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ABSTRACT 

The analysis of speech is usually based on linear models. In 

this contribution speech features are treated using nonlinear 

statistics of the speech signal. Therefore a nonlinear predic-

tion based on Volterra series is applied segment-wise to the 

speech signal. The optimal nonlinear predictor can be de-

termined by a vector expansion. Since the statistics of a 

segment is estimated a window function is integrated into 

the estimation procedure. Speech features are investigated 

representing the prediction gain between the linear and the 

nonlinear prediction. The analyses of speech signals show 

that the nonlinear features correlate with the glottal pulses. 

The integration of an appropriate window function into the 

prediction algorithm plays an important part for the results. 

1. INTRODUCTION 

The speech production is usually described by a linear 

model leading to linear prediction. However, nonlinear 

components also exist in the speech signal [1]. The voiced 

excitation is caused by vibrations of the vocal folds which 

can be described by a nonlinear oscillator; additionally 

nonlinear fluid dynamics are effective. Nonlinear systems 

and operators can be used for speech analysis [2],[3]. Here 

nonlinear components of the speech signal are estimated by 

nonlinear prediction. The nonlinear system of a Volterra 

series is used for the prediction. The estimation of the pre-

dictor can be achieved by an adaptive algorithm like LMS or 

RLS [4]. Another approach for the estimation is to minimize 

the prediction error of individual signal segments, which can 

be applied to coding [5] or speech generation [6]. In this 

contribution an approach is discussed minimizing the least 

square error of the prediction error of a signal segment by a 

vector expansion. To utilize the nonlinear prediction for ex-

traction of features of speech segments a window function is 

integrated into the estimation procedure. 

2. NONLINEAR PREDICTION 

2.1 Prediction Based on Volterra Series 

In the linear prediction a signal value ( )x n   is estimated by 

a linear combination of last signal values  ( )x n k−  with  

0k > . In the case of a nonlinear predictor based on a 

Volterra system, the prediction considers products of last 

values, too. Without loss of generality systems are treated 

with the first and second order Volterra kernels only. The 

prediction error e for a signal x  is defined as the difference 

between the actual value x  and the estimated value ˆ( )x n :  
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In (1) the second-order kernel  2h  is assumed symmetrically 

so that the coefficients  2h′  are used instead of  2h  with 

2 2( , ) ( , )h i k h i k′ =   for i=k and 2 2( , ) 2 ( , )h i k h i k′ = ⋅  for 

i k≠  since the second sum in (1) ends with k=i. The coeffi-

cients of the predictor are estimated by a minimization of  

the least square error:  
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e n →∑ .  

Since the prediction error of a signal segment is considered, 

the use of a window function is useful. If the window func-

tion ( )w n  is applied directly to the signal ( )x n  the resulting 

weighted signal is ( ) ( ) ( )u n w n x n= ⋅ . For the calculation of 

a single error ˆ( ) ( )u n u n−  corresponding to eq. (1) the last 

values ( ) ( ) ( )u n k w n k x n k− = − ⋅ −  have different weights, 

since ( )w n k−  depends on k. This effect is stronger in the 

case of the second kernel, due to the products: 

( ) ( ) ( ) ( ) ( ) ( )u n k u n i w n k w n i x n k x n i− ⋅ − = − ⋅ − ⋅ − ⋅ − . To 

solve this problem the window function has to be applied to 

the error ( )e n  yielding the weighted error 

( ) ( ) ( )we n w n e n= ⋅ . Applying to eq. (1) results in 
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The predictor coefficients are determined by minimizing the  

weighted error 

                                   
2
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e n →∑ .                       (3) 

2.1.1 Vector Based Nonlinear Prediction  

The prediction is applied to a segment of the speech signal 

therefore it is convenient to describe the signals by vectors. 
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For the prediction estimation the analyzed weighted signal   

( ) ( ) ( )u n w n x n= ⋅  is described by the vector 

                 ( )T(0) (0), (1) (1), , ( ) ( )w x w x w K x K= ⋅ ⋅ ⋅u …                             

of length L’=K+1. The prediction error ( )we n  contains last 

values ( )x n k−   so that the definition of the vectors iu  con-

taining the shifted signals with fixed weights is convenient: 
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It has to be mentioned that iu  is not the shifted signal ( )u n  

since the weights w  in (4) are independent of i. Further-

more for the description of products of last values the defini-

tion of the vectors  ,i ku  is defined 

        ( )T, (0) ( ) ( ), (1) (1 ) (1 ),i k w x i x k w x i x k= − − − −u … . 

The estimation of the weighted signal values ( )u n  can be 

described by the vector û : 
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By these definitions the prediction problem can be described 

by the vector equation ˆw = −e u u  . Since the error depends 

on the number N of linear coefficients and M of nonlinear 

coefficients, the error ,N M
w w→e e  can be extended by the 

superscripts N and M: 
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Equation (6) represents eq. (2) by a vector based description. 

From the equations (5) and (6) it can be seen that the opti-

mal predictor û  is an expansion of u  by the vectors iu   and 

,i ku . Therefore it is convenient to introduce new designa-

tions   which are defined by: 

    ' iλ =u u   for   Nλ ≤    and                                      (7) 

    ,' i kλ =u u     

      with  ( 1) / 2N i i kλ = + − +   for  Nλ > . 

In this manner the coefficients 1( )h i  and 2 ( , )h i k′   are 

mapped also to the coefficients aλ   so that eq. (6) changes  

into  

       ,

1

'
W

N M
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= − ⋅∑e u u   with   ( 1) / 2W N M M= + + . 

For the prediction the vector u  may be approximated as 

good as possible by linear combination of the vectors 'λu    
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for which the Euclidean norm | ,N M
we |  should be minimal. 

2.1.2 Orthogonal Basis Transformation 

The vectors 'λu   represent a basis for a vector space assum-

ing that the vectors 'λu   are independent among each other. 

If a vector 'ωu   depends on the others the vector  'ωu  can 

be omitted from the procedure and the corresponding coeffi-

cient of the expansion can be set to zero. The optimal solu-

tion is the linear combination 'aλ λλ∑ u   representing the 

parallel part of u  to the space with the basis  { }'λu  while 

the error vector represents the orthogonal part. The vectors 

'λu  are not necessarily orthogonal among each other so that 

the basis of 'λu  is transformed into an orthogonal basis 

{ }λv  with the dot product , 0i k =v v . This is performed by 

the Gram-Schmidt orthogonalization 
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2.1.3 Determination of the Optimal Coefficients 

The vectors of the basis { }λv   are orthogonal. Hence the 

optimal coefficients ib   in description of the basis { }λv   can 

be easily obtained by 
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yielding an expansion of the vector  u  by the vectors  iv .  

2.1.4 Inverse Basis Transformation 

Since the original basis is { }'λu   the coefficients  ib  of the 

basis { }iv   have to be transformed into coefficients ia   of 

the basis  { }'λu . This transformation can be performed by 

the matrix Φ   with = ⋅a Φ b  . The vectors a  and b  contain 

the coefficients ib  and ia . The matrix Φ   is defined by the 

vectors iφ  : 

                 ( )T1 2, , , W= …Φ φ φ φ     . 

The matrix  Φ  can be determined recursively starting with 

the identity matrix =Φ I  with  ( , ) ( , )i k i kδ=I . The next 

steps are performed by: 
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The final step is to map the coefficients ia  to the coefficients 

1( )h i  and 2 ( , )h i k′  which is the inverse of the mapping (7). 
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2.1.5 Analysis of Signal Segments 

Since in eqs. (2), (6) signal values outside of the frame ap-

pear, represented by negative arguments n of ( )x n , the vec-

tor lengths L’=K +1 are truncated in such a way that only 

values inside of the analyzed segment appear in the vectors 

with max( , ) 1K L N M= − − ; L is the segment length. 

2.2 Analysis of Test Signals 

Test signals are analyzed to evaluate the integration of the 

window function. For that purpose a test signal is generated 

with the inverse system   
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of the prediction error system. The inverse system (10) has a 

purely recursive structure, whereas the prediction error sys-

tem (2) is nonrecursive. In the following a second order re-

cursive Volterra system is used with the coefficients:                                       

1 2
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The excitation of the recursive system is an impulse train; the 

pulse period is 100 samples. The output y of the recursive 

system is analyzed by the nonlinear prediction with a win-

dow function sw  of a squared Hann window 

    ( )( )2( ) 0.5 1 cos(2 / ) 0sw k k K k Kπ= − = … .   

Besides of the window function sw , an asymmetric window 

function aw  is defined:    
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This window is sensitive towards changes on its left side. 

           

Figure 1 –  Window functions: (a) asymmetric window aw ,         

(b) symmetric window sw   

The integration of the window function is realized in two 

different cases denoted by I and II. The order of the predictor 

is the same as the order of the recursive Volterra system. 

2.2.1 Prediction with Windowed Signal 

In case I the window function sw  is applied directly to the 

analyzed segment ' ( , 1,... 1)y y p p p L= + + −  resulting in 

the weighted signal ( ) ( ) '( )w sy k w k y k′ = ⋅ . Then wy′  is ana-

lyzed by the nonlinear prediction with ( ) 1w k =  in eq. (2) 

since the windowing is already applied to the signal. By this 

procedure, the original coefficients cannot be determined 

correctly by the weighted segment wy′ . The estimated coeffi-

cients are for example 

       I I
1 2

1 0.39 0.92 1.78

ˆ ˆ( ) 0.16 , ( , ) 0.92 2.18 0.24

0.51 1.78 0.24 1.34

h i h i k
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with start index p = 140 and segment length L=130. For an 

arbitrary start index p with segment length L=130 the aver-

aged coefficient errors 1ε  and 2ε   between the original and 

the estimated coefficients of first and second order, respec-

tively, are   
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2.2.2 Prediction with Windowed Error 

In case II the nonlinear prediction with sw w=  in eq. (2) is 

applied to the segment 'y . In this way the estimated coeffi-

cients can be determined correctly in comparison to case I; in 

case II the averaged coefficient errors 1ε  and 2ε  are smaller 

than 810− . The estimated coefficients are correctly estimated 

for any segmentation values of p and L on condition that a 

pulse of the excitation is in the range of the analyzed seg-

ment. If L is greater than the period of the impulse train, this 

condition is always fulfilled. 

 

The analysis of test signals generated by a noisy excitation 

shows also the advantage of the procedure of case II in com-

parison to case I. Overall the analyses of test signals show 

that the integration of the window function into the predic-

tion by eq. (2) yields correct results, whereas applying the 

window function directly to the analyzed signal leads to in-

correct estimation results; the deviation depends on the win-

dow function. 

3. ANALYSIS OF SPEECH 

3.1         Speech Features 

Speech features can be defined by nonlinear prediction char-

acterising the nonlinearity of the speech. The coefficients 

1( )h i  represent linear components of the speech whereas the 

coefficients 2 ( , )h i k′  represent nonlinear components. 

,N MF  is the logarithmic ratio of the weighted prediction 

error without and with nonlinear components: 
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The consideration of the nonlinear coefficients 2 ( , )h i k′  can 

be seen from the superscript M. Since the nonlinear coeffi-

cients contribute to a decrease of the prediction error, the 
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feature ,N MF  has positive values and represents the predic-

tion gain by the nonlinear components.  

3.2         Analysis of Speech Signals 

The speech signal is segmented into overlapping segments, 

which are analyzed individually. Applying the nonlinear pre-

diction to each segment yields the corresponding predictor 

coefficients 1( )h i , 2 ( , )h i k′ , and the speech feature ,N MF . 

To measure the features quasi continuously in time the dis-

placement of the segments is chosen to one sample. There-

fore the sequence of the estimated features of the segments 

represents a feature signal , ( )N MF n . The figures 2-4 show 

analyses of stationary speech whereas fig. 5 shows the analy-

sis of a sound transition. The sampling rate of the analyzed 

speech signals is 16 kHz. For the interpretation of the fea-

tures the analyzed speech signal and the corresponding LPC-

residual signal are shown represented by curves (a) and (b). 

The LPC-residual is obtained from a standard linear predic-

tion of order 30. One reason for the observed pulses in the 

LPC-residual is the glottal closure per period. The curves of 

the feature signals ,N MF  are shifted in a consistent way that 

the center of the symmetric windows and the left side of the 

asymmetric windows correspond to the values of the ana-

lyzed speech signal and LPC-residual. Figures 2 and 3 show 

the analyses of the vowel /a:/ and /e:/, respectively. The effect 

of the segment length can be seen from the curves (d)-(g) in 

fig. 2 and (d),(e) in fig. 3 representing the feature 4,4F  gen-

erated by the use of the symmetric window with different 

segment lengths L. The smaller the segment length, the finer 

is the time resolution. A comparison wit the LPC-residual 

shows that the features with small segment lengths can de-

scribe finer events like second pulses in the periods; this can 

be seen especially in fig. 3 where the second pulses are 

marked by arrows. The maxima of 4,4F  correspond to the 

main peaks of the LPC-residual caused by glottal closures 

and to the second peaks. The feature 16,1F  with the asym-

metric window is more sensitive to the main pulses and less 

sensitive to the second pulses. In figure 3 it can be seen that 

the second impulses are missing in (c) in comparison to 
4,4F  in (d). This behaviour is helpful to detect the pitch 

pulses if additional pulses occur in the LPC-residual. Figure 

4 shows the analyses of consonants. It can be seen that the 

LPC-residual consists of many pulses per period whereas the 

feature signal 16,1F  show mostly one dominant pulse per 

period indicating the glottal closure. The analysis results 

show that events can be detected in a very fine time resolu-

tion by the use of the asymmetric window; the feature 16,1F  

turned out to be effective. Figure 5 shows the analysis of a 

transition from the plosive /d/ to the vowel /a:/. The region of 

interest is here the start of the voiced excitation. The first 

glottal impulse can be observed from the first period of the 

speech signal by curve 5 (a); the start of the first period is 

marked by an arrow. The corresponding initial glottal closure 

can be seen by a peak of the feature signal 16,1F  with the 

asymmetric window function. Here the LPC-residual shows 

no indication for this event.  

 

Figure 2 – Analysis of vowel /a:/: (a) analyzed speech signal, (b) 

corresponding residual by linear prediction. (c) Feature 16,1F   with 

segment length 180 and asymmetric window aw , (d)-(g) Feature 

4,4F  with the symmetric window sw  and different segment 

lengths: Length 100 for (d), length 115 for (e), length 180 for (f), 

and 200 for (g) 

 

Figure 3 – Analysis of vowel /e:/: (a) analyzed speech signal, (b) 

corresponding residual by linear prediction. (c) Feature 16,1F   with 

segment length 180 and asymmetric window aw , (d)-(f) Feature 

4,4F  with the symmetric window sw  and different segment 

lengths: Length 115 for (d) and length 180 for (e) 
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(A) 

 

(B) 

  

(C) 

 

Figure 4 – Analysis of consonants:  (A) nasal /n/, (B) voiced frica-

tive /v/, (C) voiced fricative /Z/; (a) analyzed speech, (b) corre-

sponding residual by linear prediction, (c) corresponding feature 

signal 16,1F  with asymmetric window aw ,  (d) corresponding 

feature signal 4,4F  with symmetric window sw    

  

Figure 5 – Analysis of sound transition [da:]: (a) analyzed speech, 

(b) corresponding LPC-residual, (c) corresponding feature signal 
16,1F  with asymmetric window aw , arrows mark first glottal event 

4. CONCLUSIONS 

The nonlinear prediction of speech is performed by a vector 

expansion. For short-term analyses a window function is 

useful. Test signals show that applying the window function 

directly to the analyzed signal leads to incorrect results. To 

obtain correct results the window function should be applied 

to the prediction error in contrast to the first-mentioned pro-

cedure. Speech features are investigated representing the 

prediction gain improved by an inclusion of nonlinear com-

ponents of a Volterra series. The impact of the type of the 

window function has been shown considering a symmetric 

and an asymmetric window. The usage of an asymmetric 

window function results in feature signals which consist of 

pulses correlating to the glottal closures. Examples demon-

strate the informational content of nonlinear statistics of 

speech obtained by weighted nonlinear prediction. The re-

sults are relevant to the understanding of the speech produc-

tion process and algorithms of feature analysis. 
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