14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

CURRENT AND FUTURE TRENDS IN EMBEDDED VLIW MICROPROCESSORS
APPLIED TO MULTIMEDIA AND SIGNAL PROCESSING

Giuseppe Desoli, Thierry Strudel, Jean-Philippe Cousin, Kaushik Saha

STMicroelectronics/Advanced System Technology
Via Cantonale 16E, 6928, Manno, Switzerland
12, rue Jules Horowitz, 38019 Grenoble Cedex, France
Plot #1, Knowledge Park III, Greater Noida, India
email: {giuseppe.desoli,thierry.strudel,jean-philippe.cousin,kaushik.saha}@st.com
web: www.st.com

ABSTRACT

Although Very Long Instruction Word (VLIW) processors mix of

performance, power consumption, flexibility and cost is a very good
match for embedded systems in general and multimedia streaming
ones in particular; they might be adversely exposed to increasing
memory latencies, code size bloat and to some extent performance
scalability with increasing issue width. This paper presents two
extensions for such VLIW micros that have a large potential impact
when applied to the highly competitive market of multimedia con-
sumer applications and more recently streaming: Symmetric Multi
Processor (SMP) cache coherency and multithreading,; we present a
quick summary of those developments carried out by STMicroelec-
tronics within the framework of the ST200 family of embedded mi-
croprocessor and preliminary results obtained from their use in
selected video and audio applications.

1. INTRODUCTION

This paper focuses on two major architecture extensions: symmetric
multiprocessing (SMP) and simultaneous multithreading (SMT)
that, although well established in the state-of-the-art for workstation
class microprocessors and supercomputers alike, presented a num-
ber of challenges when applied to the domain of embedded multi-
media microprocessor cores and specifically to the ones that rely on
the VLIW architecture to exploit instruction level parallelism (ILP).
In the last few years, due to new design spaces opened by advance-
ments in silicon technologies and rapid scaling up of transistor
budgets, the perceived disadvantages of VLIWs have diminished in
importance, because of that and also thanks to architectural en-
hancements, VLIW architectures are growing in popularity, particu-
larly in the embedded market, where the metrics used to drive mi-
croprocessor evolution are tightly coupled with performance, cost,
area and power consumption trade-offs. Embedded VLIW products
are available from several vendors, including Fujitsu, the ST231
from STMicroelectronics, the Jazz DSP from Improv Systems, Sili-
con Hive, Texas Instruments TMS-C6 and the Philips trimedia se-
ries to name some.

One of the problems is a lack of robustness with respect to pipeline
stalls induced by various external events, such stalls are in general
associated with memory requests and traffic congestion on a typical
embedded system-on-chip (SoC). The pipeline stalls can’t in general
be partially avoided in VLIWs, like in the case of superscalar proc-
essors, because they lack the complex logic that allows superscalars
to reorder instructions and issue them in program order. This inabil-
ity, although a direct result of the great simplification in implemen-
tation complexity at the pipeline level, can adversely impact per-
formance for certain classes of applications where the cache access

patterns can’t be sufficiently predicted and for which data prefetch-
ing, when such a feature is available, doesn’t help either.

Newer multimedia application requirements, especially in combina-
tion with data streaming over all kinds of communication channels
might introduce even more uncertainty to system’s data availability;
this is associated with variable and simultaneous workloads being a
mix of control functions, such as protocol stacks, synchronization,
error concealment and correction, data-rate control, etc. and the
more traditional signal processing data-crunching. Modern multi-
media streaming application, can be implemented with the support
of programming models and run-time environments exploiting mul-
tiple threads of execution; this naturally stemming from the hetero-
geneous set of different functions and the need to handle streams of
different nature and at different data-rates. As a consequence it’s
often the case that interactions between different software entities
create more complex memory access patterns, and also expose
higher network latencies to the processors, further reducing their
overall performance when suitable countermeasures are not avail-
able. To address these problems few remedies exist, from more
intelligent data prefetching to various forms of scoreboarding that
all tend to add too much complexity.

The other potential problem is scalability; VLIWs have been built
with very large instruction words and number of functional units,
however most embedded microprocessors are limited in terms of
transistor budget and pipeline frequency when compared to off-the-
shelf general purpose processors. In practice for implementation
reasons, is not frequent to see offerings with more than 16 func-
tional units (FUs) and/or issue widths higher than 8 instructions per
cycles. Here we report on two techniques that although not new in
terms of general computer architecture, have to our knowledge,
never being applied to an embedded general purpose VLIW proces-
sor before; the first addresses the problem of increased robustness to
memory/network latencies, application workloads and simultaneous
threads interactions by way of providing the capability of simulta-
neously running multiple threads of execution, a technique com-
monly referred to as simultaneous multi threading (SMT); the other
describes an efficient implementation of a cache coherency protocol
for an embedded VLIW multimedia processor that keeps into ac-
count as primary criteria, cost, power and latency. In the following
we will provide the description of the design of such features into
the ST200 family of VLIW embedded microprocessors core, origi-
nally jointly designed by STMicroelectronics and Hewlett-Packard.
First we describe the ST231MT multithreaded microprocessor core
with a brief description of prior state-of-the-art, then the description
of the ST231MP symmetric multiprocessing capable core. Section 3
describes parallel implementation of video and audio decoders fol-
lowed by results obtained on few representative application work-

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

loads both for independent applications mixes and parallel ones;
finally we provide some conclusion and future work.

2. MULTI-THREADING AND VLIW

Simultaneous multithreading (SMT) supports multiple independent
threads of execution with the aims of better utilizing the datapath
resources, partially hide latencies and increase throughput in gen-
eral. Early attempts date back to 1950's with machines from Bull
Gamma and Honeywell; the first commercial SMT machines ap-
peared in 1978 and 1980 and the technique has been deployed in
alternating phases of popularity and abeyance throughout modern
days. It’s worth mentioning that network processors have too fre-
quently exploited some form of multithreading given the favourable
nature and level of concurrency of the networking applications. A
thorough timeline is available in [1].

Often SMT execution models have been designed in superscalar
microprocessors that already support instruction reordering by way
of register renaming techniques; for which the additional complexity
is marginal and instructions are buffered and dependencies analysed
prior to be dispatched to the functional units. Exposing the instruc-
tion scheduler to multiple threads is relatively simple then, as in-
structions from different threads are independent.

The register renaming logic and shadow registers can be leveraged
to avoid full replication of each thread’s register; only a fractional
increase of the number of shadow registers could be required de-
pending from the number of HT supported. On the other end, VLIW
cores rely on compilers for static instruction scheduling and lack an
instruction scheduler and register renaming logic. For this reason we
choose to adopt a multithreaded flavour limited to a time slice MT
in the ST231-MT. A true simultaneous MT core supports executing
multiple instructions from multiple threads in the very same cycle.
Such feature would excessively impact the implementation of a
VLIW microarchitecture, requiring complex capabilities like: access
to any register of any threads at any cycle, full instruction dispatch-
ing to functional units to maximize performance and support for
multiple independent exception handling. A time sliced MT instead
supports only instructions of the same threads for a given time slice
window to be dispatched down the pipeline. A time slice of 1 cycle
allows threads switching every cycle thus giving better potential to
reuse all threads stall cycles, while larger slices can be used to im-
plement relatively simple priority schemes.

2.1 ST231MT architectural extensions

The ST200 architecture is a RISC VLIW embedded core family

primarily aimed at multimedia and general purpose [2]. It is a 32bit,

64 general purpose register (GPR), 8 single bit branch register (BR),

4 issue machine. Elementary instructions (syllables) are packed in

variable length VLIW (bundles). It comprises 4 ALUs, 2 32x32

multipliers and a single load store unit. The ST231 pipeline has 7

stages as depicted in Fig. 1.

The ST231MT is a fine-grained multithreaded machine where mul-

tiple instruction streams are selected for execution one at the time on

a cycle by cycle base.

Only the F and I stages have been redesigned as the entire thread

scheduling is performed in those stages. A few resources have been

replicated (see Fig 1) the rest of the core being shared by all the

HTs. The thread issue unit (TIU) is responsible for scheduling the

threads by fetching their instructions and for issuing executable

threads down the pipeline. A thread state can be one of:

o Executable: bundles can be issued from this thread.

e Stalled: the HT is waiting for a memory transaction to complete (I
or D cache refill) or pipeline hazard resolution.

o Idle: the HT is waiting on an interrupt

e Waiting: the HT is waiting on given memory transaction

Every cycle, the TIU evaluates the new thread state and issues a
bundle according to the scheduling policy, which can be partially
controlled via software.

F ‘ I cache

Raew
I I Buffer Yy

D ‘ Decode ‘
R Read ‘@
2 Tﬁ
= o
E2 A= = — i
il s
WB L]

Figure 1: ST231MT pipeline

Bundles from various HTs flow down the pipe while keeping the
information of the thread context they belong to for accessing its
register set and private control registers, selecting correct bypass and
thread private address translation logic.

In the standard ST231 core, a cache miss stalls the pipe until the
cache line is filled with requested content. In the ST231MT instead,
the LSU initiates a request to memory to serve the miss while the
thread state is set to stalled and drained from the pipeline, freeing it
for other threads ready to execute. Once the cache miss is served,
the TIU is notified of this event and the stalled thread can resume
execution. The LSU supports multiple outstanding misses in order
to refill as many lines as hardware threads (HT) in parallel.

A specialized mechanism has been implemented to support efficient
inter HTs synchronisation; to prevent threads spinning on a critical
resource access and let other HTs do useful work, an HT can be-
come idle waiting for a given memory location modification to oc-
cur. The ST231MT provides the illusion of multiple virtual CPU
resulting in an increased overall core responsiveness (e.g. for almost
zero cycle interrupt latency). The overall complexity increase of the
ST231MT is mostly due to the large number of registers of the
ST231, replicating them for each HT having an impact on the over-
all core size, although an optimized implementation of the register
file avoids a linear increase of the size as shown on Table 1.

N° HTs Register File Total core
mm?2 % mm?2 %
1 0.23 100 2.25 100
2 0.30 130 2.5 111
4 0.41 178 2.75 122
8 0.66 286 3.35 145

Table 1: Area increase for ST231 vs. ST231 MT

3. SYMMETRIC MULTIPROCESSING

The ST231MP architecture has been defined to provide system
scalability and flexibility taking into account constraints of an em-
bedded domain. Multiprocessor based systems can often result in a
reduced ease of programmability because of distributed memory
models limitations and to explicit communication management
required at the application level. In addition, OSs can’t always use
efficiently hardware resources. The ST231 MP features have been
defined to enable application developer to exploit peak perform-
ances by taking advantage of a cache coherent shared memory sys-
tem with advantages such as: transparent tasks migration, zero la-

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

tency communication, interrupt distribution and with the capability
to control independently processors for detached stand-alone opera-
tions, power down, etc..

Our driving criteria were: performance by minimizing latency in-
crease due to cache coherency transactions; power consumption by
reducing access to cache structures; complexity reduction and fi-
nally backward compatibility with uniprocessor solutions.

In our design, the general template for a cache coherent multiproc-
essor system consists of two or more ST200 cores with an L1 mem-
ory sub-system attached to a bus arbiter we call Snoop Interconnect
Unit (SIU), whose tasks are coherent memory transaction manage-
ment and arbitration (Fig. 2). Other components exist, such as a
programmable multiprocessor interrupt controller (MPIC) devoted
to interrupt distribution among the processors to provide software
with interprocessor synchronization and interruption capabilities and
an optional L2 cache.

Optional L2

For performance
improvement

ST231 MP IP
i with std IF
8 bytes bus interface
T

Centralized Unit
System Bus e ee
Minimal Hw
ﬁ%‘;cﬁe SNOOP INTERCONNECT UNIT
coherency
ncc ﬁSTBus n cc ﬁSTBus H cc STBus ﬂcﬁ STBus
Memory sub-system Memory sub-system Memory sub-system Memory sub-system
Std ST231
peripheral | ST231 MP ST231 MP ST231 MP ST231 MP

T T T
|ST231 Periph | [ST231 Periph| [ST231 Periph| [ST231 Periph|

| MPIC |

- 128
External |interrupts

Figure 2: A 4-way smp cluster with SIU, MPIC and L2 cache

We choose a relaxed memory consistency model that simplifies the
cache controller implementation and still allows for such things as
intermediate buffering and transaction pipelining at a cost of a mi-
nor extension to the ISA in the form of memory barrier instructions.
Often microprocessors are implemented with a number of structures
laying on the path of data between the processor core and the exter-
nal memory that are used for intermediate buffering and decoupling,
to offer improved performance by exploiting either temporal or
spatial locality. Such structures alter the total memory operation
order as seen from the external bus with respect to the issue order of
the associated instructions, thus potentially affecting correctness in a
cache coherent multiprocessor system. The ST231 has a write coa-
lescing buffer of 4 entries each 32 bytes long, used to implement a
hit under miss condition for write operations that miss in the cache.
The introduction of a weak consistency memory model is then ex-
posed to the programmer (often only the OS or library and not to the
user level applications), by defining a memory barrier (wmb) in-
struction. This instruction is required to ensure store ordering, in fact
after the execution of wmb, the processor will flush the content of
the write buffer posting all of the relevant coherency transaction to
the bus, making them visible from other processor instances.

For SMP architecture, shared resources access can significantly
limit system performances, those accesses are mainly done through
low level synchronisation routines. Efficient software synchroniza-
tion requires atomic instruction support; we choose a pair of non-
blocking instructions known as load linked (1dw1) and store linked
(stwl). They have been selected instead of more classical (for
processor of this class) test-and-set or compare—and-swap like op-
erations because they offer lock free synchronization (e.g. for over-
all system responsiveness) and are better building blocks for higher
level primitives. 1dwl is a load operation which sets a lock bit as-
sociated with the load physical address. The stwl instead is a con-

ditional store that checks the lock bit and, depending on its value,
commits (Lock=1) or it’s “quashed” (1ock=0), in both cases after
completion the lock bit is reset. This definition allows to implement
atomic primitives of various kinds (atomic increments, spin locks,
etc.) with ease. To augment their flexibility we choose not to limit
the type and number of instructions usable between matching pairs
of 1dwl and stwl as well as defining a correct behaviour inde-
pendently from the associated memory region property (e.g. cached
or un-cached).

We adopted a number of measures to contain the amount of addi-
tional transaction, and thus power consumption increase and per-
formance degradation. The first consists on the ability to disconnect
a processor from the coherency protocol via software, making it
behave as a standard uniprocessor. The second is to reduce cache
coherency overhead by using extended page attributes to activate
cache coherency or not based on the application’s defined memory
properties. We named “coherent request” any processor request for
which cache coherency is activated, “non coherent” other memory
requests (data memory request or instruction refill).

Our MESI based cache coherency management is distributed be-
tween the ST231 and SIU components via a dedicated snooping
interface, and not by way of a more classical bus snooping protocol.
This led to an efficient solution, in terms of power and transaction
latency, because coherency transactions take place only when they
have to, without the need for other processors to ‘listen’ to every
single bus transaction.

31 SIU/ST231MP cache coherency management

The basic principle is to split “coherent” requests from “standard”
bus request. Instead of sending bus requests with coherency attrib-
utes, a processor first initiates a coherent request (opcode and ad-
dress); the SIU then broadcasts it to all processors collecting a re-
sponse from every one with an action associated with the original
snoop request to initiate a bus operation if required. The advantages
of such a scheme are minimization of broadcast latency (two cy-
cles), and simple logic; in addition it also provides a clear decoup-
ling with the data path used for bus arbitration.

The cache lines state (valid/dirty) management has been extended to
support augmented MESI states, the data cache tags have been du-
plicated in order to limit contention between processor access and
snooping bus access. Some of the other internal structures such as
write buffer and prefetch buffer have been modified for cache co-
herency management, and of course extra interfaces have been im-
plemented to manage the snooping communication protocol defined
above.

3.2 Snoop Interconnect Unit (SIU)

It’s a centralized component used for both bus arbitration and cache
coherency management. It is partitioned in:

e Control block: manages snooping protocol interfaces, receives,
serializes processor cache coherent request, broadcasts transaction
and collects processor snoop responses. Those responses are used
to decide arbitration among the bus request sent by processors.
This arbitration scheme is used by the data path as described be-
low.

Data path: collects processors bus request from the standard proc-
essor bus ports and arbitrates them. Requests are either “coherent”
or “non coherent”, this information is associated with each proc-
essor coherency request received from the control block. Internal
bus arbitration implements a fair algorithm using information
coming from control path for “coherent” requests arbitration.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

4. PARALLEL APPLICATION TRIALS

The applications used as benchmarks were chosen from a set of
typical multimedia stream decoders, used in consumer electronic
products. A video de-coder for MPEG2 [4] digital video streams
and an audio decoder for Dolby AC3 [5] digital audio streams were
adapted to take advantage of the SMT and SMP architectures using
the threaded programming model.

The MPEG2 decoder is designed such that variable length decoding
is performed by a dedicated thread and the decoded Discrete Cosine
Transform (DCT) coefficients of every macro-block in a frame are
stored in a memory buffer. The macro-blocks are independent units
in themselves; hence multiple threads can perform the Inverse Dis-
crete Cosine Transform (IDCT) for different macro-blocks in paral-
lel. The Motion Compensation step exposes data dependencies that
can limit the performance of the parallel implementation. Motion
compensation requires data from a neighbouring macro-block in the
previously decoded frame; in our implementation this data depend-
ency is minimised by dividing the frame into two vertical halves for
2-thread implementation and into four quadrants for 4-thread im-
plementation) and assigning the macro-blocks present in each parti-
tion to a single thread. The threads perform IDCT and motion com-
pensation in parallel for the macro-blocks in their allotted sections.
Each thread processes 1/N (N being the number of proces-
sors/threads) fraction of a picture frame. This minimizes the data
dependency among processors during motion compensation since
data dependencies occur only at the boundaries of the frame parti-
tions. Simulation results show that the ratio of data dependency to
the data being processed by a single processor is about 12% of the
entire data processed by a thread for a 4-thread implementation.
This achieves nearly perfect load balancing since all the threads are
working on similar number of macro-blocks, while being mostly
decoupled from each other in terms of data sets.

A packet based approach has been used to partition the Dolby AC3
audio decoder [5]. A Dolby digital audio bitstream is comprised of
packets, representing equal durations of audio playback time; these
packets are marshalled by headers, and are easy to located and ex-
tract from the bitstream. Packets are independent from each other
and can be decoded independently; as a result, the computational
load may be easily divided by assigning each thread the same num-
ber of packets to process. Packets are extracted from the bitstream
by a dedicated thread, and are supplied to different computational
threads, to be processed in parallel. After all threads synchronised at
the end of processing, another dedicated thread arranges the de-
coded packets in the correct order for playback. This method
achieves a high speed up with a very low data communication be-
tween threads.

5. BENCHMARKING RESULTS

In this section we first present the platforms used, the runtime envi-
ronment developed to limit system overhead and finally present and
discuss the results. The benchmarking goal for the MT core was to
measure the obtained speedup for a range multimedia application
and evaluate how MT behaves with respect to varying memory
latencies. The SMP study focused on measuring timing impact of
the designed cache coherent solution and evaluate achieved speedup
on the proposed application.

Cycle accurate systemC and C simulation platforms were used to
produce the figures illustrated in the following waiting for the actual
hardware platform for final validation. A bare runtime or OS such as
Linux can be mapped on such platforms.

Support of SMP platforms is becoming a common feature for vari-
ous OSs; Linux has been providing such support for years now with
multithreading awareness for platforms such as Intel’s Hyper
Threading. However Linux requires a relatively large environment

and could have interfered with the benchmarking activities in com-
plex ways; so we designed a light weight micro-kernel (a bare ma-
chine run-time) supporting I/O onto a remote host or in a local RAM
file system. The newlib C library has been ported on this bare ma-
chine run-time providing common C functions. As the newlib sup-
port re-entrancy using a structured type, it has been easy to allow it
to be entered by all execution contexts while each context works on
his private set of data as a UNIX process would. This set up allowed
us to compile and run mono threaded application unmodified by
allocating each workload on a different execution context. In order
to benchmark the effective speedup of applications using multiple
execution contexts, we had to select a suitable parallel programming
model amongst one of the many: distributed, multithread real-time
or micro kernels, synchronous or streaming languages, C extensions
for parallel programming or threading libraries. We have decided to
use the widely adopted pthread (POSIX thread) interface as it is
natively supported on most systems and does not make any assump-
tion on the underlying machine architecture. In order to take advan-
tage of the MT architectural features for efficient synchronisation,
code has been lifted from the NPTL for the high level synchroniza-
tion primitives while the lowest levels have been fully rewritten
using a user level scheduler approach.

5.1 ST231MT parallel applications results

The mono threaded application core usage must be analyzed to es-
timate the potential speedup of an MT core. Table 2 shows the result
of the execution of the parallel AC3 and MPEG2 execution com-
pared to the same applications executing in a mono threaded fash-
ion. Figures account for the entire execution time: micro-kernel
boot, system, libc and application proper execution. In the case of
parallel code, pthread synchronisation primitives represent an over-
head, in the total number of instruction to be executed, especially in
the case of contention. The core cycle utilisation (bundles per cy-
cles) can provide a measure of core usage efficiency and an indica-
tion of potential for parallel execution speedup.

Speedup parallel code C.o.re gycles

overhead % | utilization %
MPEG2 2 MT 0.98 26 82
MPEG2_4 MT 1.06 29 91
AC3 2 MT 1.15 8 85
AC3_4 MT 1.27 8 94
MULTI-1_MT 1.09 7 64
MULTI-2_ MT 1.38 9 81

Table 2: Performance scaling with varying HT numbers

The original MPEG2 code has a 67 % core utilization, leaving 33%
of the cycles being unused. The parallel 2 threads version requires
an extra 26% of code to be executed due to the synchronisation
scheme, thus positive speedup (1.06) is only reached on 4 threads
while there is almost 30% more code to be executed.

The AC3 mono threaded application shows better utilization levels
as only 32% of the cycles are lost; this lowers the maximum
speedup we can expect from running a parallel version of it on the
MT core. For this application the need to synchronise between par-
allel threads is relatively low. With 4 threads we get a 1.27x
speedup compared with a theoretical 1.47x with the BPC value
resulting in a good 94% core utilization. We then selected two sets
of multimedia applications: aac, ac3, minimad and wm9 for the first
set (multil in table 2), and cjpeg, djpeg, mped2dec and compress for
the second set (multi2). The sets are executed sequentially on the

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

standard ST231core while in the MT case, all applications run con-
currently each on a given HT thus competing for D,/ cache and
pipeline resources. As the caches have not been augmented to com-
pensate the increased demands of all applications executing at the
same time, the speedup is limited. The low utilization level for the
MT case is due to both capacity and collision misses in the caches.

1.2 - . 4 - * - -MPEG2
N o AC3
¢ . m - % - Multi2
1.4 - - - & - - Multi

—— Multi1_MT
——— Multi2_MT

, —&— MPEG2_MT
AC3_MT

0 5 10 15 20 25

Figure 3: Slow down as a function of memory latency

Figure 3 shows the effect on the overall execution time of varying
memory latencies (number of system bus cycles for servicing a
memory request). For all the applications, the MT executions show
a greatly reduced impact as opposed to the sequential execution.

5.2 Cache coherency overhead

To evaluate cache coherency overhead we have used three dif-
ferent platforms: a first one uses just one processor without cache
coherency used as the baseline, the second still with one core but
with cache coherency active useful to assess latency increase, and
finally a third platform integrates four processors, running the same
application, but different executable images and set of data thus
without explicit data sharing except for the 1/O libraries state vari-
ables.

Local M . "
, % -
T 3 B compress
5 O mpeg2dec
o 25 Gcipeg
e
8 2 maac
H @ mpeg2enc
27 45
1D: 1 CPU disconnected E mac3
£ 1 odts
LCocal Memory. g m copymark
3
3 05 mgce
3. 0 ol

Snoop Interconnect Unit

n
o
3

1C: 1CPU connected 200

Tocal Memory

System BUS

@ min

mmax
O average

Snoop Interconnect Unit

Latency (cycles)

58 67 50

1D 1c 4C

4C: 4 CPUs connected

Figure 4: cache coherency performance impact

Results show that the cycle overhead is between 0.2 and 3% for a
single processor with cache coherency activated. These figures can
be explained with the load miss penalty increase of up to 9 cycles
due to cache coherency and the percentage of read misses versus
number of total memory operations. The overhead gets up to 3.7%
when four processors are running but is mainly due to bus conten-
tion because of the four independent applications accessing the bus
and not significantly impacted by cache coherency.

The second diagram in Fig. 4 shows load miss latency; when four
processors are running, the maximum latency for a load miss is
around 4 times larger than the uniprocessor case. This can be ex-
plained by a side effect of the 1/O library critical section contention.

53 ST231 SMP Parallel application results

The MPEG2 and AC3 parallel applications described in previous
chapters have been executed on the cycle accurate System C plat-
form with the support of the same runtime of the MT environment.
We expected to find, for the AC3 application, a significant speed up
with respect to the MT results. Indeed the parallel code fully ex-
ploits the multiple processor resources; Table 3 shows linear speed
ups with the number of processors, combining MT and SMP execu-
tion would provide beneficial cumulative effect by also improving
single core utilization.

1 core 2 cores 3 cores 4 cores
AC3 1 1.8 2.9 3.8
MPEG2 1 1.1 1.5

Table 3: AC3 and MPEG?2 parallel applications speed up

For MPEQ? trials, the results also differ from the MT case and point
out the need for a more careful partitioning of workload amongst
parallel tasks. In fact the sequential nature of the variable length
decoder limits the potential speedup to 1.3 with two processors, as a
function of the bit rate and resolution used for the decoded stream.
This preliminary results are inconclusive for the MPEG2 parallel
implementation as a different parallelization strategy would proba-
bly provide better results.

6. CONCLUSIONS

We’ve demonstrated that two orthogonal microprocessor architec-
tural features, SMT and SMP support, can have a significant impact
on the performance of multimedia streaming application. To our
knowledge these are the first reported implementations of simulta-
neous multithreading and cache coherency in the context of an em-
bedded VLIW general purpose core with precise exception. Results
show that interesting speed ups can be obtained at a relatively small
extra hardware cost for both independent multiple workloads and
parallel implementation of media applications. However it’s also
evident from the preliminary results of our implementation of a
video decoder that a suitable programming model and a careful
parallelisation strategy need to be applied to obtain good results in
the presence of a balanced mix of control and data flow.

Future work will focus on the design of more advanced support for
streaming in the form of distributed memory architectures and to the
definition of programming model and hardware support that re-
moves some of the difficulties of application partitioning on multi-
ple cores.

7. REFERENCES

[1] http://www.cs.clemson.edu/~mark/multithreading.html

[2] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, F. Home-
wood: Lx: a Technology Platform for Customizable VLIW
Embedded Processing 27th Annual International Symposium
on Computer Architecture -- ISCA'00, June 2000.

[31 A. Moshovos, "RegionScout: Exploiting Coarse Grain Shar-
ing in Snoop-Based Coherence", Intl. Symp. on Computer
Architecture, pp. 234-245, 2005.

[4] ISO/IEC 13818-2: “MPEG video standard’, ITU-T H.262
Recommandation, 1995

[51 Digital Audio Compression Standard AC-3, Document no.
A/52, Advanced Television Systems Committee, 1995

