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ABSTRACT

In this paper, we present a technique for the blind sepa-
ration of DS-CDMA signals received on an antenna array,
for a multi-path propagation scenario with Inter-Symbol-
Interference. Our method relies on a new third-order ten-
sor decomposition, which is a generalization of the parallel
factor model. We start with the observation that the tempo-
ral, spatial and spectral diversities give a third-order tensor
structure to the received data. This tensor is then decom-
posed in a sum of contributions, where each contribution
fully characterizes one user. We also present an algorithm of
the Levenberg-Marquardt type for the calculation of this de-
composition. This method is faster than the alternating least
squares algorithm previously used.

1. INTRODUCTION

Let us consider R users transmitting frames of J symbols at
the same time within the same bandwidth towards an array
of K antennas. We denote by I the spreading factor, i.e.,
the CDMA code of each user is a vector of length I. In a
direct-path only propagation scenario, the assumption that
the channel is noiseless / memoryless leads to the following
data model:

yi jk =
R

∑
r=1

hirs jrakr, (1)

where yi jk is the output of the kth antenna for chip i and sym-
bol j. The scalar akr is the gain between user r and antenna
element k, s jr is the jth symbol transmitted by user r and hir,
for varying i and fixed r contains the spreading sequence of
user r. Note that this model can also include memory effects,
provided that a discard prefix or guard chips are employed to
avoid Inter-Symbol-Interference (ISI) [1]. For background
material on algebraic solutions to this problem, we refer to
[2]. In this article, we focus on the more complex situation
where multi-path propagation leads to ISI. We also assume
that the reflections can both occur in the far and close fields
of the antenna array so that each path is characterized by its
own delay τp , angle of arrival θp and attenuation αp, where p
denotes the path index. Under these assumptions, our objec-
tive is to estimate the symbols transmitted by every user in a
blind way, without using prior knowledge on the propagation
parameters or the spreading codes. Our approach consists of
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collecting the received data in a third-order tensor and to ex-
press this tensor as a sum of R contributions by means of
a new tensor decomposition: the Block Factor Model intro-
duced in [3, 4].

In section 2, we introduce some multilinear algebra pre-
requisites. In section 3, we discuss the PARAFAC decom-
position, which has been used to implement a blind receiver
for the model of equation (1) [1]. In section 4, we discuss
the Block Factor Model, which is a generalization of the
PARAFAC model. In section 5, we propose a Levenberg-
Marquardt algorithm to compute the decomposition of the
Block Factor Model and we compare its performance to the
Alternating Least Squares algorithm used in [3].

2. MULTILINEAR ALGEBRA PREREQUISITES

A multi-way array of which the elements are addressed by
N indices is an Nth-order tensor. Signal processing based on
multilinear algebra is discussed in [5].

Definition 1. (Mode-n product) The mode-1 product of
a third-order tensor Y ∈ CL×M×N by a matrix A∈ C

I×L, de-
noted by Y ×1 A, is an (I ×M ×N)-tensor with elements
defined, for all index values, by

(Y ×1 A)imn =
L

∑
l=1

ylmnail

Similarly, the mode-2 product by a matrix B∈ C
J×M and

the mode-3 product by C∈ C
K×N are the (L× J ×N) and

(L×M×K) tensors respectively, with elements defined by

(Y ×2 B)l jn =
M

∑
m=1

ylmnb jm

(Y ×3 C)lmk =
N

∑
n=1

ylmnckn

In this notation, the matrix product Y = U.S.VT takes
the form of Y = S×1 U×2 V.

Definition 2. (Rank-1 Tensor) The third-order tensor
Y ∈ RI×J×K is rank-1 if its elements can be written as yi jk =

a(i)b( j)c(k), where a ∈ CI×1, b ∈ CJ×1 and c ∈ CK×1.
This definition generalizes the definition of a rank-1 ma-

trix: A ∈ CI×J has rank 1 if A = a.bT .
Definition 3. (Tensor Rank) The rank of Y is defined

as the minimum number of rank-1 tensors that yield Y in a
linear combination.
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Definition 4. (Frobenius Norm) The Frobenius Norm of
the tensor Y ∈ RI×J×K is defined by

‖Y ‖
2
=

√

√

√

√

I

∑
i=1

J

∑
j=1

K

∑
k=1

|yi jk|2.

3. PARAFAC DECOMPOSITION

Parallel Factor Analysis (PARAFAC) was introduced by
Harshman in [6]. It is a powerful technique to decompose
a rank-R tensor in a linear combination of R rank-1 tensors.
Let Y be an (I × J ×K) tensor, with elements denoted by
yi jk. The PARAFAC decomposition of Y can be written as

yi jk =
R

∑
r=1

ar(i)br( j)cr(k), (2)

where ar, br, cr are the rth columns of matrices A ∈ CI×R,
B ∈ CJ×R and C ∈ CK×R respectively, and where i, j and
k denote the row index. It now appears that the model for
a memoryless channel (1) can be seen as a PARAFAC de-
composition of the observation tensor Y . Sidiropoulos et
al. were the first to use this multilinear algebra technique in
the context of wireless communications [1]. The algorithm
commonly used to calculate the PARAFAC decomposition is
an Alternating Least Squares (ALS) algorithm. Given only
Y , it consists of alternating conditional updates of the un-
known matrices A, B and C. Though easy to implement,
the convergence of this algorithm is occasionally slow. In
[7], it has been established that derivative based methods of-
ten show better convergence properties than ALS, which has
been confirmed by our own experiments on the PARAFAC
model.

4. BLOCK FACTOR MODEL

4.1 Data Model: Analytic Form
For the propagation scenario that takes into account multi-
path and ISI, a more general algebraic model has been intro-
duced in [3], and is referred to as Block Factor Model (BFM).
Let us start with a single source transmitting J symbols along
P paths towards K antennas. These paths can be considered
as channels with memory, leading to ISI, and are assumed to
be stationary over J symbols. Let L be the maximum channel
length at the symbol rate, meaning that interference is occur-
ring over maximally L symbols. The coefficients resulting
from the convolution between the channel impulse response
for the pth path and the spreading sequence of the user un-
der consideration are collected in a vector hp of size LI. So
hp(i + (l − 1)I) is the coefficient of the overall impulse re-
sponse corresponding to the ith chip and the lth symbol. We
denote by xp(i, j) the ith chip of the signal received from the
pth path during the jth symbol period. We have:

xp(i, j) =
L

∑
l=1

hp(i+(l−1)I)s j−l+1. (3)

Let ak(θp) be the response of the kth antenna to the signal
coming from the pth path with an angle of arrival θp, where
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Figure 1: Schematic representation of the BFM

we assume that the path loss is combined with the antenna
gain. The model defined in (3) then yields:

xp(i, j,k) = ak(θp)
L

∑
l=1

hp(i+(l−1)I)s j−l+1, (4)

where xp(i, j,k) denotes the ith chip of the jth symbol of the
signal received by the kth antenna. We now write the overall
received signal by summing the contributions of the P paths
and the R users:

yi jk =
R

∑
r=1

P

∑
p=1

ak(θrp)
L

∑
l=1

hrp(i+(l−1)I)s(r)
j−l+1, (5)

where yi jk denotes the ith chip of the jth symbol of the signal
received by the kth antenna, and in which r, p and l are the
user, path and interfering symbol index respectively.

4.2 Data Model: Algebraic Form
We have established in [3] that, algebraically, (5) can be ex-
pressed as:

Y =
R

∑
r=1

Hr ×2 Sr ×3 Ar. (6)

This BFM is represented in Figure 1. Each term of the
sum in (6) contains the information related to one particu-
lar user. The global channel is characterized by the tensor
Hr ∈ CI×L×P, where each front-back slice Hr(:, :, p) col-
lects I ×L samples of the vector resulting from the convolu-
tion between the spreading sequence of the rth user and the
overall impulse response of the channel corresponding to the
pth path. The antenna array response is given by Ar ∈ C

K×P,
where each column-vector represents the response of the K
antennas to the pth path. The J transmitted symbols are col-
lected in a matrix Sr, which has a Toeplitz structure.

The BFM defined in (6) is intrinsically indeterminate as
follows:

Y =
R

∑
r=1

(αrHr ×3 Ur)×2 (α−1
r Sr)×3 (U−1

r Ar), (7)

where the scalar αr and the non-singular matrix Ur represent
the indeterminacy in modes two and three respectively. Note
that the indeterminacy in the second mode involves a scalar
rather than a matrix due to the Toeplitz structure of Sr.

4.3 Uniqueness of the BFM
If the BFM (6) is unique (up to the trivial indeterminacies),
then its computation allows for the separation of the different
user signals and the estimation of the transmitted sequences.
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We call a property generic when it holds everywhere, except
for a set of Lebesgue measure 0. A generic condition for
uniqueness has been derived in [4]:

min
(⌊

J
L

⌋

,R
)

+min
(⌊

K
P

⌋

,R
)

+min
(⌊

I
max(L,P)

⌋

,R
)

≥ 2R+2, (8)

if I > L+P−2. If I ≤ L+P−2, then some additional condi-
tions apply. This result implies an upper bound on the num-
ber of users that can be allowed at the same time. The maxi-
mal number of simultaneous users correspond to the maximal
value R that satisfies (8).

5. NEW COMPUTATION SCHEME FOR THE BFM

5.1 Levenberg Marquardt Algorithm
Given only Y , we want to estimate Hr, Sr and Ar for
each user. The algorithm developed in [3] was based on
an ALS technique which consists of alternating updates of
these unknowns at each iteration. However, this algorithm
has at most linear convergence and is sensitive to swamps
(i.e., several iterations with convergence speed almost null
after which convergence resumes), while a Gauss-Newton
based method provides, at least in theory, superlinear or even
quadratic convergence. In this section, we build a new up-
date strategy for the computation of the BFM, based on the
Levenberg-Marquardt (LM) method [8].

Denote by Ŷ an estimation of the model defined in (6).
Each element of this tensor can be written as:

ŷi jk =
R

∑
r=1

L

∑
l=1

P

∑
p=1

Ĥr(i, l, p)Ŝr( j, l)Âr(k, p), (9)

where the R estimated matrices Âr and Ŝr and the R es-
timated tensors Ĥr yield Ŷ .

We have the following cost function:

φ(Ĥr,Âr, Ŝr) =
1
2

I

∑
i=1

J

∑
j=1

K

∑
k=1

|yi jk − ŷi jk|
2

=
1
2

I

∑
i=1

J

∑
j=1

K

∑
k=1

|ri jk|
2
, (10)

where ri jk are the residuals.
Denote by p a vector that contains the elements of the R

matrices Âr, the R tensors Ĥr and the R generator vectors
of the Toeplitz matrices Ŝr. This vector is of length F =
R(KP+ ILP +(J + L− 1)), where F represents the number
of unknowns.

The cost function of equation (10) can now be written as:

φ(p) =
1
2

M

∑
m=1

|ym− ŷm(p)|2 =
1
2

M

∑
m=1

|rm(p)|2 =
1
2
r(p)Hr(p),

(11)
where m = (i−1)JK +( j−1)K +k, m = 1, ...,M = IJK,

is a super-index that combines i, j, k, where r = [r1 ...rM ]T

is the vector of residuals and ·H denotes the Hermitian trans-
pose. Note the order in which the entries are stacked, with
the left index (i here) varying more slowly than the right one.
The problem now consists of minimizing the cost function
with respect to the parameter vector p, which is a non-linear

least squares problem that can be solved by a Gauss-Newton
based method [9]. This method assumes that the residuals
in the neighborhood of a point p0 can be approximated by a
Taylor expansion truncated after the linear term:

r(p) ∼= r(p0)+J(p0)(p−p0) ≡ r̃(∆p), (12)

where ∆p = p−p0 and J(p0) is the Jacobian matrix of
size M ×F of which the elements jm f are defined as jm f =
δ rm(p0)

δ p f
= − δ ym(p0)

δ p f
.

Using this linear approximation of r(p), the cost function
(11) can be expressed in terms of ∆p:

φ̃ (∆p) ≡
1
2
r̃(∆p)H r̃(∆p) =

1
2
‖r(p0)+J(p0)∆p‖2

2 . (13)

Given an approximation p(n) of the parameter vector at
iteration n, the approximation of p at iteration (n+1) is then
given by p(n+1) = p(n) +∆p(n).

The correction ∆p(n) that minimizes φ̃(∆p) is the solu-
tion to the linear least-squares problem:

min{∆p(n)}

1
2

∥

∥

∥
r
(

p(n)
)

+J
(

p(n)
)

∆p(n)
∥

∥

∥

2

2
.

The solution is obtained by solving the system of normal
equations:

(

JHJ
)

∆p(n) = −g, (14)

where g is the gradient of φ(p(n)). The matrix JHJ is in
fact an approximation of the Hessian matrix [9]. The Gauss-
Newton update of equation (14) requires the Jacobian to be
full-rank in all steps.

However, the indeterminacies of the BFM (7) lead
to rank deficiency of the Jacobian, which has at least
R(P2 + 1) vanishing singular values. Because of this over-
parameterization, the Gauss-Newton update of equation (14)
has to be modified. One solution to successfully handle the
singularity of (JHJ) has been proposed by Levenberg and
Marquardt [8] and is also known as “damped Gauss-Newton
Method”. It consists of updating ∆p(n) from the modified
normal equations:

(

JHJ+λ (n)IF

)

∆p(n) = −g. (15)

The damping parameter λ (n) makes the matrix
(

JHJ+λ (n)IF

)

non-singular. This parameter has sev-
eral effects:

• For large values of λ , (15) gives ∆p(n) ' − 1
λ g, i.e., a

short step in the steepest descent direction.
• For small values of λ , (15) reduces to a Gauss-Newton

update.
The updating strategy for λ (n) is thoroughly described in [9]
and is based on the gain ratio ρ between the actual variation
of the loss function (∆φ ) and the decrease of its estimate,
obtained from the linear approximation (12) (∆φ̃ ).

We finally build a Levenberg-Marquardt type algorithm
for the computation of the BFM (6). We define the following
stop criterion:

c(n) = ‖Ŷ (n)− Ŷ
(n−1)‖2

2. (16)
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Figure 2: Performance of ALS and LM in presence of AWGN.

Summary of the algorithm:
1- Initialize p randomly
2- Solve

(

JHJ+λI
)

∆p = −g

3- Update p: pnew = p+∆p

4- Update λ taking into account the gain ratio ρ
5- Repeat from 2 until c(n) < ε (e.g. ε = 10−5)

5.2 Results of simulations

In this section, we illustrate the performance of the LM algo-
rithm for the calculation of the BFM and we compare with
the standard ALS algorithm presented in [3].

We assume the presence of Additive White Gaussian
Noise (AWGN) so that the observed tensor is given by Yobs =
Y +N , where Y is the tensor that contains the data to be
estimated (Eq. 6) and N contains noise with variable vari-
ance. The following simulation shows the result obtained
from 400 Monte-Carlo trials with spreading codes of length
I = 6, a short frame of J = 50 QPSK-symbols, K = 6 an-
tennas, L = 2 interfering symbols, P = 2 paths per user and
R = 3 users.

In Fig 2, the curves on the left show the accuracy of the
BFM calculated either by ALS or LM in terms of the Bit Er-
ror Rate (BER). We also plot the performance of the MMSE
(Minimum mean-square error) estimator, which assumes per-
fect knowledge of the channel (tensors Hr known) and the
antenna array response (matrices Ar known) and that of a
semi-blind technique which only assumes that the channel
is known. It turns out that the performance of the blind re-
ceiver based on BFM is close to the MMSE (the gap between
the two curves reduces for increasing values of SNR). The
ALS and LM algorithms give the same curve which was ex-
pected since these methods reduce the same cost function.
The right figure compares the mean CPU time required by
both techniques for the 400 runs. For each run we consid-
ered the (minimal) CPU time where the BER reached its
final value. Thanks to the quadratic convergence property
of the Levenberg-Marquardt algorithm, the computation cost
has been considerably reduced (e.g. gain of 50 percent for
SNR=6 dB).

6. CONCLUSION

In this paper, we have shown how Block Factor Analysis of
a third-order tensor leads to a powerful blind receiver for
multi-user access in wireless communications. The tensor
model takes both ISI and multi-path propagation aspects into
account, which was not the case for the blind PARAFAC
receiver in [1]. The method works for very short data se-
quences, or, equivalently, for channels that are fast varying.
Our model can be applied to other systems where three di-
versities are available (e.g. temporal oversampling instead of
code diversity). The computational strategy for the calcula-
tion of the BFM decomposition is an important issue. It turns
out that a derivative-based technique adapted of the LM type
converges much faster than the ALS.
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