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ABSTRACT
In this paper a scale-space model for signal and image de-
noising is presented. The wavelet coefficients are split into
overlapping atoms and their evolution law through scales is
formally derived. This formalism accounts for both inter and
intra-scale dependencies of wavelet coefficients and then it
can be exploited for denoising. Experimental results show
that the proposed algorithm outperforms the most effective
wavelet based denoising techniques.

1. INTRODUCTION

The objective of a de-noising tool consists of recovering a
signal f from its noisy versiong, where

g(t) = f (t)+υ(t); t 2R
andυ is an additive zero-mean Gaussian noise with variance
σ2. It is commonly solved by deriving a suitable representa-
tion of the signal in which discarding noise with simple op-
erations, like thresholding. In fact, non linear approximation
theory proves that the optimal expansion basis for a signal
yields coefficients with a fast decay with respect toLp norm,
for somep < 2 [9]. This is one of the main reasons of the
success of wavelets in signal representation. Nonetheless,
the decay of the coefficients does not completely character-
ize a signal. Dependencies between adjacent coefficients are
very important (for example edges in 2D signals), expecially
in the noisy case. In fact, gaussian noise does not reveal any
spatial correlation. For that reason new bases have been de-
fined. They are oriented to capture some prefixed structures
of the analysed signal, such as singularities, smooth contour
curves, geometric flow, and so on [5, 8, 12]. However, in-
trascale dependencies are again lost if a simple thresholding
is used for removing noise, yielding annoying artifacts in the
recovered signal.

A step forward is represented by the characterization of
singularity points in the wavelet scale-space domain [7, 9].
In fact, the location and the degree of singularities of the an-
alyzed function can be derived by the decay of the corre-
sponding wavelet coefficients using derivatives of a gaussian
kernel (Chap. 6 of [9]). On the other hand, noise can be dis-
criminated since it has an opposite behaviour through scales.
For piecewise polynomial functions scale relationships can
be emphasized using general kernels [7]. Nonetheless, both
approaches suffer from the fact that singularities can be dis-
criminated and then recovered by imposing a constraint on
their minimum distance.

The aim of this paper is to provide a model for represent-
ing wavelet coefficients both in time and scale. It consists
of splitting the wavelet transform of a signal intooverlap-
ping atomsthat correspond to basic singularity points in the
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Figure 1:Left) Infinite ramp signal.Right)Its corresponding
atom in the wavelet domain.

original signal, as shown in Fig. 1. The atoms are defined
both in time and scale and can be marked by their center
of mass — the absolute global maximum for symmetric ker-
nels. Therefore, it is possible to study their evolution through
scales and to provide the scale-space trajectory of their center
of mass as the solution of an Ordinary Differential Equation
(ODE). This model drastically reduces the redundancy of the
wavelet representation in correspondence to significant struc-
tures of the signal. It also preserves correlation between ad-
jacent coefficients at each scale: their behaviour is predicted
from finer to coarser scale without particular requirements on
the structure of the original signal.

The paper is organized as follows. In Section 2 the
atomic representation of the wavelet transform is briefly pre-
sented. Section 3 introduces the evolution law of wavelet
atoms and yields their trajectories along scales. Section 4
shows how the atoms based model can be successfully used
for de-noising. Finally, some experimental results will be
given in Section 5 along with comparisons with the most re-
cent and powerful denoising approaches.

2. WISDOW

In [1] a novel de-noising strategy based on an atomic rep-
resentation of the wavelet transform of the signal has been
proposed. Abasic atomat scales and centered at the loca-
tion t0 has been defined by the following function

F(t0;u;s) = s
p

s
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t0�u
s

tψ(t)dt� t0�u
s

Z b

t0�u
s

ψ(t)dt

�
(1)

whereu 2 R is the time variable (see Fig. 1) andψ is the
wavelet. It corresponds to the wavelet transform of an infinite
ramp signal having the singularity located att0 with slope
α0 = 1 and behaves as a wave that grows while dilating along
scales.

The wavelet transformW f(u;s) of a generic signalf has
been written as superimposition of basic atoms by exploiting



Figure 2: The two atoms on the top approach the correspond-
ing bottomost one as the scale increases.Left) the atoms have
the same sign;Right) the atoms have opposite sign.

theoverlapping effects principleat each scales. Therefore,

8 s> 0; W f(u;s) �
Ns

∑
k=1

αkF(tk;u;s); (2)

whereαk andtk are respectively the slope and the location of
each atom of the representation, whileNs is the number of
the atoms used for the approximation at scales. In fact, two
atoms corresponding to two singularity points independently
grow and dilate along scales till they begin to interfere and
completely merge. From that point on, the shape of interfer-
ing atoms does not change while it still grows and dilates. In
particular, if the atoms have the same sign, they converge to
a single atom whose slope is the sum of the slopes of the two
interfering atoms (see Fig.2.left). On the other hand, if the
atoms have an opposite sign, they approach a wave which is
characterized by two symmetric mainlobes having opposite
sign (see Fig.2.right). It can be formally proved that a jump
discontinuity is the superimposition of two interfering basic
atoms having opposite sign and located att1 andt2, whent2
approachest1 [1]. On the other hand, the wavelet transform
of a polynomial ramp is approximated by a basic atom and a
residual:

W f(u;s) = α0F(t0;u;s)+Q(u;s): (3)

The residualQ(u;s) is negligible if the terms of order greater
than one in a linear approximation off (t) in the range[t0; t0+
∆t] are negligible. It is obvious that the shift∆t is also strictly
related to the wavelet support.

The atomic representation, as in eq. (2), enables to dras-
tically reduce the information which is necessary for recon-
structing the original signal. In fact, it consists of atoms lo-
cationstk and their slopesαk at each scales. These two pa-
rameters contain information about the value of the wavelet
transform of the signal at scales within the support of the
atom centered attk. Hence, it intrinsically preserves the cor-
relation between adjacent coefficients of the wavelet decom-
position without having a priori information about the anal-
ysed signal. This property can be successfully exploited in
de-noising and allows to overcome some of the limits of stan-
dard approaches, like thresholding and attenuation. In fact,
atoms slopes are estimated at each scale using a greedy algo-
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Figure 3: Top) Noisy polynomial signal (solid line), infi-
nite ramp used for its approximation (dashed line).Bottom)
Wavelet transform of: noisy polynomial signal (solid line),
original signal (dotted line) and de-noised signal using the
proposed approach (dashed line).

rithm on the amplitude of modulus maxima, i.e.

αk =
< Rk(u;s);F(tk;u;s)>

kF(tk;u;s)k2

whereRk(u;s) =Wg(u;s)�∑k�1
h=1Rh(u;s). It corresponds to

a least squares estimation in a suitable domain by imposing
a function model and then providing a regularization of the
noisy data (see Fig.3 and [1] for details). In [1] it has been
rigorously proved thatWISDOWformalism outperforms hard
thresholding [6]. In fact, also coefficients under threshold
are recovered, avoiding artifacts due to the rough cut off of
information in the selection based approaches.

Even if WISDOW algorithm provides satisfying results
in de-noising, it reveals some limits. The interference be-
tween atoms significantly affects the estimation of each sin-
gle slope and the corresponding location. In fact, it is dif-
ficult to exactly separate each single contribution when two
atoms are very close. Moreover, annoying spikes can affect
the recovered signal since high amplitude noisy coefficients
can be confused with real atoms. This drawback can be over-
come by further characterizing the interaction between atoms
through scales, as shown in the next section.

3. ATOMS EVOLUTION LAW

In this section we derive the trajectory through scales of the
significant points of the wavelet transform of a signal. These
points are the centers of mass of the atoms provided by the
representation in eq. 2. In other words, from the atoms at
scales we want predict the locations of the atoms at scales
greater thans. For the lack of space, we will omit formal
calculations that can be found in [3].

For the infinite ramp function

f (t) =

�
β t < t1
α1(t� t1)+β t � t1,
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Figure 4: Atoms maxima trajectories along scales having the
same sign (top) and opposite sign (bottom). They are the so-
lutions of (6) with initial conditions respectivelyu(s= 1)= t1
andu(s= 1) = t2. s is the scale level at which interference
begins while ˆs is the one at which interference is complete.

it is possible to write the following evolution law

∂
∂s

w=
t1�u

s
∂

∂u
w+

3
2s

w: (4)

wherew(u;s) = W f(u;s). It is a transport equation with a
source term: the atom dilates along scales while its energy
grows. The term3

2sw measures the growing of the energy
while thecharacteristic curvesin the scale-space domain de-
scribe the dilation. In fact, the latter are continuous straight
lines and give the trajectories of each point composing the
atom. In particular, the center of mass of the atom does not
move from its initial positionu = t1. On the contrary, the
trajectory of the other wavelet coefficients belonging to the
atom are straight lines whose slope is proportional to the dis-
tance from the center of mass at scales= 1.

As already outlined in the Introduction, it is easier to
manage atoms via their absolute maximum than their cen-
ter of mass for real world signals. In this case, atom extrema
trajectories can be computed as shown in the Appendix of [2]
and satisfy the following equation:

u̇=� t1�u
s

: (5)

For the global maximum it holdsu(s= 1) = t1 and then the
solution of (5) isu(s) = t1; 8 s2R+. Therefore, the global
maximum of an isolated atom does not move from its initial
position.

Previous results can be generalized to interfering atoms
[2]. To this aim, we consider a function having two singular-
ity points yielding two atoms located att1 andt2. In this case

equation for atoms modulus maxima trajectories becomes:

u̇=� t�u
s

� d
2s

�
α2ψ(z2)+α1ψ(z1)

α2ψ(z2)�α1ψ(z1)

�
; (6)

wheret = t1+t2
2 , fzk =

tk�u
s ; k= 1;2g andd = t2� t1.

Eq. (6) differs from (5) for its last non linear term. This
latter describes how the two atoms move and interfere along
scales. While there is no interference, the two cones of in-
fluence do not overlap and the two atoms are independent of
each other. They grow and dilate but their global maxima do
not move from their initial position (see the topmost picture
in Fig. 4 fors< s)). Once the two cones of influence begin
to overlap, each atom is influenced by the other one. In par-
ticular, the atom with the greater amplitude reveals a stronger
attractive force, causing a greater deviation in the trajectory
of the smaller atom, as depicted in Fig. 4.top (fors< s< ŝ) 1.
Whenever the interference is complete, i.e. fors> ŝ, the two
atoms become an only one, as depicted in Fig. 2. It is worth
outlining that (6) it is non reversible, i.e. at a fixed scales
it is not possible to reconstruct the history of a single atom
without ambiguity. More precisely, at a fixed scale it is not
possible to say whether an atom corresponds to an isolated
singularity or it is the composition of two or more atoms.

The maxima trajectories forN interfering atoms is
straightforward:

u̇= � t�u
s

� 1
s

∑N
k=1 dkαk ψ

� tk�u
s

�
∑N

k=1 αkψ
� tk�u

s

� ; (7)

wheret = ∑N
k=1 tk
N , dk = tk� t.

Even in this case, the last non linear term measures the
shift of atoms modulus maxima according to their distance
and their amplitude.

3.1 About Lipschitz order of singularities

So far, we used a fixed atom shape for modelling various
kinds of singularity. It is symmetric and corresponds to a
singularity of a piecewise linear functionf (t). Its trajectory
is described by (5) and the decay of its amplitude along scales
is O(s3=2) .

Nonetheless, the amplitude of a wavelet modulus maxi-
mum is tied to the Lipschitz order of the corresponding sin-
gularity [9]. Therefore, its amplitude decays asO(sγ+1=2).
To overcome this problem we can generalize the atom equa-
tion as follows:

G(u;s) = α1sγ�1F(t1;u;s); (8)

whereF(t1;u;s) is defined in (1). This way, the atom am-
plitude is modulated in agreement with the decay of the an-
alyzed singularity while its shape is approximated with eq.
(1).

Even in its general form, the atom again obeys to a pre-
cise evolution law from which it is possible to derive maxima
trajectories. In fact, it holds

∂
∂s

G=
t1�u

s
∂

∂u
G+

γ +1=2
s

G; (9)

1It is worth highlighting that the two atoms show repulsion before at-
traction. It is due to the shape of each single atom which is not positive
in its whole domain (see Fig. 1). It entails a shift in the modulus maxima
locations whenever sidelobes overlap mainlobes.



and then its maximum trajectory is still ˙u = � t1�u
s , since

symmetric.
Finally, for N interfering atoms located attk with growing

exponentsγk, the atoms trajectories are then the solution of
the following ode:

u̇=� t�u
s

� 1
s

∑N
k=1 dkαksγkψ

� tk�u
s

�
∑N

k=1 αksγkψ
� tk�u

s

� +

�1
s

∑N
k=1 γkαksγk

R +∞
tk�u

s
ψ(y)dy

∑N
k=1 αksγkψ

� tk�u
s

� : (10)

The solution of the ODE (10) is determined by the ini-
tial conditionsftk;αk;γkg1�k�N, which respectively are the
locations, the slopes and the decay exponents of atoms at
s= 1. Hence, the knowledge offtk;αk;γkg1�k�N allows to
predict wavelet coefficients at all successive scale levels. In
Appendix we briefly describe how to determine these once
initial conditions.

4. DENOISING

The evolution laws model both interscale and intrascale de-
pendencies since they take into account the interaction be-
tween interfering atoms along scales: at each time we know
the location and the state of each atom. This property allows
us to overcome some of the limits of WISDOW denoising al-
gorithm. In fact, the evolution laws enable to separate atoms
contribution at a fixed scale, yielding a better estimation of
their slopes. Therefore, for each domain of estimation we
can predict how many contributions have to be considered
along with their locations. The building of maxima chains
enables to use also scale levels where atoms interference is
complete without loosing important information. In that way
we can exploit the fact that at coarsest scales the noise flat-
tens since its negative Lipschitz orderγ [9] while the estima-
tion domains become wider, since the dilation property of the
wavelet transform. It turns out that the least squares used for
slopes estimation are more precise. It is worth to further out-
lining that atoms decay allows to discard those coefficients
dominated by noise, since their negativeγ.

4.1 The Algorithm

In this section the algorithm for restoring a noisy signalg is
described in detail.

Let us consider an overcomplete wavelet decomposition
[9] of g. The overcomplete representation is employed to
avoid problems due to decimation. In fact, this operation
unavoidably causes distortions of the shape in Fig. 1.

1. Perform the undecimated wavelet transform ofg up toJth

scale level.
2. Perform the continuous wavelet transform ong at scales

s2 [1;2) using the step∆s= :05.
3. Estimate the parametersftk;αk;γkg using WISDOW

slope estimation algorithm three times for gettingαk, (as
described at the end of the previous section) andtk at
scales= 1 and (11) for estimatimgγk.

4. Eliminate atoms havingγk < 0.
5. Compute atoms trajectories by solving (10) using a 4th

order Runge Kutta method and extract the solution at
dyadic scaless= 2 j ; j = 1; : : : ;J.
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Figure 5: PSNR values versus noise variance for [10], [4],
[11], and the proposed approach.

6. At scales= 2 j ; j = 1; : : : ;J, sort selected maxima in
decreasing order with respect to their absolute value and
estimate the corresponding slopeαk. The data to use in
the least squares estimation are weighted proportionally
to the ratio between the analysed maximum and the ones
in its cones of influence, which have been predicted by
the law.

7. Invert the undecimated wavelet transform using the re-
covered detail bands.

5. EXPERIMENTAL RESULTS

The algorithm has been tested on many signals and images.
A biorthogonal wavelet 3/9 associated to an over-complete
multi-resolution decomposition has been adopted in all tests.
Four scale levels have been used while we set the integration
steph= 0:05 for solving the ode in the step 5 of the denoising
algorithm.

Images are split into independent 1D signals. It is just a
first attempt to use the evolution laws for images since there
is not a formal extension to the 2D case. Nonetheless, exper-
imental results show that the proposed denoising algorithm
outperforms the most effective wavelet based denoising ap-
proaches. In particular, Fig. 5 compares the proposed model
with the gaussian mixture estimator presented in [10], the
adaptive bayesian thresholding using context modelling con-
tained in [4] and the local Wiener filtering using elliptic di-
rectional windows for different subband in [11]. In fact, evo-
lution law establishes a precise link between corresponding
coefficients at different scales and allows us to well manage
the interference between singularities even at coarser scales.
This entails an almost faithful reconstruction of the origi-
nal signal, avoiding constraints on the minimum distance be-
tween them, as in [7]. For a visual evaluation of the results,
in Fig. 6 the denoised 512�512�8 Lena image is depicted
(PSNR = 32.75) — the noise level isσ = 20 (PSNR = 22.06).
It is worth outlining that edges are well recovered thanks to
the ability of the proposed scheme in modelling discontinuity
points in the scale space domain yielding a drastic reduction
of both ringing effect around edges and spikes — these latter



denoised image

Figure 6: Denoised Lena image using the proposed approach
(noisy image: PSNR = 22.06 db; recovered: PSNR = 32.75
db).
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Figure 7: Recovered piecewise polynomial signal (noise
SNR = 20.37 db) using: (left) Hard-thresholding (SNR =
26.88 db); (right) modifiedWISDOW(SNR = 32.38 db).

are due to isolated noisy coefficients. As an example, Fig.
7 shows the denoised piecewise polynomial test signal using
the proposed approach and compares it with the recovered
one using hard-thresholding.

The main computational effort of the algorithm is re-
quired by the solution of the ode in (10). Experimental re-
sults show that for getting acceptable prediction of atoms lo-
cations at dyadic scales the integration steph has to be lower
than 0.1.

A. INITIAL CONDITIONS

αk andtk can be estimated ats= 1 using the atoms estimation
algorithm used in WISDOW [1] while the decay exponents
require a further analysis. They can be estimated by solv-
ing (9) in a suitable interval[1;1+∆s]. ∆s has to be quite
small for guaranteeing that the interference between atoms
does not still affect the locations of their maxima. Under this
assumption, each atom can be considered isolated and then
the equation (9) can be solved for each of them, yielding

G(k)
s =

γk+1=2
s

G(k);

with the following initial condition G(k)(u(1);1) =

αkF(t0; t0;1). Hence, G(k) = C0sγk+1=2; that is
αk(s)s

p
s= αk(1)sγk+1=2; and then

γk = logs(αk(s)=αk(1))+1: (11)

It is worth outlining that the estimation ofγk depends on the
estimation of the corresponding slopeαk. The betterαk esti-
mation the better more faithfulγk value. To this aim we can
iterate the algorithm used for slopes estimation. More pre-
cisely, if E(u;s) is the error for the atomic approximation at
a fixed scales, we can iterate the decomposition algorithm on
it and combine the results with the ones found at the previous
step.
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