
the continuous input feature vectorx to ok (thekth codeword)
so we can use a discrete output probability distribution (pdf)
b j(k) for statej (see [1]):

b j(x) =
M

∑
k=1

b j(k) f (x|ok) (1)

The input to the HMM of the second layer will be the vector
of state probabilities given by the acoustic models of the first
layer. So hence, a new set of semicontinuous output pdfs
b′j(x) will be defined:

b′j(x) =
M′

∑
k=1

b′j(k)bk(x) (2)

This equation can be expressed in terms of a new distribution
function f ′(x|bk) where the output probabilities vectorsbk
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play the role developed byok in the first level. Actually, we
are defining a new codebook covering the sub-word state-
probability space.

b′j(x) =
M′

∑
k=1

b′j(k) f ′(x|bk)

Acoustic HMMs from the first layer are used for estimat-
ing the new state probability representation for the second
layer HMMs. Thus, the new weightsb′(x) will be obtained
through a new Baum-Welch estimation, in a second model-
ing step. New observation distribution for the second layer
HMMs are trained using the same stochastic matrix of the
original acoustic HMMs.

In practice and because M and M’ are large, equations
(1) and (2) will be simplified by using the I and I’ most
significant values (see [1]). This way, we are preventing
some recognition paths to be activated, and this can result in
a different decoding when I6= I’.

A second approach to path-based modeling will be to
consider the context of each state in the second layer of the
recognition architecture. Thus, the mapping of the models
will be done using windows centered in each state and em-
bracing one or more adjacent states: those more probable to
have been visited before the actual state, and the more prob-
able future ones.

3. EXPERIMENTS

Our new approach for building a layered architecture has
been developed with the aim of overcoming some limitations
of traditional HMM framework. The three main targets of
this new architecture will be: improving speech units mod-
eling regarding their variation when uttered in a changeable
environment, improvement in speaker independence, and in-
clusion of added value information in the recognition pro-
cess. At the same time, we want to keep speech recognition
accuracy high, in order to improve globally our system.

Experiments have been carried out for two implementa-
tions of the second layer: one-state width and L-state width
path-based modeling. In the second case, L-1 is the number
of adjacent states considered as the significant context for
each state of the path.

Digit chain recognition is still an application of great
practical interest. Therefore, it is an usefull first target task
for testing our new architecture.

3.1 Databases

Experiments have been carried out using two different
databases. First, SpeechDat Spanish database [4] has been
divided into three sets: a training dataset with 11443 sen-
tences containing sequences of digits, a developing dataset
(for training the HMM of the second layer) with 11535 sen-
tences, and a testing dataset with 3405 sentences.

The results from the experiments using this first testing
dataset have been used for selecting the best configuration
of the new system in order to improve baseline results and,
when necessary, tuning the parameters used.

Afterwards, all models have been tested with an indepen-
dent database obtained from a real telephone voice recogni-
tion application, from now on referenced as DigitVox, which

contains 5317 sentences with identity card numbers (8 digit
chains) recorded in noisy conditions. This second set of ex-
periments will test the independence of our models and its
robustness in front of noise, thus approaching to similar con-
ditions as those faced when recognizing unknown speakers
in a changeable environment.

3.2 Baseline

The baseline speech recognition system used for evaluating
the performance of our new approaches is the SCHMM based
RAMSES [5]. The main features of this system are:

• Speech is windowed every 10ms with 30ms window
length. Each frame is parameterised with the first 14 mel-
frequency cepstral coefficients (MFCC) and its first and
second derivatives, plus the first derivative of the energy.

• Spectral parameters are quantified to 512 centroids, en-
ergy is quantified to 64 centroids.

• Semidigits are used as HMM acoustic units. 40 semidigit
models (two semidigits for digit, two contexts for
semidigit) are trained, plus one noisy model for each
digit, modeled each with 10 states. Silence and filler
models are also used, modeled each with 8 states.

• For decoding, a Viterbi algorithm is used implementing
beam search to limit the number of paths. Frames are
quantified to 6 centroids for spectral parameters and 2
for energy.

3.3 One-state width path-based recognition

In the way to a path-modeling based recognition, we divide
the system architecture into two layers, keeping the lower
layer equal to the reference scheme of the baseline recog-
nition system, and setting target in the improvement of the
upper layer.

This second layer consists of mapping the acoustic mod-
els obtained in the first layer into state-probability based
HMM. Also, a new codebook covering the probability space
will be defined. Therefore, we presume to have a “transpar-
ent” second layer as it is equivalent to a direct mapping of the
acoustic probabilities. Performance is expected to be equiva-
lent to that of the baseline system, if no further improvements
were introduced.
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Fig. 1. Basic diagram of a one-state width path-based layered
architecture. Training and recognition schemes
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recognition Sentence Word Substitution Insertion Deletion
system recognition rate recognition rate rate rate rate
baseline 93.304 % 98.73 % 0.24 % 0.97 % 0.06 %

One-state width
path-based recognition 94.677 % 99.10 % 0.26 % 0.46 % 0.18 %

Table 1. Recognition rates using one-state width path modeling based layered recognition architecture

We are no longer working with spectral parameters distri-
butions but with the probabilities of the whole set of possible
states: we have moved from the signal space (covered by the
spectrum) to the probability space (defined by the probabil-
ity values of each of the states). In traditional HMM gaus-
sian densities model the probability with which a state gen-
erates some spectral parameters (acoustic information). New
HMMs generated by the second layer will give the probabil-
ity of being at a certain point of the path followed by the
speech signal. Moreover, we are mapping the models to
an space of dimension N (the total number of HMM states
from the first layer). Then, we can implement some pruning
by keeping only the∼N/2 most significant values (see sec-
tion 2 and [1]). This way we are constraining the possible
states preceding and following each active state, preventing
some recognition paths to be activated. This will increase
speed and also promises an improvement in recognition per-
formance. Actually, it can be seen as a similar strategy to
CHMM gaussian mixture pruning, where each state is mod-
eled with a mixture of private Gaussians.

A basic diagram of the architecture proposed is showed in
figure 1. Recognition results obtained using this architecture
are presented in table 1, showing an improvement in word
recognition. This is achieved thanks to a positive weighting
of the states with higher likelihood (implicit in the solution
proposed) and the pruning of the preceding and following
states to be activated for each state.

3.4 L-states width path-based recognition

The validity of the layered architecture using path-based
recognition for implementing the second layer has been suc-
cessfully tested in the previous experiments. Next step con-
sists of introducing the “context” of each state, approaching
the idea of modeling the path followed by the speech signal.

We can model the speech signal as a succession of
Markov states, where transitions between states and models
are restricted by the topology of the models and the gram-
mar. The speech signal can be modeled by means of dif-
ferent state successions(or paths). Each path has its own
associated probability, allowing one state to be part of dif-
ferent paths. The path with maximum likelihood will be the
one conformed by the succession of states that maximizes
the joint probability (defined by the product of probabilities
of each state in the path).

We will limit the state context to a window of length L,
in order to allow generalization and to make the implementa-
tion computationally feasible. So, we will not deal with the
whole path followed by the signal along all the states suc-
ceeding one after the other and conforming a certain speech
utterance.Instead, we will consider only the possible L/2 - 1
previous and following ones for each state. Also, only com-
binations of states corresponding with the same phonetic unit
will be allowed.

Taking these simplifications to the limit, if we use win-

dows with length L=1 we are directly mapping the acoustic
models into state-probability models in the same way as in
previous section. We can see L-states width path recognition
as an extension of previous one-state width approach.

The architecture devised for the previous experiments
will be adapted. By mapping the acoustic models obtained
in the first layer, we will build a new codebook covering
the probability space. Besides, a table with all the possi-
ble state combinations will be defined, taking into account
restrictions aforementioned. Next, considering all state com-
binations, the input speech will be statistically defined ob-
taining a new set of parameters. These parameters will rep-
resent the probabilities of each sequence of states. In the
training stage a new set of statistical models will be built. In
recognition, these state-probability based HMMs will allow
decoding the path followed by the speech signal represented
using the states probabilities parameters. Figure 2 shows the
architecture proposed.
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Fig. 2. Basic diagram of an L-states width path-based layered
architecture. Training and recognition schemes

In this first approach to L-states width path-based recog-
nition, we will consider the following:
• 40 semidigit acoustic models (two semidigits for digit,

two contexts for semidigit) modeled each with 10 states
and allowing a maximum leap of 2 for intra-model state
transitions. Silence and filler models are also used, mod-
eled with 8 states and maximum leap of 1.

• Transitions between two models are only allowed be-
tween final and initial states of each model.

• L = 3 (window length)
In the present case we will have a set of 4006 possible

state combinations represented in the new codebook. This
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recognition Sentence Word Substitution Insertion Deletion
system recognition rate recognition rate rate rate rate
baseline 93.304 % 98.73 % 0.24 % 0.97 % 0.06 %

L-states width
path-based recognition 93.417 % 98.89 % 0.36 % 0.35 % 0.40 %

Table 2. Recognition rates using L-states width path modeling based layered recognition architecture

results from considering the characteristics of the acoustic
models from the lower layer and the window length. In the
new representation of the input signal using the probability
space codebook we will keep only those 256 (approximately
N/2) most significant values, being N the number of total
HMM states from the first layer.

Results presented in table 2 show a noticeable improve-
ment in word recognition, even if lower than using the one-
state width approach. The reason for this can be the growth
of the information to be modeled (the total number of state
combinations, N). As only the most N/2 significant values are
used for quantifying the training data, in some cases there
could be a lost of information even if the general perfor-
mance (and the improvement in recognition results) show the
benefits of this decision.

This second approach remains justified by the higher
flexibility of the second layer. Further experimentation needs
to be carried out using more complex phonetic units to take
profit of this flexibility for modeling high-level information.

4. CONCLUSIONS AND FURTHER WORK

A state-probability based modeling approach has been stud-
ied for the second level of a layered architecture for ASR.
Keeping a conventional acoustic modeling scheme for the
first layer, the second layer will model the evolution of the
acoustic HMM (as a new way of modeling state transitions)
along the speech utterance. This proposal aims to improve
recognition accuracy while allowing the inclusion of added
value information and a better adaptation to different recog-
nition environments and speakers.

A first implementation consisted on building the second
layer by directly mapping the acoustic models into state-
probability based models, achieving a relevant improvement
in performance. This results from a positive weighting of the
states with a higher likelihood, as well as the pruning of the
possible paths that can follow and precede each state, pre-
venting some recognition paths to be activated. Actually, it
can be seen as a similar strategy to CHMM Gaussian mixture
pruning.

We can also see this approach as modeling the path
followed by the speech through the different states of the
acoustic HMM used for its representation, taking just the
present state for each moment. Going one step further,
we have introduced the context of the states. Experiments
show this second implementation also improves baseline
performance, even if results are slightly lower than those
from the one-state width path-based modeling implemen-
tation. However, this second proposal provides higher
flexibility, which would allow the introduction of added
value information into the recognition. Further work in this
direction will be undertaken, testing the performance of
the layered architecture modeling other acoustic units (like

phones or semiphones) and working with more complex
tasks to compare performances with state of the art ASR
systems.

But recognition is not our only goal. Some research is
being done in utterance verification working with a “second
opinion” approach [6], using a second speech recognizer to
verify the output of a main recognizer. The layered archi-
tecture presented in this document can also be used for ver-
ification, using the output of the second layer as a second
opinion. Previous related experiments working in a second
opinion framework for utterance verification using a layered
architecture make us expect positive results.
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