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ABSTRACT 
The identification and analysis of tandem repeats is an ac-
tive area of biological and computational research. Tandem 
repetitive structures in telomeres plays a role in cancer and 
hyper-variable, trinucleotide tandem repeats are linked to 
over a dozen major degenerative diseases. They also play a 
very crucial role in DNA fingerprinting. 
In this paper we present an algorithm to identify the exact 
and inexact tandem repeats in DNA sequences based on 
orthogonal exactly periodic subspace decomposition tech-
nique. The algorithm uses a sliding window approach to 
identify the location of tandem repeats and other patterns 
that are present in DNA sequence due to repetition of indi-
vidual nucleotides. Our algorithm also resolves the prob-
lems that were present in periodicity explorer algorithm for 
identifying tandem repeats. The time complexity of the algo-
rithm, when searching for repeats for window size ‘W’ in a 
DNA sequence S of length N is O(NWlgW). We present some 
experimental results concerning to sensitivity of our algo-
rithm. 

1. INTRODUCTION 

One of the significant genomic achievements in recent times 
has been the development of fast methods for sequencing 
and proteins. This has enabled the creation of large data-
bases which can be processed by considering sequences of 
nucleic acids (DNA, RNA) and amino acids (proteins) as 
string of characters. This type of processing is one of the 
fundamental basis of modern bioinformatics and has trans-
formed biology from a laboratory science to a computational 
one. 
For the last few decades, the major thrust of DNA and pro-
tein analysis has been on string matching, either with the 
goal of obtaining a precise solution with dynamic program-
ming or some heuristic techniques for obtaining a faster so-
lution. However, these heuristic methods do not work well 
on repetitive structures. 
A repeat is a recurrence of a pattern. A DNA pattern recurs 
in four ways: direct, indirect complement of reverse com-
plement. In DNA, most repetitions occur as tandem or re-
verse complement repeats. A tandem repeat is a string that 
can be divided into identical substrings, e.g., 
ACGACGACG. In eukaryotic genomes, tandem repeats are 
involved in various regulation mechanisms. Tandem repeats 

are also involved in human neurological disorders, such as 
huntington’s disease, fragile X syndrome, mytonic dystro-
phy and others [1, 2]. A major application of short tandem 
repeats is based on the inter-individual variability in copy 
number of certain repeats occurring in single loci. This fea-
ture makes tandem repeats a convenient tool for genetic pro-
filing of individuals [3, 4]. Thus, it is critical to both the 
assembly and analysis of genomic sequences to identify and 
characterize tandem repeat sequence. 
Previous signal processing techniques for the identification 
of tandem repeats in DNA sequences include the application 
of discrete Fourier transform (DFT) [5, 6] and the applica-
tion of short-time periodicity transform [7]. In [5] the DFT is 
used as a pre-processing tool for identifying the significant 
periodic regions through a sliding window analysis, and 
later on an exact search method is then used for finding the 
repetitive units. In [6] a product spectrum instead of sum 
spectrum was proposed as a measure for identifying repeats. 
The product spectrum is especially sensitive to the presence 
of inexact repeats. A short-time periodicity transform based 
approach for finding tandem repeats in DNA sequence is 
presented in [7]. This technique is useful only for exact tan-
dem repeats and the inexact tandem repeats which are due to 
substitution of nucleotides in the DNA sequence. 
Apart from signal processing techniques several other algo-
rithms [8, 9, 10, 11, 12, 13] have been proposed for detect-
ing exact and inexact repeats in DNA sequences. Each of the 
algorithms has its own limitations and assumptions. In [8], 
the period of the repeats is limited to 2000 base pairs (bp) as 
of version 4.0. In [9] there are practical memory constrains 
resulting from the pattern extension algorithm. The algo-
rithm [11] has no limitations on period size but does not deal 
with insertion or deletions (indels) directly. 
In this paper, we present exactly periodic subspace decom-
position (EPSD) [14] based approach for identifying the 
tandem repeats in the DNA sequences. The EPSD technique 
unlike periodicity transform [15] gives a unique decomposi-
tion of the signal on the periodic subspace and hence finds 
energy of each periodic subspace without any ambiguity. 
The algorithm presented runs in O(NWlgW) where N is the 
length of the DNA sequence and W is the length of the win-
dow. 
The paper is organized as follows. Section II describes about 
the exactly periodic subspace decomposition. Section III 
presents a tandem repeat detection algorithm for identifying 
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both strong and weaker tandem repeat present in the DNA 
sequence. In Section IV the algorithm is applied on some 
actual DNA sequence and experimental result is presented. 
Conclusion and future work follow in Section V. 

2. EXACTLY PERIODIC SUBSPACE 
DECOMPOSITION 

Definition 1: A signal S is of exactly period P if S is in 
R(ψ )P , and the projection of S onto R(ψ )P  is zero for all 

P < P (where R(ψ )P  is the subspace of signal of period P ). 
 
With the above definition, a signal of exactly period P is not 
exactly period 2P, 3P, etc. In addition, not every periodic 
signal is exactly periodic, but every exactly periodic signal 
is periodic. For example, an exactly periodic 4 signal is 
 

R = [1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1] 
 
The exactly periodic subspace decomposition technique 
finds the subspace corresponding to the signal of exactly 
periodic P and shows that these subspaces are orthogonal to 
each other. The study of this problem in time domain begins 
with the following definition.  
 
Definition 2: Let p1, p2, …, pm are the divisors of P, then 
defining 

1,ψ
m

P
p p…  be the matrix whose range is the orthogo-

nal complement of 1 mR[ψ ψ ]p pK  inside R(ψ )P : 
 

1
1

R(ψ ) R(ψ ) (R[ψ ψ ])m
m

ppP P
p p… = ∩ ⊥K                (1) 

 
If pi includes 1 in it then 

1
R(ψ )

m

P
p p…  is the subspace corre-

sponding to signal of exactly period P. The following lemma 
proves the definition introduced above. 
 
Lemma 1: Given a signal of length L (L is multiple of P1 and 
P2), let 1R(ψ )P  and 2R(ψ )P  be the subspaces corresponding 
to period P1 and P2. In addition 3R(ψ )P  be the subspace cor-
responding to period P3, where P3 is the greatest common 
divisor of P1 and P2. Then 3R(ψ )P  is the intersection of 

1R(ψ )P  and 2R(ψ )P . Moreover, the orthogonal complement 
of  3R(ψ )P  in 1R(ψ )P , 1

3
R(ψ )P

P  is orthogonal to the orthogo-

nal complement of 3R(ψ )P  in 2R(ψ )P , 2

3
R(ψ )P

P . In other 

words, the three subspaces are mutually orthogonal. 
To prove the orthogonality of subspaces corresponding to 
signals of exactly period P the following theorems are intro-
duced. 
Theorem 1: For any two specific period P and Q (P ≠ Q) and 
signal R of length L (L is a multiple of P and Q), let p1, p2, 
…, pn and q1, q2, …, qm be all the possible divisors of P and 
Q respectively (including 1 and excluding P and Q, respec-
tively). Then 

1
R(ψ )

n

P
p pK  and 

1
R(ψ )

m

Q
q qK  are orthogonal. 

Proof: Without loss of generality, let p1 = q1 be the greatest 
common divisor of P and Q. Then, 

1
R(ψ )

n

P
p pK ⊂

1
R(ψ )P

p  and 

1
R(ψ )

m

Q
q qK ⊂

1
R(ψ )Q

q . By Lemma 1, 
1

R(ψ )P
p  is orthogonal to 

1
R(ψ )Q

q . 

The next theorem proves that the subspace corresponding to 
signals of exactly period P is 

1
R(ψ )

n

P
p pK , 

Theorem 2: Let p1, p2, …, pm are the divisors of P (including 
1 but not P). Then, S is exactly period P if and only if 

1
R(ψ )

n

P
p pS ∈ K . 

Proof: First assume that 
1

R(ψ )
n

P
p pS ∈ K . For any period P  < 

P, P  and P have same common divisor. Let p1 be the great-
est common divisor of P  and P. From theorem 1, 

1
R(ψ )P

p  is 

orthogonal to 
1

R(ψ )P
p . With 

1
R(ψ )

n

P
p pK ⊂

1
R(ψ )P

p , 

1
R(ψ )

n

P
p pK  is orthogonal to  R(ψ )P . 

 Second, assume that S is exactly period P. By defini-
tion S ∈ R(ψ )P  and S ⊥ R(ψ )P for any P  < P. In other 
words, S is in the orthogonal complement of  1 nR[ψ ψ ]p pK  
inside R(ψ )P . Therefore, S ∈

1
R(ψ )

n

P
p pK . 

Calculation of orthogonal projection: To calculate the pro-
jection of signal R onto the orthogonal subspaces corre-
sponding to exactly period P, let us define p1, p2, …, pn  be 
all the possible divisors of P (including a but not P). By 
definition, the subspace corresponding to signals of exactly 
period P is the orthogonal complement of the union of the 
subspaces corresponding to exactly period pi inside R(ψ )P . 
Then theorem 1 guarantees that 
R(ψ )P  = subspace of exactly period P  

Θ
⊕∑  subspace of exactly period pi        (2) 

3. TANDEM REPEAT DETECTION ALGORITHM 

The main objectives of any tandem repeat identification 
algorithm are to identify its periodicity, its pattern structure 
and its copy number. A major difficulty in identifying tan-
dem repeats arises due to the presence of inexact tandem 
repeats. An inexact repeat is one in which the substrings are 
similar, but not identical, e.g., ACGACGACC. Inexact re-
peats are thought to be representation of historical events 
associated with sequence. Thus, it is important for any tan-
dem repeat identification technique to identify both exact 
and inexact tandem repeat structures in a DNA sequence. 
A DNA sequence consists of a series of four nucleotide 
symbols A, C, G, T. However, when the nucleotides of a 
DNA sequence are mapped to some numeric value the tan-
dem repeat identification problem becomes period detection 
problem. In [14] the EPSD technique was applied to identify 
the periods that were present in several synthetic and vibra-
tion data. In this paper we have successfully applied EPSD 
technique for identifying the tandem repeat structures in 
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DNA sequences. The complete input data was taken for 
identifying the periods in [14], however for tandem repeat 
identification problem we have applied a window based 
approach because the tandem repeat structure forms only a 
small portion of the given input DNA sequence. Sliding 
window EPSD technique helps in locating the correct posi-
tion of tandem repeats in the DNA sequence.  
In this section we present our tandem repeat identification 
algorithm. Our algorithm addresses the problems that were 
present in periodicity explorer algorithm (PE) [7]. The prob-
lems with PE algorithm are as follows: 

• The nucleotide mapping is taken as follows: 
A=1+j1, C= –1+j1, G= –1– j1, and T=1–j1. Let the 
two DNA sequences be ACACACGT and 
ACACACTG. Using equation (14) from [7] the cor-
responding periodogram coefficients obtained for 
period-2 are 0.25 and 0.625 respectively. By com-
paring the two DNA sequences we observe that 
even though the two DNA sequences have equal 
degree of period-2 component, the periodogram co-
efficient obtained are different. This shows that the 
periodogram coefficient cannot act a good estimator 
for measuring periodicity. This problem has oc-
curred due to arbitrary mapping of the nucleotides. 

• Periodicity transform gives non-orthogonal decom-
position of the signal. This result in different ways 
to decompose the signal which leads to different so-
lution. As a result of this the PE algorithm is de-
signed to be executed separately for every period. 
For example, if the PE is searching for repeats till 
say Pmax (maximum period) then the algorithm has 
to be executed Pmax times. This means that the run 
time of the PE algorithm is O(NWPmax) where N is 
the length of analyzed DNA sequence and W is the 
window size.  

• PE algorithm cannot tell whether the tandem repeat 
present in the DNA sequence is of period P or mul-
tiple of P (i.e. 2P, 3P,… and so on).  

We describe next, our proposed algorithm based on EPSD 
technique. Our algorithm takes care of the shortcomings in 
the PE algorithm. The algorithm is divided into three steps. 
 
Step 1: Convert the DNA sequence S[n] into four nucleo-
tide subsequences SA[n], SC[n], SG[n], ST[n] 
The four nucleotide subsequences are obtained as follows: 

 

{1,    if  [ ]     where {A,C,G,T}
0,   otherwise

S nS nΩ
= Ω Ω∈=⎡ ⎤⎣ ⎦       (3) 

 
For example, Table 1 shows the S nΩ ⎡ ⎤⎣ ⎦  components for the 
DNA sequence ‘ACAAGTACAGTCCTT’. 

 
Step 2: Calculation of tandem repeat coefficient for sub-
sequences SA[n], SC[n], SG[n], ST[n] 
Our algorithm is designed to identify tandem repeats from 
period-2 to maximum period (Pmax) provided by the user 
within an observation window of length W. Like other signal 
processing techniques [5, 6, 7] our algorithm also use a slid-
ing window based approach for identifying the position of 
the tandem repeats in DNA sequences. The algorithm for 
calculating period with maximum energy for the input DNA 
sequence of length N and input parameters (Pmax, W) is pro-
vided in Table 2. At the end of this step we obtain a tuple <p, 
π > for each window where ‘p’ is the maximum period and 
‘π ’ is the repeat coefficient value. 
 
Step 3: Identification of tandem repeat position and char-
acterisation 
In this step a threshold parameter (τ ) is accepted from the 
user and then output of the subsequences obtained in step 2 
are processed together to calculate repeats. The repeats ob-
tained are represented by tuples , , ,i l pψ  and the symbols in 
the tuples are defined as follows:  

•  power set of ,  where {A,C,G,T} &  ψ Ω Ω Ω Φ∈ ∈ ≠  
• i is the starting position of repeat 
• l is the length of repeat. 
• p is the period of repeat 

The repeats , , ,i l pψ must satisfy the following conditions: 
a. [ ], , [ 1]         i i lβ βπ π τ β ψ+ − ≥ ∀ ∈K  
b.  mod [ ] 0    p p iβ β ψ= ∀ ∈  where { [ ]}p p iβ∈  

The tuples , , ,i l pψ  represents an exact tandem repeat iff 

Table 2. Calculation of repeat coefficient for subsequences SA[n], 
SC[n], SG[n], ST[n] 
1. Accept window length (W), maximum period (Pmax) 
2. for n=1 to N+W-1  do // N is the length of DNA sequence 

3.     
, , 1 , , 1

                      ( [ ], [ 1], [ 1])

S n n W S n n W

MEAN S n S n S n W
Ω Ω

Ω Ω Ω

+ − = + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
+ + −

L K

K
 

4.    max max1, , ( [ , 1], )P EPSD S n n W PαΩ Ω= + −⎡ ⎤⎣ ⎦L K  

5.    max
max 2

1, ,
1, ,

[ , , 1

P
P

S n n W

α
π Ω

Ω

Ω

⎡ ⎤⎣ ⎦=⎡ ⎤⎣ ⎦
+ −

L
L

K
 

6.     OUTPUT(j, [ ]jπΩ ),  
                           where max[ ] max( [1], [ ])j Pπ π πΩ Ω ΩK←  
7.    n = n+1 
    od    

Table 1.  Nucleotide subsequences of a DNA sequence
 A  C  A  A  G  T  A  C  A  G  T  C  C  T  T   

SA[n] 1   0   1   1  0   0  1   0   1   0   0  0  0   0   0   
SC[n] 0   1   0   0  0   0  0   1   0   0   0  1  1   0   0 
SG[n] 0   0   0   0  1   0  0   0   0   1   0  0  0   0   0  
ST[n] 0   0   0   0  0   1  0   0   0   0   1  0  0   1   1   

DNA Sequence =  GAGTGCGTGCGTGC
G-G-G-G-G-G-G- ; -A------------; ---T---T---T--; -----C---C---C

Initial Repeats:        Final Repeats
<G,1,14,2>                <G,1,5,2>
<C,6,14,4>                <T,4,5,4>
<T,4,14,4>                 <(G,C,T), 6,14,4> (Tandem Repeat)

Figure 1 – Repeat tuples calculation  
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2ψ ≥  otherwise it represents some inexact-tandem type of 
repeats. One example is shown in figure 1. 

4. EXPERIMENTAL RESULT 

To demonstrate the capabilities of the tandem repeat identi-
fication algorithm experiments were performed on some 
actual DNA sequences available on the National Centre for 
Biotechnology Information (NCBI) website 
(http://ww.ncbi.nlm.nih.gov). Some of the typical results are 
provided in this section. We also provide results obtained 
from other tandem repeat identification algorithm when ap-
plied to the DNA sequences considered for analysis. 

 
EXAMPLE 1: The analysis of Homo sapiens collagen gene, 
accession number NM_001847 of length 6574 bp (base 
pairs) containing weak tandem repeat pattern is provided in 
this example. The tandem repeat coefficient obtained for 
subsequences SA[n], SC[n], SG[n], ST[n] for window size (W) 
= 80 and maximum period (Pmax) = 20  is shown in figure 2. 
From figure 2 we notice that subsequence SG[n] have signifi-
cant repeat coefficient value from 50-4200 nucleotide posi-
tion while the other subsequences SA[n], SC[n], ST[n] have 
repeat coefficient value at about 0.3. This shows presence of 
repetitive element in SG[n]. Figure 3 shows the presence of 
period of length 9 when threshold value for repeat coefficient 
was taken as 0.7. The details of the repeat identified in the 
DNA sequence by our algorithm and SRF is provided in ta-
ble 3. However, when PE algorithm was applied on this DNA 
sequence it gave tandem repeat of period 9 and multiple of 9 
(i.e., 18, 27 and so on). This is due to problem with the PE 
algorithm because it cannot distinguish whether a repeat is of 
period ‘p’ or its multiple. However, this problem did not ap-
pear in our algorithm because of unique decomposition by 
EPSD technique. From table 3 we observe that repeat pattern 
of period-9 due to nucleotide ‘G’ is present in the input DNA 
sequence from 250 to 4200 bp. When the minimum score set 
to 30 several inexact period-9 like ours were reported by 
TRF 4.0. 
 
EXAMPLE 2: The analysis of Homo sapiens, GeneBank 
Locus: HSVDJSAT of length 1985 bp is provided in this 

example. The tandem repeat coefficient obtained for subse-
quences SA[n], SC[n], SG[n], ST[n] for window size (W) = 100 
and maximum period (Pmax) = 50  is shown in figure 4 (only 
the portion with significant repeat coefficient is shown). 
From the figure it is clear that all the subsequence have sig-
nificant tandem repeat coefficient value from 1100-1430 bp.  
For a threshold value of 0.65, periods of length 19, 29, 37, 
41, 43, 47, and 49 were reported for the subsequences and 

 
Figure 3 – Periods identified in the repeat coefficient sequence of 
SG[n] with window length=80, maximum period =20, and thresh-

old = 0.7 

 

 
Figure 2 – Repeat coefficient of subsequences SA[n], SC[n], SG[n], ST[n] for window length = 80 and maximum period = 20 

Table 3 – Repeat pattern identified in H. Sapiens collagen gene
 Period Starting 

position 
Repeat 
length 

Repeat 
pattern 

257 90 - g g - - - - - - 
347 82 - g g - - - - - - 
2084 105 - - - - - - - g g 
2565 123 g g - - - - - - - 
2824 97 - - g g - - - - - 
3528 158 - - - - - - g g - 

Our Algorithm 
(window=80, 
max. period= 
20, threshold = 
0.7)   

9 

3988 81 - - - - - g g - - 
963 30 ggagaaaag TRF 4.0 

(align. parame-
ter= 2,5,7; min. 
score = 40, max. 
period = 500) 

9 
1404 29 ccaggccca 
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tandem repeats of period length 19, 29 and 47 were reported. 
The tandem repeats regions were further processed and con-
sensus pattern reported by our algorithm are 
aggctgggaggctggag, aggctgggatgctggag, tgggagaggctgggagag 
gctggga(t/g)(t/a)gc, gaggctgggagaggctgggagag-ctgggagaggct 
g-gattgctggga of period length 19, 19, 29 and 49 respectively. 
The algorithm [9] reported tandem repeats of period length 
19, 38 and other periods there were combination of period 10 
and 9 were reported. The sequence was also analyzed by 
TRF 4.0 with default parameters. The repeats of period 
length 2, 19, 49 and 10 were reported. Apart from tandem 
repeat many other periods were also reported by our algo-
rithm in each subsequence.  

5. CONCLUSION AND FUTURE WORK 

A difference in design of a tandem repeat identification algo-
rithm between signal processing approach and other tech-
niques is that the signal processing techniques require a 
threshold parameter but other techniques require parameters 
like edit distance, hamming distance and several other pa-
rameters for identifying desired tandem repeats. Since the 
knowledge of mismatch parameters in terms of edit distance, 
hamming distance and other parameters are not known to 
user in prior, the signal processing approach offers a better 
choice for identifying tandem repeat in such situations.  
The algorithm presented in this paper is based on exactly 
periodic subspace decomposition technique for identifying 
tandem repeat structures in DNA sequences. The algorithm 
runs in O(NWlgW) and is computationally faster than PE 
algorithm which runs in O(NWPmax) where N is the length of 
the analyzed DNA sequence, W is the window size and Pmax 
is the maximum period to be identified. Our algorithm also 
resolves the problems that were present in PE algorithm. The 
algorithm is designed to analyze each nucleotide sequence 
separately and later on result of individual nucleotides are 
combine together to report tandem repeats in DNA se-
quences. An advantage of using our algorithm is that in addi-
tion to finding tandem repeat our algorithm also reports the 
various periods that are present in individual subsequences. 
This helps in identifying weak tandem repeat structure as 

well as individual nucleotide periods present in the DNA 
sequence. The analysis of individual nucleotide periods could 
be helpful in understanding their role in DNA sequence. In 
future we would like to apply our algorithm for interspersed 
repeat that are present in DNA sequences.  
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