
FAST INTEGER ARITHMETIC WAVELET TRANSFORM
PROPERTIES AND APPLICATION IN FPGA/DSP SYSTEM

Wojciech Półchłopek, Wojciech Maj and Wojciech Padee*

Department of Electronics, AGH University of Science and Technology; *Warsaw University of Technology
al. Mickiewicza 30, 30-059 Cracow, Poland; *ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

phone: + (48) 12 617 27 00, fax: + (48) 12 617 30 45, email: ph@agh.edu.pl

ABSTRACT

The new fully integer processing of the wavelet scheme
compression enables very fast application and thus it can be
very useful for application in real-time systems. The most
important property of this concept seems to be the possibil-
ity of simple and fast application into FPGA chip. The new
Fast Integer Arithmetic Wavelet Transform (FIAWT) can be
a very useful tool to compute DWT (and non-decimated
DWT) for the time-restricted systems (real-time data proc-
essing) e.g. Data Acquisition (DAQ) systems with a wave-
form recorder. In this paper the authors show some impor-
tant aspects of FIAWT. The application example
(FPGA/DSP) in the ICARUS 1 DAQ system for compression
with signal recognition is included as part of this paper.

1. INTRODUCTION

Standard application of Wavelet Transform which maps
integers to integers, uses floating-point arithmetic with smart
rounding to compute the transform [1,7]. This often means
redundant processing which requires very complicated proc-
essing architecture and so it is very time-consuming. Most
of the processing stages can be omitted or simplified using
an adaptation to the integer arithmetic processing. In most
cases it is possible to apply the transform using only integer
addition and bit shifting operations. This can result in ultra-
fast processing especially when implemented into FPGA
(the bit shift arithmetic does not require any additional
logic). The application of this FIAWT is currently in phase
of testing in the ICARUS DAQ system and shows very good
compression quality and processing efficiency in the scat-
tered multi processing unit environment. The next step to
increase the overall efficiency is foreseen as an implementa-
tion of this scheme to the multi channel signal with time
division and wavelet-domain time windowing (“zero skip-
ping” algorithm) of oversampled DWT which is currently in
the phase of designing and testing.

2. WAVELET TRANSFORM WHICH MAPS
INTEGERS TO INTEGERS

The lifting scheme [7] is considered to be an efficient im-
plementation of filtering operations at each level when com-
puting a discrete wavelet transform. This is true when com-

pared with a standard DWT application. Anyway it can be
further simplified and sped-up in case of the integer version
of the transform.
The standard wavelet transform which maps integers to in-
tegers [1,4] uses floating-point processing with smart round-
ing on every lifting stage. The equations below 1, 2 and 3
show the integer lifting algorithm while figure 1 shows the
application scheme.

Splitting: sj : sj(e), sj(o) (1)

Prediction: dj-1 = sj(o) – floor(P{ sj(e)}+0.5) (2)
Update: sj-1 = sj(e) + floor(U{ dj-1}+0.5) (3)

where: floor means rounding down to integer (omitting the
fractional part of data)
This standard algorithm can be computationally inefficient
and often requires a very fast floating point processing unit
to apply in the real-time. The floating-point operations are
very “hardware-consuming” and considerably slow when
applied in FPGA or VLSI chip.
The whole algorithm can be implemented using only integer
arithmetic - every floating-point division can be replaced by
bit shifting and the rounding stage is omitted. In certain
cases of DWT (i.e. linear prediction), the whole algorithm
can be applied using only a few integer processing opera-
tions and thus ultra-fast processing can be achieved. Of
course in this case a nonlinear transform is obtained, but in
any case integer version of WT is nonlinear [1, 4]. Anyway,
it is possible to find a transform which can be even more
complicated when applied in FIAWT, in comparison with
standard floating-point arithmetic.
This approach can be the fastest application of the DWT and
can be also easily implemented in VLSI or FPGA chip.
Complex floating-point multiplication and smart rounding to
integers can be replaced by simple and fast binary shifting
and integer adding.

3. FAST INTEGER ARITHMETIC WAVELET
TRANSFORM

It is intuitively clear that every rational number from 0 to 1
can be well approximated by weighing sum of the negative

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

powers of two, e. g. this is the concept of fractional arith-
metic of DSP processors:

lkNlka
l

k
c

nM

n
nm ≤∈







≈= +

=
∑ ,,,

2

1

1

 (4)

where: M - number of bits for approximation (maximum
order of the shifting stage in the FIAWT algorithm),
an ∈{0 ,1};

According to equation 4 , every floating-point multipli-
cation by DWT filter coefficient (from 0 to 1) with rounding
can be computed as a sum of binary shifted data (see fig. 3
and 4). Depending on the coefficient value or approximation
quality a transform more or less complicated in application
can be obtained. One of the easiest to apply is Linear Predic-
tion Interpolating Wavelet Transform - biorthogonal (2,2) -
see fig. 4.

This transform has been applied to the ICARUS DAQ
system and all the compression results were obtained with
this ultra fast and simple transform [8]. The concept showed
in fig. 3 is easy to simplify (figure 4 shows how the specific
transform can be simplified). The whole transform (2,2) can
be computed using only four integer adding blocks and two
bit shifters. In the same way most of the transforms can be
simplified, although it is possible to obtain a scheme more
complicated in application, especially for the higher order
transform which uses high precision coefficients (expressed
by large number of bits).

sj
(e)

sj

sj
(o)

Merge P U

Synthesis
sj

(e)

sj

sj
(o)

Split P U

Analysis

dj-1

sj-1

S out

Const

value

Const

value

Const

value

Const

value

Rounding
to integer

S in

Z-1

Z-1

Figure 1 - Lifting scheme application (a) and implementation of the
standard prediction and update filters for the integer transform (b)

According to the equations 2 and 3, the smart rounding
to integers should be done by adding the constant value equal
0.5 before omitting the fractional part of the number. This
approach enables rounding in the correct way.

This is also important when bit shifting is used – this
shifting is also some kind of rounding so the correct way is to
shift right data which is “smooth shifted left” by adding the

small constant value. This “constant value” depends on the
shifting order – and equals:

N
valueConst 25.0 ⋅= (5)

where: N – order of the shifting stage
It is easy to see that it is possible to use the same shifters

in several “SMART Bit shift & add” blocks as well as con-
stant value adders – see fig. 4. This approach can simplify the
whole algorithm and its application, and thus reduce “hard-
ware-consumption” and increase overall speed.

 SMART Bit shift & add S in

Z-1

S out

Z-1

 SMART Bit shift & add

 SMART Bit shift & add

Figure 2 - FIAWT implementation of the prediction and update
filters for the integer transform

Bit shift

Const

value

Bit shift

Const

value

Bit shift

Const

value

S out

S in

Figure 3 - SMART Bit shift & add block - application scheme

Bit shift S in

Z-1

Const

value

S out

Figure 4 - Predictor (shift by one bit, constant value equal to 1)

and update block (shift by two bits, constant value equal to 2) for
the linear prediction biorthogonal (2,2) and reverse bior(2,2)

(a)

(b)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

4. COMPRESSION RESULTS

The initial state simulations were done in the Matlab envi-
ronment. Compression results were obtained by the set of
programs written in the Matlab environment and then com-
piled to C++ by the Matlab Compiler and finally via C++
data analysis program called Qscan3 with the compression
interface. This application is designed for processing the
ICARUS [9] [10] raw data files 2,3.
 Figures 5 and 6 show “the subjective compression
quality” (views of hard to compress event 959 obtained us-
ing the Qscan3 program) which can be considered to be very
high while the compression factor is also high (30-70). Two
dimensional image-like views (fig. 5) show almost no dif-
ference, small differences between the original and com-
pressed signal can be seen on the one dimensional view (see
fig. 6). This “subjective quality” remains good also for the
higher compression ratios while the real quality-degradation
results during extraction of the physical parameters from the
data – for details see figure 7. The most important parameter

P3 corresponds to the ∆mp – particle energy deposit and has
been reconstructed with high accuracy (1,2% mean error for
CR=30); parameters P2 (σ) and P4 (ξ) have been obtained
as the Landau distribution fitting parameters and are of
much lower importance [9].

Figure 6 - 1-D compression view – current wire (1-D vertical
scan) CR = 30.2

Figure 5 - 2-D compression views of the ICARUS event file 2 (220MB compressed to 3.5MB) – compression for this plane 42.50 times.
Upper - original file, lower - processed file.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Compression ratio and enegy deposit reconstruction error

0

10

20

30

40

50

60

70

80

10 12 14 16 18 20 22 24

Compression parameter (modified threshold)

 mean CR

P2 mean error [%]

P3 mean error [%]

P4 mean error [%]

Figure 7 – Compression quality: Compression ratio and degrada-

tion of the Landau distribution fitting parameters (P3 – energy
deposit of particle)

5. FIAWT FPGA IMPLEMENTATION

The real-time compression application is based on FIAWT
(bior(2,2)) and thresholding technique with fast signal recog-
nition based on oversampled FIAWT (rbio(2,2)) [8],[9] ap-
plied in the FPGA.

The FPGA DWT application is based on VHDL behav-
iour description of the DWT block shown in figure 1 (analy-
sis block) and figure 4 (simple filter).
The module input and output signals are described below:

Figure 8 –Input and output signals description

The DWT module operates in a synchronous way, and
fully implements digital signal analysis block shown in fig-
ure 1 with one data input, two data outputs (both for S and D
signals), system clock and reset signals and additional two
control signals (used for data synchronization).

Data input (as well as data asserted to S output) is 10 bit
wide and is interpreted by the device as an unsigned number.
Data output "D" (detail) is a 10 bit signed number. The con-
trol signals DinRDY and DataoutACK take part in data flow
process: input data is accepted when DinRDY is HIGH on
the rising edge of the system clock. DataOutACK function is
to provide information to the other devices (next stage DWT)
connected to this module when the results are ready.

The whole device is controlled by a simple Finite State
Machine (FSM), whose main tasks are to gather data deliv-
ered to the device input, assert results on the outputs and
read/assert control signals. Its functional diagram is shown
above (fig. 9). The FSM waits until two data samples are

delivered to the device input, then it activates arithmetic
modules which are responsible for the algorithm implemen-
tation (FSM implements “mirror extension” by doubling the
first input sample), then asserts calculation results and con-
trol signals to theirs outputs.

Figure 9 – Control module flow diagram

Before the device is ready to accept new data (next two

samples) a three clock cycles delay is required (for arithmetic
modules and FSM). This three clock cycles delay condition
was met by assuming that the device clock is at least three
times faster than the input data clock.

DATA
BUFFER

2

DATA
BUFFER

1

BUF cons t

DATA
BUFFER

3

BUF c ons t

DATA
BUFFER

4

Control (FSM)

Sout

Dout

Din

Control
signals

Control
signals

U filter

P filter

control

c ontro l

Figure 10 – Simplified post-synthesis device schematic

The simplified post-synthesis schematic is shown in fig-
ure 10. The P and U filter, data buffers and main FSM are
clearly visible as separate modules. Every single action, such
as latching data into input buffers, activating P and U filters,
adders and intermediary buffers, is initiated by control sig-
nals delivered from FSM module. The filter schematic can be
compared with its functional description shown in figure 4 to
see how each processing step was implemented: the delay
module shown in figure 4 was implemented as a single buffer
with a multiplexer box, and data shifting as a simple bus re-
routing with a sign extension.

P O W E R O N
m odule rese t

Inco m ing
sam ple?

Loa d da ta

Y es

N o

N o

Y es

Execu te P fi lte r
an d substract it’s resu lt from odd

sam ple

Enou gh fo r
filte r execu tion

Execu te U filte r
a nd add it’s resu lt to even sam ple

S end resu lt

Data in

DinRDY

CLK
RESET

S

D

DataOutACK

DWT

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

The synthesized project was implemented into the spe-
cific FPGA device - Xilinx XC3S1500FG456-4 (speed grade
4 - 3,328CLBs). The final FPGA design consists of eight
stage DWT (bior (2,2)) and six stage simplified oversampled
DWT (rbio (2,2)) used for data recognition in each of the
sixteen data channels sampled at 2,5MHz (multiplexed into
40 MHz data stream) [10]. Each DWT stage resulted in the
utilization of 54 slices (4 slices = 1 CLB) and could operate
at frequencies up to 50MHz. The test project (which consists
of simple DWT stage module and additional test module)
was able to operate at frequencies up to 75 MHz

6. CONCLUSIONS

The new fully integer processing of the wavelet scheme
compression enables a very fast application and thus it can
be very useful in the application in real-time systems. The
most important property of this concept is the possibility of
a simple and fast application into FPGA or ASIC chip. Until
now the online compression has been applied in part of the
DAQ system only for testing purposes. The final application
is foreseen in scattered multiprocessing units DAQ architec-
ture in mixed TI-DSP/Xilinx-FPGA system.

7. ACKNOWLEDGMENTS

The work reported in this paper is supported by the Polish
national grant: 3 T11C 008 27. Many thanks for the ICARUS
Collaboration - especially to Sandro Centro (INFN Padova)
and Agnieszka Zalewska (IFJ Krakow) for cooperation sup-
port.

REFERENCES

[1] Sweldens W., Schroder P., “Building your own wave-
lets at home”, Wavelets in Computer Graphics, pages
15-87, ACM SIGGRAPH Course notes, 1996

[2] Uytterhoeven G., Roose D., Bultheel A., “Wavelet
transforms Using the Lifting Scheme”, Report ITA –
Wavelets –WP1.1, 1997

[3] Donoho D. L., “Interpolating wavelet transforms”
Preprint, Department of Statistics, Stanford Univer-
sity 1992

[4] Caldebank A. R., Dauberchies I., Sweldens W.,
Boon-Lock Yeo, “Wavelet transforms that map inte-
gers to integers”, Technical report, Department of
Mathematics, Princeton University 1996

[5] Sweldens W., “The lifting scheme: A custom-design
construction of biorthogonal wavelets”, Appl. Coput.
Harmon. Anal., 3(2), pp. 186-200 1996

[6] D. L. Donoho, I. M. Johnstone, “Adapting to un-
known smoothness via wavelet shrinkage”, J. Amer.
Statist. Assoc., 90, pp. 1200–1224, 1995

[7] Daubechies I., W. Sweldens, “Factoring wavelet
transforms into lifting steps”, J. Fourier Anal. Appl.,
4 (3), pp. 245–267, 1998

[8] W. Półchłopek, M. Ziółko, “Wavelet Transform
Compression and Denoising in Real-Time System”
Proceedings of CNDSP Conferrence, Stafford, pp.
141-148, 2002

[9] Półchłopek W., Ventura S., Pietropaolo F., “Wavelet
Transform Compression and Denoising in Real-Time
System (Proposal for the ICARUS DAQ System)”
ICARUS TM2002/12 , Padova 2002 - ICARUS col-
laboration internal note: for pdf copy write to author

[10] S. Amerio,..., W. Półchłopek ,.... (ICARUS Collabora-
tion) “Design, construction and tests of the ICARUS
T600 detector”, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, Vol-
ume: 527, Issue: 3, July 21, 2004, pp. 329-410.

1 ICARUS (Imaging Cosmic And Rare Underground Signals) is one of the biggest experiments in the nuclear physics – for details see www
pages at: http://www.aquila.infn.it/icarus/
2 ICARUS packet raw data files consist mostly of the data packets of 16 channels 4096 samples 16 bits each. The whole event file is more
than 220MB of data (over 13000 channels).
3 Qscan is a C++ Qt based application written by ICARUS collaboration for offline data viewing, analysing and processing.
For ICARUS collaboration members see L’Aquila pages at: http://www.aquila.infn.it/icarus/

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

