14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

THE BLOCK LMS ALGORITHM AND ITS FFT BASED FAST
IMPLEMENTATION— NEW EFFICIENT REALIZATION USING BLOCK
FLOATING POINT ARITHMETIC

Mrityunjoy Chakraborty, and Rafiahamed Shaik

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur, INDIA
email:{mrityun, rafi ahmed}@ece.iitkgp.ernet.in

ABSTRACT

An efficient scheme is proposed for implementing the block
LMS algorithm in a block floating point framework that per-
mits processing of data over a wide dynamic range at a pro-
cessor complexity and cost as low as that of a fixed point
processor. The proposed scheme adopts appropriate formats
for representing the filter coefficients and the data. Using
these and a new upper bound on the step size, update re-
lations for the filter weight mantissas and exponent are de-
veloped, taking care so that neither overflow occurs, nor are
quantities which are already very small multiplied directly.
It is further shown how the mantissas of the filter coefficients
and also the filter output can be evaluated faster by suitably
modifying the approach of the fast block LMS algorithm.

Index Terms Block LMS (BLMS), Fast BLMS, Block
Floating Point, Overflow.

1. INTRODUCTION

The block floating point (BFP) format provides an elegant
means of floating point (FP) emulation on a simple, low cost
fixed point (FxP) processor. In BFP, a common exponent
is assigned to a group of variables. As a result, computa-
tions involving these variables can be carried out in simple
FxP like manner, while presence of the exponent provides
a FP like high dynamic range. This has prompted several
researchers in recent past to use the BFP format for effi-
cient realization of many signal processing systems and algo-
rithms, including various forms of digital filters ([1]-[6]) and
unitary transforms ([7]-[9]). The BFP format has also been
used in several digital audio data transmission standards like
NICAM (stereophonic sound system for PAL TV standard),
the audio part of MUSE (Japanese HDTV standard) and
DSR (German Digital Satellite Radio System). However, al-
most all the research efforts in this area have focussed on
systems having constant coefficients and not on systems like
adaptive filters that have time varying parameters. A BFP
treatment to adaptive filters faces certain difficulties, not en-
countered in the fixed coefficient case, namely,

e Unlike a fixed coefficient filter, the filter coefficients in an
adaptive filter can mot be represented in the simpler fixed
point form, as the coefficients in effect evolve from the data
by a time update relation;

e The two principal operations in an adaptive filter — fil-
tering and weight updating, are mutually coupled, thus re-
quiring an appropriate arrangement for joint prevention of
overflow.

Recently, a BFP based approach has been proposed for
efficient realization of the LMS based transversal adaptive
filters [10], which was later extended to the normalized LMS
algorithm [11] and the gradient adaptive lattice [12]. The
philosophy used in [10] employs block processing technique
and can provide considerable savings in computational com-

plexities when applied to the Block LMS (BLMS) algorithm
[13], as shown in this paper. For this, we first recast the
BLMS algorithm using the framework of [10]. This requires
adoption of appropriate BFP format for the filter coefficients
which remains invariant as the coefficients are updated from
block to block. Using this, along with the BFP representa-
tion of the data as used in [10] and a new upper bound on
the algorithm step size, update relations for the filter weight
mantissas and exponent are developed, maintaining overflow
free operation all throughout. Note that the BLMS weight
update relation is more complex than its LMS counterpart,
as the former needs to sum up several products between data
vectors and error samples. Special care had to be taken in
its computation using the adopted BFP format so that nei-
ther overflow occurs, nor are quantities which are already
very small multiplied directly. Next, we show how the fil-
ter output mantissas and the filter weight mantissas can be
evaluated faster, by appropriately adjusting the approach of
the FFT based fast BLMS (FBLMS) algorithm [13]. Such
adjustment requires introduction of one extra IFFT oper-
ation in the weight update loop in order to implement a
time domain constraint. However, despite this, considerable
gains in computational complexities are achieved, since all
the FFT/IFFT’s are based on BFP arithmetic only.

2. THE BFP BACKGROUND

The BFP representation can be considered as a special
case of the FP format, where every non-overlapping block
of N incoming data has a joint scaling factor correspond-
ing to the data sample with the highest magnitude in the
block. In other words, given a block [z1,...,2N], We rep-
resent it as [z1,...,zN] = [T1,...,Zn]27 where T;(= z,277)
represents the mantissa for [= 1,2,...,N and the block
exponent 7 is defined as v = |loga2Maz| + 1 + S where
Maz = max(|z1|, ..., |zn]|), [.]” is the so-called floor func-
tion, meaning rounding down to the closest integer and the
integer S is a scaling factor which is needed to prevent over-
flow during filtering operation. Due to the presence of S, the
range of each mantissa is given as 0 < |T;| < 27, The scal-
ing factor S can be calculated from the inner product com-
putation representing filtering operation. An inner product
is calculated in BFP arithmetic as

y(n) = w'x(n)
= [woz(n)+ ...+ wr1T(n—L+1)] 27
= 7(n)2" (1)

where w is a length L, fixed point filter coefficient vector
and x(n) is the data vector at the n-th index, represented in
the aforesaid BFP format. For no overflow in y(n), we need
[7(n)] < 1 at every time index, which can be satisfied [2]

by selecting S > Smin = [loga(i;ol |wk|)] where ‘[.] is

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

the so-called ceiling function, meaning rounding up to the
closest integer.

3. PROPOSED IMPLEMENTATION

Consider a length L, BLMS based adaptive filter that takes
an input sequence x(n), which is partitioned into non-
overlapping blocks of length P each, with the j-th block,
(j € Z) consisting of z(jP+7r), r € Zp =0,1,...,P — 1.
The filter coefficients are updated from block to block as,

w(j+1) =w(j) + uS/ 0 x(GP+r)e(jP+7) (2)

where w(j) = [wo(5)w1(§) ... wr—1(5)]" is the tap weight
vector corresponding to the j-th block, x(jP 4+ r) =
[P +r)z(jP+r—1)...2(jP+r—L+1)]" and e(jP+
r) =d(jP+r)—y(jP+r) is the output error at n = jP+r.
The sequence d(jP + r) is the so-called desired response
available during the initial training period and y(jP +r) =
wi(§)x(jP + r) is the filter output at n = jP + r, with u
denoting the so called step size parameter.

The proposed scheme consists of two simultaneous BFP
representations, one for the filter coefficient vector w(j) and
the other for the given data, namely, z(n) and d(n). These
are as follows:

(a) BFP representation of the filter coefficient
vector :
Here, the tap weight vector w(j) is represented in a scaled
format as

w(j) = w(j) 2", ®3)

where W(j) and 1; are respectively the filter mantissa vector
and the filter block exponent which are updated separately
over the block index j. Note that in the above representa-
tion, all components of w(j) are normalized by the same
factor 2%7. In our treatment, the exponent 1, is a non-
decreasing function of j with zero initial value and is chosen
to ensure that [wk(j)| < 3, k € ZL = {0,1,...,L — 1}.
If a data vector x(jP + r) is given in the aforesaid BFP
format as x(jP +r) = X(jP + r)2”, where vy = ex + S,
er = |logaoM | + 1, M = maz(|lx(P +r — k)| | k € Zr) and
S is an appropriate scaling factor, then, the filter output
y(jP +r) can be expressed as y(jP+r) = G(jP +r)27T¥i
with 7(j P + r) = W' (j)X(j P + r) denoting the output man-
tissa. To prevent overflow in y(jP + r), it is required that
[g(jP+7)| < 1. However, in the proposed scheme, we restrict
Y(jP +) to lie between +31 and —3, ie., [y(iP + 1) < 1.
Since [FGP + 1) < TS wG)EGP + v = k),
0 < 2P +r — k)| < 27% and |[wk(j)| < %, this im-
plies a lower limit of S as Smin = [log2L]. The two
conditions : |wk(j)| < % and [y(jP + r)| < % ensure
no overflow during updating of W(j) and computation of
output error mantissa respectively as shown later.

(b) BFP representation of the given data :
The input data xz(n) and the desired response sequence d(n)
are partitioned jointly in non-overlapping blocks of N sam-
ples each with the i-th block, i € ZT = {0,1,2,...}, con-
sisting of z(n), d(n) forn € Z; = {iN,iN+1,...,iN+N—1}.
In our present treatment, we choose N based on the follow-
ing constraints : (i) N > L — 1, meaning that at any point
of time, data from at most two adjacent blocks may come
under filtering operation, and, (ii) N = K P for some in-
teger K, meaning that in a block of duration NN, the filter
coefficients are updated a total of K times over K sub-blocks
of length P each. The data samples z(n) and d(n) consti-
tuting a block are jointly scaled so as to have a common

BFP representation for the block under consideration. This
means that, for n € Z;, z(n) and d(n) are expressed as
z(n) = z(n) 2%, d(n) = d(n) 2" (4)
where ~; is the common block exponent for the i-th block
and is given as v; = ex; +S; where ex; = |logaM;| + 1
and M; = maxz{|z(n)|,|d(n)| | n € Z/}. The scaling factor

S; is assigned as per the following exponent assignment
algorithm :

Exponent Assignment Algorithm: Assign
Smin = [logoL] as the scaling factor to the first
block and for any (i — 1)-th block, assume S;—1 > Smin.
Then, if ex; > ex;—1,

choose S; = Smin (i, i = ex; + Smin)

else (i.e., er; < exi—1)

choose S; = (exi—1 — exi) + Smin,

(ie., vi = exi—1+

Note that when ex; > ex;—1, we can either have

ex; + Smin > vi—1 (Case A) implying v; > ~;—1, or,
ex; + Smin < 7vi—1 (Case B) meaning 7v; < «;—1. However,
for ex; < ex;—1 (Case C), we always have v; < v;_1.
Additionally, we rescale the elements Z(iN — L + 1),---,
Z(iN — 1) by dividing by 227, where Avy; = v — Vi_1.
Equivalently, for the elements z(iN — L + 1),---,
2(iN — 1), we change S;—1 to an effective scaling factor of
Sg_l = Si—1 + A~v;. This permits a BFP representation
of the data vector x(n) with common exponent ~; during
block-to-block transition phase too, i.e., when part of x(n)
comes from the (¢ — 1)-th block and part from the i-th
block. In practice, such rescaling is effected by passing each
of the delayed terms Z(n — k), k& = 1,...,L — 1, through
a rescaling unit that applies Avy; number of right or left
shifts on Z(n — k) depending on whether A-~; is positive
or negative respectively. This is, however, done only at
the beginning of each block, i.e., at indices n = iN, i € Z.
Also, note that though for the case (A), Ay; > 0, for
(B) and (C), however, Avy; < 0, meaning that in these
cases, the aforesaid mantissas from the (i — 1)-th block are
actually scaled up by 2727, It is, however, not difficult to
see that the effective scaling factor S;_, for the elements
z(iN — L+ 1),---, z(iN — 1) still remains lower bounded
by Smin, thus ensuring no overflow during filtering operation.
Formulation of the in BFP
format :
We begin by considering the [-th sub-block,
Il = 0,1,..., K — 1, within the i-th block. This consists
of data at the indices (iK +1)P +r, r = 0,1,...,P — 1.
Replacing (1K + 1) by j, one can then write e(jP + r) as
e(jP +r) =e(jP +r)2¥77 where the mantissa e(jP +)
is given as

BLMS Algorithm

eGP +r)=d(P +7r)27% —G(iP +7) (5)

Clearly, computation of €(jP+r) involves an additional step
of right-shift operation on d(j P+r) - an operation that comes
frequently in FP arithmetic. However since in an adaptive
filter, filter coefficients are derived from data and thus can
not be represented in FxP format when data is given in a
scaled form, such a step seems to be unavoidable. It is easy
to check that |[e(jP +r)| < 1, since

[d(jP+7)|27% + [g(i P +)|

—(sityy) 4 1 < 2 -
< 2 tys—7 *3 (6)

leGP+r)| <

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

as 275 < 1. Except for ¢; = 0, L = 1, the R.H.S. is always
less than or equal to 1.

For the above description of e(jP + r), x(jP + r) and
w(j), the weight update equation (2) can be written as,

w(j+1) = ¥(j) 2, (7)

where
W(j) + n S GR(GP +r)e(iP +1) 27 (8)

As stated earlier, W(j + 1) is required to satisfy
|w(j + 1)] < % for k € Zp, which can be realized in
several ways. Our preferred option is to limit ¥(j) so that
[Uk(j)| < 1, k € Zr. Then, if each Tx(j) happens to be lying
within :I:%, we make the assignments:

Wi +1)=v0), ¥ =1;)

Otherwise, we scale down V(j) by 2, in which case

. 1_,.

Wi +1)=5V0), Y =1 +1 (10)
In order to have |vx (])\ < 1, k € Z, satisfied, we observe that
[or ()| < |k (5)|+p2l |x JP+r—k)||e(jP+r)|22'“ Since
[wr(j)| < %,k € Zy, it is sufficient to have pu 2 [Z(j P +
r —k)|[e(jP +r)|2*" < L. Taking the upper bound of
[e(jP+r)| as [275iF¥3) 4 L275i] and recalling that |Z(j P+

— k)| < 275, this implies

Z—Qeac,i

S PR a
It is easy to verify that the above bound for p is valid not
only when each element of X(jP + r) in (8) comes purely
from the i-th block, but also during transition from the (i —
1)-th to the i-th block with ex; > ewx;_1, for which, after
necessary rescaling, we have S;_; > S; = Smin implying
|Z(jP +r— k)| <2 % and thus [y(jP +7)| < £ 275, For
ex; < er;—1, however, the upper bound expression given by
(11) gets modified with ex; replaced by ex;—1, as in that case,
we havey; = ex;—1+S5,_1 with S,_; = Smin < S; meaning
[Z(jP +r — k)| < 27%-1 and thus [§(jP +)| < L 275i-1,
leading to |e(jP +r)| < [27(32,1“@7) + < 2731{*1}.

From above, we obtain a general upper bound for p by
equating 1), to its lowest value of zero and replacing ex; by
eTmar = maz{ex; | i € ZT} in (11). The general upper
bound is given by:

272ezmaz

ST (12)

p<

The above bound is actually less than 2/[P trR] which
is the upper bound for u for convergence of the BLMS algo-
rithm. To see this, we note that |x(n)| < 2°®™2® and thus
E[x?(n)] < 22¢®mae= This implies trR < L 2%¢*ma= and thus
2/[PtrR] > 27 2¢%maz /P([, + 2).

Finally, for practical implementation of ¥v(j) as
given by (8), we need to evaluate the update term :
pEPVEZ(GP 4+ — k)e (]P +7r)2¥ k € Zp in such a way
that no overflow occurs in any of the intermediate products,
shifts, or the summation involved. At the same time, we
need to avoid direct product of quantities which could be
very small, as that may lead to loss of several useful bits
via truncation. For this purpose, we proceed as follows : if
ex; > exi—1, then we have S; = Sy.in and we express 227

as 2%% = 22¢®i+Smin 9Smin If instead, ex; < ewi_1, then,
Si_ 1 = Smin, Vi = exi_1 + Si_; and we decompose 227
as 227 = 22¢@i—1+Smin 9Smin The factors 226%itSmin (or,
22e@i—1+8min) and 29min are then distributed to compute
the update term as follows :

Step 1 — u; = 22ez'+smi" if ex; >
er; < exri—i, i = /LZQexl 1+Smin

Step 2 — pie(jP +r) = ei(jP +r) (say),

Step 3 — E(jP + 71 —k)25min = F (P +r — k) (say),
Step 4 — X' (jP + 1 — k)er(jP + 7).

exr;_1; if

It is easy to check that the operations described in steps
1-4 above produce no intermediate overflow. Firstly, from

(12), it follows that i < 2[;1’;] Since, L < 25min < 2L,

this implies p; < L+2 For the BLMS algorithm, sub-block
length P is at least two, thus ensuring p; < 1. Next, note
that in all cases, [6(jP +7)| < [27mintvs) L L 273"”'"].
Using this and the above observation that u; < 2[2":;], it
is easily seen that [e1(jP +)| < 5. Similarly, in step 3,
|Z1(jP+r—k)| < 1, since |Z(jP+r—k)| < 275min. Finally,
in step 4, the summation evaluates the update term, which
is pre-constrained to be less than half in magnitude.

Noting that the vectors X(jP + r) in (8) overlap with
each other, in step 3, we need to shift only the P terms

T(jP + r), r € Zp by 25min. [For r = 0, j = iK,

T(jP—k), k=1,2,...,L —1 correspond to the last (L — 1)

mantissas of the (z — 1)—th block, rescaled by 2727 . Further
scaling of them by 2%min can be carried out during the
block formatting stage only.] The proposed BFP treatment
to the BLMS algorithm is summarized in Table 1.
Fast Implementation :
A treatment similar to the one used in the derivation of the
FBLMS algorithm [13] from the BLMS algorithm can be
used in the above context for a faster evaluation of the filter
output mantissa 7(n) and the weight vector mantissa W(j).
For the [-th sub-block within the i-th block, 0 <1 < K —1,
ie, forn = jP+r, r =0,1,..., P—1, j = iK +1,
the filter output mantissa 7(n) = W' (j)X(n) is obtained
by convolving the input data mantissa sequence T(n) with
the filter coefficient mantissas wo(j), ..., wr—1(j) and thus
can be realized efficiently by the overlap save method via
M = L + P — 1 point FFT, where the first L — 1 points
come from the previous sub-block, for which the output
is to be discarded. Similarly, the weight update term in
Step 4 above, viz., XL 1 (jP + r — k)ei(jP + r) can
be obtained by the usual circular correlation technique,
by employing M point FFT and setting the last P — 1
output terms as zero. The resulting scheme for fast compu-
tation of 7(n) and W(j) is demonstrated in Fig. 1. Note that,

(a) The weight update loop in Fig. 1 is different from
the weight update loop of the conventional FBLMS scheme
[13], as, an additional IFFT is used here to get the filter
weights back to the time domain, in order to implement the
weight update relations (9) and (10). This is needed, since,
in our proposed scheme, weight updating requires checking
the condition : [Ux(j)] < 4 forallk, 0 < k < L-—1,
which is a purely time domain constraint and has no
equivalent frequency domain counterpart. However, as the
FFT and IFFT computations are FxP based, the overall
computational cost of the proposed fast implementation
scheme still remains much less than a conventional FP-based
FBLMS realization, as shown in the next section.

(b) Each FFT/IFFT in Fig.
using BFP arithmetic [7].

1 can be implemented
For a M point FFT, this means

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Table 1: Summary of the BLMS algorithm realized in BFP
format (initial conditions : o =0, [wx(0)| < 3, k € Z1).

1. Preprocessing:
Using the data for the i-th block, z(n) and d(n), n € Z;
(stored during the processing of the (¢ — 1)-th block),
(a) Evaluate block exponent v; as per the Exponent
Assignment Algorithm of Section 3
and express z(n), d(n), n € Z, as
z(n) =z(n).27,
d(n) = d(n).27,
(b) Rescale the following elements of the (¢ — 1)-th block:
{Z(n)ln=4N —L+1,...,iN — 1} as
Z(n) — Z(n) 2727, Avy; = v — vi—1; [Also, for Step 3
of Section 3, rescale the same separately by 2727 +Smin]
2. Processing for the i-th block:
For the [-th sub-block within the i-th block, 0 <1 < K — 1,
Define j = iK + .
Forn = jP+r, r=0,1,..., P—1
Filter output:
5(n) = W (j)x(n),
Output error (mantissa) computation:
e(n) = d(n) 27" —g(n).
end
ex-out(j) = i + ;.

(ex_out(j) is the filter output exponent for the j-th sub-block)

Filter weight updating:
Compute ux(j) = p Zf:ol T(jP + 1 — k)e(jP +r)2%"
for all k € Z;, following Step 1 — Step 4 of Section 3.
v(j) =w(j) +u(j).
(where T(j) = [@o(j), - .-, Tr-1(5)]")
If [0k (j)| < & for all k € Zp,
then

w(j+1)=v(),

Yi+1 = Yy,
else

w(i+1) = 59()),

Yiv1 = + 1.
end.
end.
i=14+1.
Repeat steps 1 to 2.

that in each of the logaM stages, both the real and the
imaginary parts of all input samples are jointly scaled
up/down by the same factor to prevent overflow and at
the same time, to make better usage of the available
dynamic range, at the output of the stage. The shift on
X(k), k=0,1,..., M — 1 by 257" as shown in Fig. 1 can
be absorbed in the up/down scaling processes present in the
M point FFT preceding it and the M point IFFT following
it.

4. COMPLEXITY ISSUES

The proposed schemes rely mostly on FxP arithmetic, re-
sulting in computational complexities much less than that
of their FP based counterparts. For example, to compute
the filter output in Table 1, L ”Multiply and Accumulate
(MAC)” operations (FxP) are needed to evaluate y(n) and
at the most, one exponent addition operation to compute the
exponent ex_out(j). In FP, this would require L FP-based
MAC operations. Note that given three numbers in FP (nor-

Output (mantissa)

Sub-block
buffer of
size
M=LA+P-1
Mpomt|) M point IFFT _
FFT _ 4% (Last P terms) d(n)
Wik)
X(F) Delay l)
— Shift :
M pomt s
IFFT 2%
M point
5 FFT
Shift : 2 "min
Shift
(Once / N
_ Compute samples) :
Y w(i+1), ¥, 297+ Sin
Conjugate from
v0) v, T
Y H
g
\F‘
F
Sef last (P-1) Add (L-1) zeros
elements zero at the front
M point
IFFT
% M poit

FFT

Figure 1: Fast implementation of the proposed BFP-based
BLMS Algorithm.

malized) format : A = A2°, B = B2% C = (2%,
the MAC operation A+ BC requires the following steps : (i)
ey + ec, i.e., Exponent Addition (EA), (ii) Exponent Com-
parison (EC) between e, and ey, + e, (iii) Shifting either A
or B/ C, (iv) FxP-based MAC, and finally, (v) renormaliza-
tion, requiring shift and exponent addition. In other words,
in FP, computation of y(n) will require the following addi-
tional operations over the BFP-based realization : (a) 2L
shifts (assuming availability of single cycle barrel shifters),
(b) L EC, and, (c) 2L — 1 EA. Similar advantages exist in
weight updating also. Table 2 provides a comparative ac-
count of the two approaches in terms of number of operations
required per iteration. Note that the number of additional
operations required under FP increases linearly with both
the filter length L and the sub-block length P. It is easy to
verify from Table 2 that given a low cost, simple FxP pro-
cessor with single cycle MAC and barrel shifter units, the
proposed scheme is about sixz times faster than a FP based
implementation, for moderately large values of L and P.

For the algorithm proposed in Fig. 1, similar compu-
tational advantages exist over the conventional FP based
FBLMS algorithm. As the major computational block here
is M-point FFT/IFFT, we consider a typical butterfly com-
putation stage, as shown in Fig. 2, that takes as in-
put X.,(p) and X,n(¢) and performs the following com-

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

putation : X7.(q) = Wis Xm(q); Xmt1(p) = Xm(p) +
X1(), Xmi1(q) = Xon(p) — X7 (q), where Wiy = e 37 .
In a FP treatment, both the real and the imaginary parts
of Xm(p), Xm(q) and Wy, are represented in normalized FP
format, resulting in a total of 4 MAC (FxP), 14 shift, 12
EA, 6 EC and 4 addition (FxP) operations per butterfly. In
BFP [7], however, both the real and imaginary parts of the
above quantities are in FxP format and the input quantities
of all the butterflies in each stage are scaled up/down by the
same number. This gives rise to 4 MAC (FxP), 4 additions
and 4 shifts per butterfly, along with one EA for each stage
of the FFT. Assuming M to be a power of 2, i.e., M = 2",
there are r stages in each M-point FFT/IFFT, each having
% butterflies. From this and also taking into account the
complexities involved in FFT addition and multiplication,
we obtain a comparative account of the two approaches in
terms of number of operations required per sub-block. This
is given in Table 3. Once again, for moderately large values
of M, it is easily seen that the proposed scheme of Fig. 1 is
between three to four times faster than a FP based FBLMS
algorithm.

+
5 >

X (P)

X, IR S ()

Figure 2: A typical butterfly stage of M-point FFT/IFFT.

Table 2: A comparison between the BFP vis-a-vis the FP-
based realizations of the BLMS algorithm. Number of op-
erations required per iteration for (a) weight updating, and
(b) filtering are shown. [MAC : Multiply and Accumulate,
MC : Magnitude Check, EC : Exponent Comparison, EA :
Exponent Addition.]

(@) MAC Shift MC | EC EA
BFP | L+)P | P+1L L | Nil T
FP | (L+)P | L+ 0P | Nil | LP | CL+2)P
() | MAC | Shift | EC | BA

BFP L Nil Nil 1
FP L 2L L 2L

Table 3: A comparison between the BFP vis-a-vis the FP-
based realizations of the FBLMS algorithm. No. of opera-
tions per sub-block are shown (M = L+ P —1, r = log2 M).

MAC Shift EC EA Add | MC
BFP | 12Mr 12Mr N1l 6r 12Mr L
+8M +L +2M
FP 10Mr | 35Mr | 15Mr | 30Mr | 10Mr | Nil
+8M | +16M | +6M | +18M | +2M

5. CONCLUSIONS

The BLMS algorithm is presented in a BFP framework that
ensures simple FxP based operations in most of the compu-
tations while maintaining a FP like wide dynamic range via
a block exponent. Care is also taken to prevent overflow by a
new upper bound on the step size p and a dynamic scaling of
the data. A faster implementation of the proposed scheme is
developed by suitable modification of the FFT based FBLMS
algorithm.

REFERENCES

[1] K. R. Ralev and P. H. Bauer, “Realization of Block
Floating Point Digital Filters and Application to Block
Implementations,” IEEE Trans. Signal Processing, vol.
47, no. 4, pp. 1076-1086, April 1999.

[2] K. Kalliojarvi and J. Astola, “Roundoff Errors in Block-
Floating-Point Systems,” IEEE Trans. Signal Process-
ing, vol. 44, no. 4, pp. 783-790, April 1996.

[3] P. H. Bauer, “Absolute Error Bounds for Block Floating
Point Direct form Digital Filters,” IEEE Trans. Signal
Processing, vol. 43, no. 8, pp. 1994-1996, Aug. 1995.

[4] S. Sridharan and G. Dickman, “Block floating point im-
plementation of digital filters using the DSP56000,” Mi-
croprocess. Microsyst., vol. 12, no. 6, pp. 299-308, July-
Aug. 1988.

[5] S. Sridharan and D. Williamson, “Implementation of
high order direct form digital filter structures,” IFEE
Trans. Clircuits Syst., vol. CAS-33, pp. 818-822, Aug.
1986.

[6] F.J. Taylor, “Block Floating Point Distributed Filters,”
IEEE Trans. Clircuits Syst., vol. CAS-31, pp. 300-304,
Mar. 1984.

[7] David Elam and Cesar Lovescu, “A Block Floating
Point Implementation for an N-Point FFT on the
TMS320C55X DSP”, Tezxas Instruments Application
Report, SPRA948, Sept., 2003.

[8] E. Bidet, D. Castelain, C. Joanblanq and P. Senn, “A
Fast Single-Chip Implemntation of 8192 Complex Point
FFT”, IEEE J. Sol. State Circs., Vol. 30, No. 3, pp.
300-305, March, 1995.

[9] A. Erickson and B. Fagin, “Calculating FHT in Hard-
ware”, IEEFE Trans. Signal Processing, vol. 40, pp. 1341-
1353, June 1992.

[10] A. Mitra, M. Chakraborty and H. Sakai, “A Block
Floating Point Treatment to the LMS Algorithm : Effi-
cient Realization and a Roundoff Error Analysis”, IEEE
Trans. Signal Processing, vol. 53, Issue 12, pp. 4536-
4544, Dec. 2005.

[11] A. Mitra and M. Chakraborty, “The NLMS Algorithm
in Block Floating Point Format”, IEEE Signal Process.
Letters, pp. 301-304, March 2004.

[12] M. Chakraborty and A. Mitra, “A Block Floating Point
Realization of the Gradient Adaptive Lattice Filter”,
IEEE Signal Process. Letters, pp. 265-268, April, 2005.

[13] S. Haykin, Adaptive Filter Theory, Englewood Cliffs,
NJ: Prentice-Hall, 1986.

