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ABSTRACT

The emergence of smart low-power devices (motes), which
have micro-sensing, on-board processing, and wireless com-
munication capabilities, has impelled research in distributed
and on-line learning under communication constraints. In
this paper, we show how to perform a classification task in
a wireless sensor network using distributed algorithms for
Support Vector Machines (SVMs), taking advantage of the
sparse representation that SVMs provide for the decision
boundaries. We present two energy-efficient algorithms that
involve a distributed incremental learning for the training of
a SVM in a wireless sensor network, both for stationary and
non-stationary sample data (concept drift). Through analyti-
cal studies and simulation experiments, we show that the two
proposed algorithms exhibit similar performance to the tradi-
tional centralized SVM training methods, while being much
more efficient in terms of energy cost.

1. INTRODUCTION

One of the most important tasks to be performed in a wire-
less sensor network (WSN), is classification, that is, it is im-
portant to infer whether the samples measured by sensors
in a WSN belong to a certain hypothesis (class) or not. It
is well known that Support Vector Machines (SVMs) have
been successfully used as classification tools in a variety of
areas [1, 2, 3]. Training a SVM calls for solving a quadratic
programming (QP) problem in a number of coefficients equal
to the number of training examples. Because of this, for very
large data sets, standard numeric techniques for QP become
infeasible. To address the constraints associated with large
data sets, various decomposition methods have been pro-
posed. Some techniques decompose the problem into man-
ageable subproblems over part of the data [4], while others
perform iterative pairwise [5] or component-wise optimiza-
tion [6].

A disadvantage of these techniques is that they may give
only an approximate solution and may require many passes
through the whole data set to reach a reasonable level of con-
vergence. In principle, all working methods used to train
SVMs, especially shrinking [4], can be considered as in-
cremental learning algorithms, since only a small part of the
samples is actually used for optimization in each step. How-
ever, all these approaches are not useful for true distributed
learning in the context of WSNs, where there are important
constraints in terms of memory and power available at the
sensor nodes. This is because in all these methods, none
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of the samples are discarded during the training and thus all
of them have to be considered in each working set selection
step. As a consequence, both the memory and the power re-
quired are too high to be used in WSNs.

At the same time, as the research field of mobile comput-
ing and communication advances, so does the idea and the
need of a distributed, ad-hoc wireless network of hundreds
to thousands of microsensors, which can be randomly scat-
tered in the area of interest. Network microsensors enable
a variety of new applications such as environmental moni-
toring, warehouse inventory tracking, location sensing, pa-
tient and structural health monitoring. Moreover, in the near
future, the development of visual sensor networking technol-
ogy employing content-rich vision-based sensors will require
efficient distributed processing for automated event detection
and classification. Hence, the ability to incrementally learn
from batches of data with minimal communication require-
ments is important for real-world applications. Distributed
learning may be used to keep the memory and energy con-
sumption of the learning algorithm at a manageable level as
well as to make predictions at a time when the whole data is
not yet available. This kind of incremental algorithms for-
mulate the exact solution at stepi +1 in terms of the solution
at stepi and the new set of available data samples.

An appealing feature of SVMs is the sparseness represen-
tation of the decision boundary they provide. The location of
the separating hyperplane is specified via real-valued weights
on the training samples. Training samples that lie far away
from the hyperplane do not participate in its specification and
therefore receive zero weight. Only training samples that lie
close to the decision boundary between the two classes, the
so-calledsupport vectors, receive non-zero weights. There-
fore SVMs seem well suited to be trained incrementally. In
fact, since their design allows the number of support vectors
to be small compared to the total number of training samples,
they provide a compact representation of the data, to which
new examples can be added as they become available. In our
work, we take advantage of this compact representation in
order to design an energy-efficient distributed learning algo-
rithm for WSN.

Various incremental algorithms have been recently pro-
posed [7, 8, 9, 10] for training a SVM. The key idea in all
of them is to preserve only the current estimation of the de-
cision boundary at each incremental step along with the next
batch of data (or part of it). In this paper, we first provide in
Section 2 a brief description of the key idea of SVMs; Sec-
tion 3 presents two distributed algorithms for training a SVM
as applied to the classification problem in a WSN. In Sec-
tion 4, we present a set of simulation experiments in order to
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assess the performance of our proposed approaches compar-
ing them to the performance of a representative centralized
SVM algorithm.

2. SUPPORT VECTOR MACHINES

Given a training setS= {(xi ,yi)}n
i=1, support vector learn-

ing tries to find a hyperplane, determined by a vectorw with
minimal norm and an offset vectorb, that separates the train-
ing data{xi} into two classes denoted byyi = {−1,+1}.
Let SVM= {w,b} denote the separating hyperplane. To find
such a hyperplane, one must solve the following quadratic
problem [11]:

min
w,ξ

Φ(w,ξ ) =
1
2
‖w ‖2 +C

n

∑
i=1

ξi , (1)

subject to
yi(w ·xi +b) ≥ 1−ξi and

ξi ≥ 0, for i = 1,2, ...n,
(2)

whereb determines the offset of the plane from the origin,
the set of variables{ξi}n

i=1 measures the amount of violation
of the constraints, andC is a parameter that defines the cost
of constraint violation. The vector of minimal normw that
represents the resulting separating hyperplane

w =
l

∑
i=1

αiyixi

is expressed by means of a linear combination of the so-
called support vectors, i.e., the training sample vectors
{xi}l

i=1 corresponding to thel non-zero Lagrange multipli-
ers {αi}l

i=1, calculated during the optimization process1.
In practical settings, the number of support vectors is usu-
ally quite small compared to the number of training samples
(l << n). The decision function for classifying a new point
x can be easily written as

f (x) = sign(
l

∑
i=1

yiαix ·xi +b) (3)

and the corresponding decision rule can be expressed as fol-
lows: a new test vectorx belongs to class1 when f (x) > 0
while x belongs to class−1 when f (x) < 0.

3. DISTRIBUTED TRAINING OF A SVM IN A WSN

Let us consider a deployment ofm sensors taking measure-
ments in a certain area. Our goal is to be able to train a SVM
in an efficient and distributed fashion so that: a) we can get
good classification results on test data and b) our algorithms
can be used easily in the context of WSN, where the training
must take place across sensors.

Notice that under the traditional centralized approach, the
measurements should be sent first to a base station, where all
the processing takes place and a decision boundary that sep-
arates the two classes is found. However, direct communica-
tion between each sensor and the base station (end-user) in
a WSN is both cumbersome (due to the usually large num-
ber of sample vectors involved) and highly energy inefficient
for a variety of reasons. First, the base station may be far
away from the sensing area, and thus direct communication

1Notice that for simplicity, we assume that the sample vectors are enu-
merated such that the support vectors correspond (in any pre-agreed order)
to the firstl sample vectors

of raw sensor data to the base station can be quite energy
costly. In addition, as the number of sensors in a network
grows larger and larger, it becomes difficult to manage the
vast amount of data collected from the sensors. Also, with
increased node density in one location, multiple sensors may
view the same event giving rise to sample vectors that are
close to each other, and thus, may be redundant in terms of
being useful to determining the separating plane.

On the other hand, as shown in previous work (e.g. [12]),
in various practical problems related to WSN, it is possible
to design energy-efficient clustering network protocols that
greatly reduce the power dissipation. In such protocols, sen-
sors are organized into local spatial clusters. Each cluster
has a clusterhead, a sensor which receives data from all other
sensors in the cluster, performs data fusion, and transmits the
results to the base station. This greatly reduces the amount
of data sent to the base station and thus achieves an improved
energy efficiency. With this motivation, next, we propose two
novel distributed algorithms in order to train incrementally a
SVM in a WSN scenario using a energy-efficient clustering
protocol.

3.1 Distributed Fixed-Partition SVM training

Typical fixed-partition techniques divide the training samples
in batches clusters of sample vectors of fixed size [9]. These
kind of algorithms seem appropriate for training incremen-
tally a SVM usingonly partial information at each incre-
mental step [8]. For the WSN scenario, we propose to use
a Distributed Fixed-Partition algorithm (DFP-SVM) where
the final estimation of the separating hyperplane is obtained
incrementally through a sequence of incremental steps and
where each incremental step takes place at a given cluster.

The key motivation behind this incremental algorithm is
that as the number of support vectors is typically very small
compared to the number of training samples, the data of pre-
vious clusters can be compressed to their corresponding es-
timated hyperplane (support vectors and offset). Thus, in-
stead of transmitting to the next clusterhead all the measure-
ments stored in the previous one, only the current estima-
tion of the hyperplane is transmitted, which reduces very
importantly the energy spent. More specifically, suppose
there areK clusterheads in the sensor deployment. For each
i = 1,2, . . . ,K, the estimationSVMi = {wi ,bi} at clusterhead
i is obtained combining the previous estimationSVMi−1 cal-
culated at clusteri−1 and all the sample vectors measured
by the sensors belonging to clusterheadi; after this estima-
tion is obtained, thei-th clusterhead transmitsSVMi to the
(i +1)-th clusterhead, Figure 1.

As we show in our experimental results of Section 4, after
only a complete pass through all the clusters, a good approxi-
mation of the optimal separating plane is obtained, that is, the
separating hyperplane is very similar to the one obtained us-
ing a centralized energy-inefficient algorithm, where all the
sample data is used at once in a single training step at the
base station.

3.2 Weighted DFP-SVM training

In many real world applications, the concept of interest (de-
finition of classes to be separated) may be time-varying
or space-varying; similarly, the underlying data distribution
may change as well. Often these changes make the model
built on old data inconsistent with the new data, hence regu-
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Fig. 1. Scheme of distributed training of a SVM: For each
cluster, the estimationSVMi at clusterheadi is obtained com-
bining the support vectors(SVi−1) of the previous estimation
SVMi−1 calculated at clusteri−1 and all the sample vectors
measured by the sensors belonging to clusteri.

lar updating of the model is necessary. This problem, known
asconcept drift, complicates the task of learning in SVM. A
typical example of this phenomenon is weather prediction,
where the rules may vary radically depending on the season.

On the other hand, one may also observe changes in the
training data, which have no correspondence to controllable
parameters of the experiment [13]. For example, in engineer-
ing applications, the quality of a machine deteriorates over
the course of its life-cycle. Therefore, there is a need to have
a robust system that can adapt easily to these uncontrollable
changes.

In the case of distributed sequential training of a SVM
in a WSN, this effect is even more accentuated: As the data
is presented in several batches, changes in the target concept
may occur between different batches of data. We are inter-
ested in possible concept drifts in WSN applications. For
instance, consider a number of sensors distributed in a build-
ing, taking measurements of temperature, humidity and light
in order to determine which rooms in the building are shinny
or not. It is clear that the data distribution changes over time
depending on the time of the day. Another example is vehicle
tracking for surveillance or monitoring of a hostile environ-
ment. In this case, sensors should track all kinds of vehicles
that pass through the area and probably have different char-
acteristics such as weight, size, and shape.

We modify our previously proposed algorithm DFP-
SVM in order to make it more suitable for WSN applications
where there exist concept drifts. Our approach consists of
adapting Ruping algorithm [7] to the WSN context. We call
this algorithm as the Weighted Distributed Fixed-Partition
SVM training (WDFP-SVM).

As an illustrative example, consider the300 samples in
Figure 2 taken by300 sensors distributed in a field. Let us
assume that the data is divided into two batches, such that the
first cluster contains the sample vectors withx < 0. Training
the SVM on this first cluster of data leads to the decision
boundary denoted by line (a) in Figure 2. If we perform the
distributed training for the SVM according to the DFP-SVM
algorithm with two incremental steps, the resulting decision
boundary (line (b)) largely ignores the old support vectors
and it practically corresponds to the decision boundary that
would have been learned if only the second cluster of samples
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Fig. 2. Discriminant planes of the training set resulting from:
(a) the first incremental step of the DFP-SVM, (b) the second
incremental step of the DFP-SVM, and (c) the centralized
algorithm.

had been used ignoring the first cluster. Although in general,
this is a desired property of the SVM algorithm (because it
means that the SVM is somehow robust against outliers), in
the case illustrated in Figure 2, it can be seen that most of the
outliers are the old support vectors, which causes an impor-
tant misclassification error.

To address this problem, one needs to make the error on
the old support vectors (representing the old learning set),
more costly than the error on the new samples. This can be
easily achieved by training the SVM with respect to a new
loss function [7]. Let(xi ,yi)i∈S be the old support vectors
and (xi ,yi)i∈I be the new sample vectors. The alternative
cost function that should be used instead of (1) is:

Φ(w,ξ ) =
1
2
‖w ‖2 +C(∑

i∈I
ξi +L∑

i∈S

ξi), (4)

where the parameterL increases the cost for the old support
vectors. An appropriate heuristic choice for the parameterL
is to let it be equal to the number of training samples in the
previous cluster divided by the number of support vectors.
This arises from the idea of approximating the average error
of an arbitrary decision function (over all samples) by the
average error calculated only over the support vectors. In
this way, every support vector influences a constant fraction
of all sample vectors.

4. RESULTS AND DISCUSSION

In this Section, we present a set of simulation experiments
covering both the cases with and without concept drift in or-
der to assess the performance of the two proposed distributed
SVM algorithms. We evaluate our incremental algorithms
comparing them to the traditional centralized SVM training
algorithm [4]. At the same time, we also demonstrate that
the energy consumption decreases when the SVM is trained
incrementally as compared to the centralized case.

4.1 Performance of the DFP-SVM algorithm

In the centralized algorithm proposed in [4], there is only an
evolving subset of sample data used, making it necessary to
address all the constraints associated with large data sets. In
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Fig. 3. Discriminant planes obtained using the centralized
algorithm (line (a)) and the two proposed distributed algo-
rithms DFP-SVM (line (b)) and WDFP-SVM (line (c)).

our WSN scenario, all the sample data is sent to the base sta-
tion for processing so that none of the samples are discarded
during the training and thus all samples are considered in
each working set selection step.

We consider a sensor network composed of300 nodes
uniformly distributed in the field, where each of the sensors
collects sample vectors from two classes. In our experiments,
we generate the sample data of the two classes using two
Gaussian distributions with two different mean values. Fig-
ure 3 illustrates the training set of300sample vectors gener-
ated by two Gaussian distributions with means~µ1 = [2,2] and
~µ2 = [22,2] respectively. The corresponding representation
ellipses are thus centered at(2,2) and (22,2), with eigen-
value ratiosλ1 = λ2 = 35

25 and rotation anglesθ1 = θ2 = 200,
respectively. The whole training set is partitioned into12
clusters, each one with a fixed size of25sample vectors. Fig-
ure 3 illustrates our results. Plane (a) is the decision bound-
ary found with the centralized algorithm. The planes denoted
by (b) and (c), are the decision boundaries constructed after
training the SVM using the DFP-SVM and WDFP-SVM al-
gorithms, respectively. Both distributed algorithms give a
good approximation of the decision boundary constructed
with the centralized algorithm (plane (a)), in particular, the
plane constructed using the WDFP-SVM algorithm (line (c))
coincides exactly with the one obtained using the centralized
algorithm.

We also simulated500Monte Carlo runs in order to test
the performance of these two distributed algorithms on an-
other test data set drawn from the same distributions. Fig-
ure 4 represents the average error rates (%) for our two pro-
posed algorithms as a function of the consecutive incremen-
tal steps. At each step, only the hyperplane parameters are
used together with the sample vectors of the next cluster of
nodes, and it is shown that with only one pass across the clus-
ters, both distributed algorithms converge to the same aver-
age error rate obtained with the centralized algorithm, which
requires more energy.

On the other hand, Figure 5 simulates a scenario with
a concept drift. The first cluster of data consists of mea-
surements of two Gaussians with mean vectors~µ1 = [2,2],
~µ2 = [−12,−2], eigenvalue ratiosλ1 = 2

1, λ2 = 35
25 and ro-

tation anglesθ1 = 900, θ2 = 200, respectively. The decision
boundaries for this subset of training vectors that is obtained
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Fig. 4. Performance of the training algorithms: The average
error rate of 500 Monte Carlo runs after training the SVM
for consecutive incremental steps applying the centralized al-
gorithm (line (a)), DFP-SVM (curve (b)) and WDFP-SVM
(curve b(c)).
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Fig. 5. Concept drift: Discriminant planes obtained with
the centralized algorithm (line (a)), the DFP-SVM algorithm
(line (b)) and two consecutive steps of the WDFP-SVM
(lines (c),(d)).

using DFP-SVM and WDFP-SVM, are coincident (line (d)).
At the next step, once the parameters of the estimated hyper-
plane are transmitted to the next cluster, in order to introduce
the concept drift, we now assume that the next batch of sam-
ple vectors consists of samples from the following2 classes:
one class is the same first Gaussian of the previous batch
(mean vector~µ1 = [2,2]), while the other class consists of a
shifted Gaussian with mean vector~µ2 = [16,−3]. Since the
DFP-SVM algorithm ignores the hyperplane obtained from
the fist batch of sample vectors, the resulting plane illus-
trated in Figure 5 (line (b)) almost corresponds to the de-
cision boundary that would have been learned using only the
second batch of samples alone. However, the WDFP-SVM
constructs a plane (line (c)) that lies much closer to the result
obtained in the centralized case (line (a)).

4.2 Energy efficiency of the DFP-SVM algorithm

At this point we would like to investigate the benefits in terms
of energy in a wireless sensor network using these distributed
algorithms for training a SVM. Specifically, we are inter-
ested in the comparison of energy consumed by the proposed
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Fig. 6. Transmission path: Each clusterhead (black dot)
transmits the support vectors to the next clusterhead.

distributed algorithm to a scheme where all sensors transmit
their data to a fusion center for processing.

The total energy consumed in the distributed training can
be expressed as the sum of the energy consumed in each clus-
ter and the energy consumed for the transmission of the sup-
port vectors to the next clusterhead. The energy cost for the
transmission of a measurement from node A to node B is
proportional to the squared distance of node A to B.

Consider the arrangement ofn sensors in a cubic lattice
where each sensor is at distanced of a neighbor sensor. Now,
separate the sensors inK clusters of(2k+1)×(2k+1) sensors
each. Each sensor consumesEK(d) energy for transmitting its
measurements to the clusterhead and each cluster consumes
Esv(d) energy for the transmission ofNi support vectors to the
next clusterheadi +1.

The total energy consumed for the distributed training of
a SVM after one pass of all K clusterheads through the path
depicted in Figure 6 using the proposed algorithms isEd(d) =
Esv(d)+EK(d)K, or:

Ed(d) = (2k+1)d2(N1 +N2 + ...+NK−1)

+(6d2k(k+1)+8d2
k−1

∑
j=1

k− j

∑
i=1

2(k− i)+
k−1

∑
j=1

j(k− j))K.

On the other hand, the energy cost for the direct transmission
of the measurements of(2k+1)× (2k+1) sensors to the base
station is given by the expression:

Ec(d) = 8d2
k−1

∑
j=1

k− j

∑
i=1

(i2 +(k− i +1)2)+2d2k(k+1)(2k+1).

We simulated500 Monte Carlo runs in order to esti-
mate the energy consumed during the distributed training
of a SVM. For a scenario ofn = 225 sensors in a square
grid arrangement separated inK = 9 clusters consisting of
25 sensors each (hencek = 2), the energy cost for the train-
ing of the SVM using the proposed distributed algorithm is
Ed(d) = 3380d2 + 9 · 60d2 = 3920d2, while in the centralized
case the cost isEc(d) = 8400d2. This simulation experiment
shows that the proposed distributed algorithm is much more
efficient in terms of energy consumption than the centralized
algorithm, since it reduces the energy cost by more than 50%.

5. CONCLUSIONS

We introduced the concept of distributed training of a SVM
in a wireless sensor network. Our research was motivated
by the need to have energy-efficient distributed algorithms
to be used in large-scale WSNs, whose goal is to perform
classification tasks. We presented two distributed algorithms
for training a SVM in a WSN. The DFP-SVM algorithm
constructs a hyperplane that converges to the plane, which
is very close to the one obtained with a centralized algo-
rithm. On the other hand, for the case where concept drift
is present, we proposed the WDFP-SVM algorithm which
adapts to the non-stationarity. We presented several simula-
tion experiments in order to assess the performance of our
proposed approaches. Both algorithms performed only one
sequential pass through clusters of sensors.
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