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ABSTRACT 
A new DOA (direction of arrival) estimation method is pro-
posed for 3D (three-dimensional) multiple source signals 
using independent component analysis (ICA). The multiple 
source signals travel and mix in a reverberant environment 
and are observed at a sensor array. These observed signals 
are separated based on independent component analysis 
and the DOAs of source signals are estimated. This method 
can deal with signals up to the number of sensors while the 
conventional method based on subspace analysis, such as 
the well-known MUSIC algorithm, can merely be applied to 
those cases where the number of source signals is less than 
that of the sensors. A two step estimation method is also 
proposed to improve the estimation accuracy and the disper-
sion of the estimated DOAs. Experimental results reveal that 
the proposed method is better than the MUSIC algorithm 
from the perspective of small dispersion. 

1. INTRODUCTIONN 

DOA estimation is a very important technique both in wire-
less telecommunication systems and audio/speech process-
ing systems [1, 2]. The estimated DOAs of incoming signals 
can be used to suppress the interference and enhance the 
desired signal in an adaptive array antenna system. In a TV 
conference system, the estimated DOAs of speech signals 
can be applied to a video camera and drive the camera in the 
direction of the speaker. Another applicable field of DOA 
estimation is robotics.  

To estimate the DOA, a variety of approaches have been 
proposed in previous works such as [3, 4]. In recent years, 
BSS (blind source separation) based on ICA has been a sig-
nificant area of focus, which reconstructs the original source 
signals from their mixtures without training signals. If the 
signals are mixed instantaneously, the separating matrix can 
be simply obtained from the ICA solution. In a reverberant 
environment, however, the mixture is convolutive and a ma-
trix whose elements are filters is necessary to perform the 
separation. An alternative approach for the separation is the 
frequency domain BSS, where the convolutive mixture is 
converted into a set of instantaneous mixtures, that is, into 
the instantaneous mixtures in each frequency bin, and the 
elements of the separating matrices are simply complex val-
ues, but not filters. The cost of using the frequency domain 

BSS is the permutation ambiguity. If we know the directions 
of the source signals, we can align the signal order and re-
construct the separated source in the time domain. This is the 
motivation for estimating DOAs using ICA. The basic con-
sideration of estimating DOA by ICA is using the direction 
information contained in the separating matrix of ICA. 

To solve the permutation inconsistency problem, a DOA 
estimation method was proposed based on directivity pat-
terns [5]. This method uses the separating matrix of ICA to 
plot directivity patterns and searches the nulls as the incident 
directions. Two sensors were spaced close enough to ensure 
no grating nulls appeared over the entire voice spectrum. It 
was later extended to arbitrary sensor spacing and the null 
searching was performed at lower frequencies when large 
spacing was used [6]. This method is effective in cases where 
there are only two signals but difficult to apply when there 
are 3 signals. To handle estimating DOAs for more than two 
signals, Sawada et al. proposed a method directly calculating 
the incident angles, using the inverse of the ICA separating 
matrix with a linear sensor array [7]. This method can deal 
with signals up to the number of sensors, and because it is 
unnecessary to search the nulls of directivity patterns, the 
calculation cost is reduced. Due to the symmetry of a linear 
array, the angles from a single broadside can merely be esti-
mated. By orienting pairs of sensors in different directions, 
this method was extended to estimate angles from arbitrary 
azimuths around the array [8]. Since pairs of sensors inherit 
the concept of the linear array, this extension can only handle 
signals from the horizontal plane and no information on ele-
vation can be obtained.  

In a real environment, however, a source signal is lo-
cated in a three-dimensional space and arrives at a receiver in 
not only an azimuth, but also in an elevation. To determine 
the characteristics of source signals, such as DOAs or loca-
tions, azimuth only is insufficient. If another parameter de-
scribing 3D DOA can also be obtained, signals with the same 
azimuth but different elevations are expected to be distin-
guishable. Therefore, there is significant potential for the 
enhancement of signal separation when the information of 
3D DOA is applied to solve the permutation inconsistency 
problem in BSS. 

In this paper, we propose a DOA estimation method with 
ICA for 3D signals in Section 2. After giving a definition of 
triangle linearity, which is used to adaptively select a better 
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sensor combination, we propose an accuracy enhancement 
method in Section 3. Experimental results in Section 4 reveal 
that the proposed method is better than the MUSIC algorithm 
from the perspective of small dispersion and finally we 
summarize the paper in Section 5. 

2. 3D DOA ESTIMATION METHOD WITH ICA 

In this paper, we assume that the sensors are arbitrarily lo-
cated in the X-Y plane and the number of sensors M is 
greater than or equal to that of signals L. The source signals, 
propagating through the space, are mixed and received by the 
sensors. The sensor outputs can be expressed as   

1 0

( ) ( ) ( ) ( )  ( 1, , )
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x t h k s t k n t i M
∞

= =

= − + =∑∑   (1) 
 
where s l  is the l-th source signal, hil the impulse response 
from the l-th source to the i-th sensor and ni the Gaussian 
sensor noise.  

Applying the Fourier transformation to (1), we get the 
observed signals in the frequency domain,  

( , ) ( ) ( , ) ( )X f t H f S f t N f= +                  (2) 
 
where X ( f , t ) = [ x 1 ( f , t ) , … , x M ( f , t ) ] T  is the observed 
signal vector, S ( f , t ) =  [ s 1 ( f , t ) , … , s L ( f , t ) ] T  the source 
signal vector and N ( f )  the noise vector in frequency f, re-
spectively. H ( f )  is the M×L complex mixing matrix in 
which the l-th column represents the transfer function from 
the l-th source to the sensors. The superscript T denotes trans-
position. The purpose of ICA in the frequency domain is to 
find a separating matrix W ( f )  in each frequency bin so that 
the observed signals can be separated into individual signals, 
denoted as a vector Y ( f , t ) .   

( , ) ( ) ( , )Y f t W f X f t=                         (3) 
 

The separated signal vector Y ( f , t )  is an estimation of 
the source signal vector S ( f , t ) . If the separating matrix has 
converged and the noise can be ignored, the following for-
mula holds:   
             ( , ) ( ) ( ) ( ) ( ) ( , )Y f t D f P f W f H f S f t=         (4) 
 
where D ( f )  and P ( f )  are the scaling matrix and  the per-
mutation matrix, respectively. Then the pseudo inverse (or 
Moore-Penrose inverse) of the separating matrix can be ob-
tained and expressed as follows:   

( ) ( ) ( ) ( )W f H f D f P f+ =                    (5) 
 
If the number of sensors is equal to that of source signals 
(M=L), the pseudo inverse matrix regresses to the normal 
inverse. In a real environment, however, separation errors 
and noise exit, and the inverse of the separating matrix be-
comes an approximation of the mixing matrix.   

Although the signals are mixed in a reverberant condi-
tion, we can approximate the elements of the mixing matrix 
in (2), which is the frequency response of the impulse re-
sponse, as follows:  

{ }2
( ) exp ( , )T

ml ml m l l

f
H f a j r k

v
π

θ φ= ⋅           (6) 
 

where aml is the gain, ( , , )T
m m m mr x y z=  the coordinate vec-

tor of the m-th sensor, v the velocity of the signal, and 
( )( , ) sin cos ,sin sin , cos T

l l l l l l lk θ φ θ φ θ φ θ=  is the look 
direction of the l-th signal. We select 3 sensors that are not 
aligned, say sensor 1, 2 and 3, to calculate the azimuth and 
zenith angles. The arbitrary scaling can be removed by the 
ratio of two elements in the same column of the mixing ma-
trix H ( f ) . (7) and (8) provide the element ratios correspond-
ing to sensor 1 and 2, and sensor 1 and 3, respectively.   
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Following the argument yields the phase difference between 
two sensors and solving the simultaneous equations on phase 
difference, we obtain  

    1 3 1 1 2 1
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where  

( ) ( )1 1 2/ 2 /l lA arg W W f vπ+ +=                   (11) 

( ) ( )1 1 3/ 2 /l lB arg W W f vπ+ +=                   (12) 
 
We define the right hand of (9) and (10) as A and B, respec-
tively, then the azimuth and zenith angles can be obtained 
from the following formulas, respectively:    

( )l arg A jBφ = +                                (13) 

 1 2 2sinl A Bθ −= +                          (14) 
 
where j is the imaginary unit. Since the selected three sen-
sors are out of alignment, the denominators in (9) and (10) 
will not become zero. Because the sensor array locates on 
the X-Y plane, it cannot discriminate two signals from the 
upper and lower half space respectively, and we confine the 
estimation to the upper half space, meaning 0 90θ≤ ≤ ° .  

3. IMPROVING ESTIMATION ACCURACY 
WITH THE TWO STEP METHOD 

The previous section revealed that 3 sensors that are not 
aligned are necessary to estimate the 3D DOAs. If the sensor 
number is more than 3, we have many choices to select a 
combination of the 3 sensors. Therefore, we may ask 
whether there is an optimal or at least a better combination 
than a fixed one.  

In this section, we firstly give a definition of triangle 
linearity to describe the degree of approximation of a triangle 
to a line. Then, we give a two step estimation method to en-
hance the estimation accuracy.  
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sensor1 sensor2

sensor3

3.1 The definition of the linearity of a triangle 
From our experience, we can judge which of two trian-

gles is more similar to a line in configuration. When the third 
apex goes toward the line connecting the other apexes, this 
triangle converts toward a line. Two triangles are plotted in 
Fig. 1 and we can easily state that the triangle in Fig. 1 (b) 
resembles a line more approximately than that in (a), even 
though we just simply shifted sensor 2 to the left. Here we 
give a definition of linearity concerning a triangle.  

 

sensor1 sensor2

sensor3

 
              (a)                                     (b) 

Fig. 1. Illustration of the linearity of triangles.  
 

Definition: The linearity of a triangle is defined as the differ-
ence between the maximum interior angle and the minimum 
interior angle of the triangle as follows:   

{ } { }max mini iii
α α= −L                      (15) 

here αi denotes the i-th interior angle. From this definition, 
we know that the equilateral triangle has the most non-
linearity. 
3.2 The two step estimation method 

At first, we roughly estimate the DOAs with a fixed 
combination of 3 sensors. The configuration of the fixed 3 
sensors should have a high non-linearity so that it can deal 
with signals from arbitrary directions. The sensors should be 
spaced close enough to ensure no spatial aliasing appears 
over the entire signal spectrum. With this fixed choice, we 
use (9)-(14) to roughly estimate DOAs as the first step.  

Then, we use the DOA information obtained from the 
first step to select an optimal or a better sensor combination 
for each incoming signal. With a roughly estimated direction, 
we select two sensors which have the largest aperture to the 
direction. We then select the third sensor so that the triangle 
formed from the three sensors has the lowest linearity. With 
this kind of selected sensor combination, the phase difference 
between the sensors has been enlarged and the angle reserva-
tion can be expected to be improved, especially at low fre-
quencies.  

To avoid the spatial aliasing, the distances between the 
sensors for all roughly estimated DOAs are calculated and 
the maximum of them is converted to a half-wave length at a 
certain frequency, referred to as a threshold frequency. If a 
frequency bin does not exceed this threshold frequency, the 
DOAs are estimated again with the selected sensor combina-
tion. If the frequency bin exceeds the threshold, the DOAs to 
be estimated are obtained from the fixed sensor combination, 
or estimated from other closer sensor combinations.  

4. EXPERIMENTAL RESULTS 

Experiments were conducted to show the effectiveness of the 
proposed methods and for a comparison with the MUSIC 

algorithm for 3D signals. We briefly describe the MUSIC 
algorithm in the following subsection.  
 
4.1 The MUSIC algorithm for 3D DOA estimation 

The MUSIC algorithm proposed in [3] is a well known 
method for estimating the DOAs of signals. The correlation 
matrix of the observed signal vector 

           ( ) { ( , ) ( , )}H
XXR f E X f t X f t=    

is eigenvalue decomposed and the M-dimensional space is 
divided into a signal subspace and a noise subspace accord-
ing to the eigenvalues and the eigenvectors. Here E and H 
denote expectation and conjugate transpose. The decom-
posed correlation matrix can be expressed as 

1 1( ) ( ) ( , , , , )( )H
XX L N L L M L NR f E E diag E Eλ λ λ λ+=  

where 1 1, , ,L L Mλ λ λ λ
+

≥ =≥ > = are eigenvalues corre-
sponding to L signals and the noise, and EL and EN are the 
matrices composed of the corresponding eigenvectors. Since 
the signal subspace is orthogonal to the noise subspace, 

( , ) ( , )H H

N Na E E aθ φ θ φ  will become zero when the steering 
vector ( , )a θ φ  coincides with one of the signal directions 

( , ),  1, 2, ,l la l Lθ φ = . Therefore, we can use the following 
MUSIC spectrum to search for L peaks that correspond to L 
signal directions.  

( , ) ( , )
( , )

( , ) ( , )

H

H H
N N

MU
a a

P
a E E a

θ φ θ φ
θ φ

θ φ θ φ
=           (16) 

 
To utilize the MUSIC algorithm to estimate DOAs, the 

noise subspace is necessary. This means that the number of 
signals L must be less than that of sensors M. The MUSIC 
algorithm cannot handle signals in the same number as sen-
sors. 
4.2 The experimental results of the proposed method 

and the MUSIC algorithm  
A planar array of 6 omnidirectional microphones, in-

stalled in a plastic box of L11.2W7.2H3.2 cm, was placed in 
the middle of a soundproof chamber shown in Fig. 2. Around 
the microphone array, two speakers were set up as sound 
sources.  

Two streams of signals were played simultaneously from 
the speakers. The sound signals were received by the 6 mi-
crophones, and digitized at a sampling rate of 8 kHz. The 
speech signals were ATR phonetically-balanced sentences in 
Japanese [9] in 15 seconds. MIC1, 2 and 4 were chosen as 
the fixed combination to estimate the azimuth and zenith 
angles at the first step.  

We adopted frequency domain ICA to separate the con-
volutive mixed sound signals. We can utilize any ICA algo-
rithm such as the information maximization approach [10], 
but here we chose the FastICA algorithm [11] to converge the 
separating matrix W ( f )  in each frequency bin, with a FFT 
length of 1024 points and frame shift of 512 points. Then we 
calculated the inverse matrix W ( f ) +  and estimated the azi-
muth and zenith angles using formulas (9) to (14). Figure 3  
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Fig. 2. Layout of soundproof chamber. 
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Fig. 3. The estimated azimuth angles (a) and zenith angles (b) 
by the proposed method. 
 
and Fig. 4 show the estimated azimuth and zenith angles in 
each frequency bin for the proposed method and the MUSIC 
algorithm, respectively. Both the proposed method and the 
MUSIC algorithm can estimate the 3D DOAs, but the 
MUSIC algorithm obtained a large dispersion around its av-
eraged value, especially at low frequencies. Table 1 shows 
the averaged values and the standard deviation of the esti-
mated DOA for the proposed method and the MUSIC algo-
rithm, together with the measured data for reference. It is  
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Fig. 4. The estimated azimuth angles (a) and zenith angles (b) 
by the MUSIC algorithm. 
 
Table 1. The estimated azimuth and zenith angles for the 
proposed method and the MUSIC algorithm (degree) and 
their standard deviation (SD): 

 1φ  1θ  2φ  2θ

Measured -38 60 70 40

Proposal -33 48 67 35

MUSIC -31 39 69 32

SD (Proposal) 15 12 16 15

SD (MUSIC) 21 18 26 16

 
seen that the estimated angles of the proposed method were 
in accordance with the reference values, and the differences 
were within 12 degrees, while the maximum difference of the 
MUSIC algorithm exceeded 20 degrees. Another advantage 
of the proposed method is that it has a smaller standard de-
viation than the MUSIC algorithm does. 
4.3 The two step estimation method 

Another experiment was also conducted in the same 
chamber to deal with the three signals and show the effec-
tiveness of the two step estimation method. The coordinates 
of the sensors and sources are given in Table 2. We used all 
observed signals from the 6 sensors to separate the mixed 
signals and chose MIC 1, 2 and 4 as the initial sensor combi-
nation to estimate DOAs. In this experiment, source 1 and 3 
have high elevations and the estimated azimuth angles tend 
to go to zero at low frequencies, because of the phase differ-
ences between sensors being small for high elevation signals. 
To deal with this problem, we use the two step estimation 
method described in Section 3.2. Figure 5 shows the esti-
mated azimuths in each frequency bin with the initial  
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Table 2. The coordinates of microphones and speakers. (cm): 
 m1 m2 m3 m4 m5 m6 sp1 sp2 sp3

X 0 4 8 0 4 8 -28 51 -33
Y 0 0 0 4 4 4 -50 79 41
Z 0 0 0 0 0 0 104 109 105
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Fig. 5 The azimuth angles in the initial estimation with MIC 
1, 2 and 4. 
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Fig. 6 The azimuth angles in the second step estimation with 
the adaptively selected sensors.  
 
sensor combination and Fig. 6 shows the results of the sec-
ond step estimation. Comparing Fig. 5 and Fig. 6, it is clear 
that Fig. 6 has a smaller deviation than Fig. 5 does, especially 
at low frequencies. The averaged results and the standard 
deviations are listed in Table 3. It is seen that the second step 
increases the angle reservation and reduces the standard de-
viations. This result may help to easily solve the permutation 
inconsistency problem.  

5. CONCLUSIONS 

We proposed a new DOA estimation method for 3D signals 
by making use of the separating matrix of ICA in the fre-
quency domain. The method can estimate azimuth and zenith 
angles simultaneously with at least 3 sensors, which are not 
laid in a straight line. It is superior to the MUSIC algorithm 
because it can estimate source signals up to the number of 
sensors. Experimental results showed a smaller spread of the 
estimated angles than when using the MUSIC algorithm. 

Table 3. The estimated azimuth and zenith angles (degree) 
and their standard deviation (SD) for two step estimation: 

 
This paper also proposed a two step estimation method to 
enhance the estimation accuracy. Experimental results re-
vealed that the improvement of angle reservation was 
achieved and this may help to easily solve the permutation 
inconsistency problem. 
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 1φ 1θ  2φ  2θ  3φ 3θ
Measured -119 29 57 41 128 27
MIC1,2,4 -113 23 46 32 119 23
Two step -122 24 51 30 128 22

SD(MIC1,2,4) 36 10 25 13 27 10
SD(Two step) 34 9 23 12 24 9 
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