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ABSTRACT 
In the field of computer vision, specifically for applications 
aiming at the accurate 3D reconstruction of either natural 
or hand-made objects, only a few methods are able to re-
cover the shape of transparent objects.  Among these, po-
larimetric imagery has already proved its ability to deal 
with such objects. In this paper, after a short presentation of 
the theoretical background leading to the proposed ap-
proach for recovering the shape of transparent surfaces, 
various processing techniques for polarimetric data are de-
scribed. In particular and firstly, the advantages implied by 
the use of measures relying on the full so-called Stokes vec-
tor are highlighted. Secondly, the method used for denoising 
multi-channel polarimetric image data, in order to improve 
the following surface recovery process, is introduced. Lastly, 
the efficiency of the suggested method is demonstrated 
through experimental results obtained using simulated sur-
face data.. 

1. BACKGROUND 

For computer vision based applications, such as the quanti-
tative reconstruction of machined parts in view of quality 
control, it is necessary to make available efficient tools for 
the computation of their 3D descriptions out of the image 
contents. Such workpieces more and more include transpar-
ent or semi-transparent surface patches. Thus, 3D informa-
tion cannot be obtained by imaging the objects solely using 
a standard CCD sensor. But only very few methods devised 
for shape recovery can deal with (semi-)transparent surfaces. 
This stems mainly from the fact that it is nearly impossible 
to determine in standard grey-level images, which part of the 
intensity measured originates from the inner of the transpar-
ent object and, consequently, to take this contibution away 
from the acquired data values. Using a polarimetric imaging 
device enables to determine these intensity contributions, these 
light intensity components being nearly unpolarized. After 
having removed the undesirable intensity contributions, the 3D 
coordinates of selected image features can be derived using 
triangulation methods based on a pair of polarimetric images. 
We present in the second section Fresnel’s reflection model 
and how it is linked to the polarization state of light, when 
light is reflected by a transparent surface. In the third part, 
we describe the so-called “Scatter Plot Method”, which al-
lows to filter out the noise in polarimetric images and, thus, 

to improve the accuracy of the following reconstruction 
step. Simulated results are shown in the fourth section, and 
the last section provides a short outlook. A brief presentation 
of the state-of-the-art is given hereafter. 
Koshikawa, in [5], assuming that the surface reflectance is 
totally specular, shows that, with circularly polarized inci-
dent light and some a priori knowledge about the nature of 
the material (refractive index ; behaviour of selected pa-
rameters measured using a polarizer positioned in front of a 
camera), one can determine the orientation of the outer sur-
face of an object. Likewise, Wolff, in [11-12], assuming 
totally unpolarized incident light, proves that, using two 
cameras fitted with polarizers, enables to recover the orien-
tation of a glossy surface. But his method is restricted to the 
recovery of plane surfaces. This is due to the fact that regis-
tering the two required views cannot currently be achieved 
when imaging transparent objects. For plane surfaces, he 
determines the orientation of the two planes of incidence 
and their intersection, which in turn yields the direction of 
the normal to the imaged 3D plane. 

2. STOKES VECTOR OF A SPECULAR 
REFLECTION 

This section provides the necessary theoretical background. 
According to Fresnel’s reflection model shown in figure 1, 
the reflection components ⊥R  and IIR  are directly linked to 
the angle of incidence of the light iθ and the refraction index 
n: 
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The transmission angle tθ  is given by Snell’s well-known 
relation. The degree of polarization (DOP) ρ can then be 

expressed using equations (1) and (2) for ⊥R  and IIR  respec-
tively: 
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which leads to : 
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Figure 1 – Fresnel’s model of reflection 

 
Knowing all the DOP values over a given surface patch, equation 
(4) enables to determine the angle of incidence of the light for 
each pixel position and, then, the zenith of the corresponding sur-
face point. However, equation (4) is not bijective, as illustrated in 
figure 2. The limit for a surjective behaviour is observed at the 
Brewster angle Bθ . At this particular angle, ρ  = 1.  
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Figure 2 – Degree of polarization versus the angle of incidence 
 
To solve for this ambiguity, Miyazaki and al. suggest an ap-
proach allowing deciding if Bi θθ <  or not for each pixel. In 
[8], they firstly used two distinct sets of measurements of the 
DOP, one obtained in the visible spectrum of wavelengths, 
the other in the infra-red domain. As a matter of fact, the 
DOP obtained in the infra-red domain is bijective, but meas-
urements are usually too noisy and only allow a comparison 
of zenith values, computed in the visible spectrum, with Bθ . 
Secondly, in [9], they apply a segmentation-based method, 
which enables to remove the ambiguity for some areas of the 
object surface. By tilting these aeras, and calculating the 
variation of the DOP for the positions of these areas in the 
two images, they solve for the ambiguity for the whole im-
aged surface. Lastly, they use an iterative method based on 
Muller calculus and an inverse polarization ray-tracing pro-
cedure. Comparing iteratively the measured polarization im-
ages with simulated ones generated using the results from the 
previous iteration steps, the approach converges to a satisfac-

tory reconstructed shape. In this contribution, we suggest a 
method based on the measure of the full Stokes vector, which 
enables to derive the desired shape, under natural illumination, 
without applying an iterative scheme and a priori knowledge 
of the refraction index. The approach is further combined with 
a filtering step based on the Scatter Plot Method [1], allowing 
this way to obtain more effective results.  
 
As it is well known, a 4x1 Stokes vector represents the polariza-
tion state of light. The 4x4 so-called Mueller matrix is the asso-
ciated operator, which describes how the polarization state of 
light is changed, when light interacts with the surface of an ob-
ject. Given the Mueller matrix M of an optical system and the 
Stokes vector S of the incident light, one gets directly the Stokes 
vector S’ of the reflected light, according to equation (5) : 
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After reflection of the light on the surface, according to Fres-
nel’s model, the Mueller matrix M can be expressed as fol-
lows: 
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Furthermore, reflection introduces some delay between the 
parallel and orthogonal components of the wave, which can 
be modelled by the following Mueller matrix: 
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Finally, after rotation of the whole Mueller matrix in order to 
align it with the plane of incidence, one obtains: 
 
 ( ). . ( ). ( )rM R M L Rα ϕ α= −  (8) 
 
As shown on figure 3, the angle α represents the direction of 
the plane of incidence. This angle corresponds also to the 
azimuth of the surface normal. As we are working under 
natural ambient illumination, which can be considered totally 
unpolarized, the corresponding Stokes vector can be written 
as: 
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Figure 3 – reflection parameterization 

 
 

Thus, measuring the Stokes vector of the reflected light en-
ables to compute: 

2R , 2
⊥R and α2 . 

Hence, according to equations (1) and (2), we can calculate 
the angle of incidence α, which corresponds, as shown on 
figure 4, to the zenith of the surface normal (cf. also figure 
3). The refractive index n is computed using image data ac-
cording to: 
 0R =  (10) 
This computation is carried out at the Brewster angle Bθ  
given by : 
 1tanB nθ −=  (11) 
As a result, at this angle, one can write: 
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Figure 4 – Fresnel’s reflection components 

 
Equation (12) is easily solved, assuming that: 
 1n ≥  (13) 
Lastly, the azimuth is still only known with the following 
ambiguity of π± : 
 computed trueα α π= ±  (14) 
In order to remove this ambiguity, we shall assume that the 
surface is convex. Knowledge of the azimuth is then “propa-
gated” from the occluding boundary of the analysed surface, 
where this quantity is known without ambiguity, to the inner 

of the surface. At the end of this step, we obtain the maps of 
the zenith and azimuth values over the whole surface. In or-
der to reconstruct the shape of the object, we make use of 
either the shapelet-based method proposed by Kovesi [7], the 
multi-resolution relaxation method, or the approach devel-
oped by Wei and Klette [10]. The shapelet method has how-
ever a strong advantage over the other two. It allows recon-
structing the shape, up to a convex/concave shape ambiguity, 
without having to refine further the azimuth data in order to 
remove a remaining ambiguity. Using a Fourier Transform 
makes the Wei and Klette method very fast, in comparison to 
the iterative relaxation method proposed by Horn [3]. Their 
method is however less efficient. Results are to be discussed 
in section 4. 
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Figure 5 – Overview of the method 

3. DENOISING OF POLARIMETRIC IMAGES 

The measured data contains noise originating from various 
sources, such as misalignment of the optical elements of the 
acquisition system, small deviations in their (calibrated) 
parameter values and errors inherent to the CCD sensor. As 
can be expected, this noise limits the efficiency and accu-
racy of the reconstruction process. In order to remove as 
much as possible the noise, we make use of the Scatter Plot 
Method described by Aiazzi et al. in [1]. in [1]. For that pur-
pose, the mean ( ),i jμ and standard deviation (STD) 

( , )i jσ are computed over the whole image applying a slid-
ing window of size m m×  pixels and according to the equa-
tions below: 
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Then, the method exploits the plot of σ  versus μ . After 
tiling the domain ( ),σ μ with a fixed number of blocks, the 
authors determine those blocks, which contain the greatest 
number of pixels. These blocks, and the corresponding pix-
els selected this way, can be associated with the homogene-
ous areas in the image. For these pixels, an estimate of the 
noise level n̂ , can be obtained according to: 
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In equations (15) and (16) above, ( , )g i j  stands for the ac-
quired image and ( ),i jμ  for the map of means computed 
during the first step of the denoising process. 
In this way, assuming that the noise is additive, we obtain at 
the end of the denoising process an estimate of the noise-
free image corresponding to the acquired image. 

4. RESULTS 

In order to test the efficiency of the denoising step, we have 
generated simulated polarimetric images, to which we have 
added varying amounts of Gaussian noise. The shape of the 
imaged objects has, then, be reconstructed, with and without 
filtering the images using the Scatter Plot Method described 
in section 3. The experimental procedure is summarized in 
figure 5. For our experiments, we have made use of a sur-
face parameterized as follows: 

 ( , ) .sin .sinx yz x y abs p
p p
π π⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
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where p corresponds to the length, as well as to the width of 
the surface. The polarimetric images are firstly computed, 
i.e. the images of each Stokes parameter are calculated. Af-
ter having added Gaussian noise, the latter is removed ap-
plying the Scatter Plot Method. Lastly, we proceed with the 
reconstruction step. The various steps of the experimental 
procedure, for the third parameter of the Stokes vector, are 
illustrated on figure 6. On figures 7 and 8, the efficiency of 
the filtering method is demonstrated on image data with 
noise levels of increasing STD value. As expected, recon-
structions based on filtered data are less dependent on the 
noise level. The Scatter Plot Method shows, thus, a real effi-
ciency in order to remove noise in polarimetric images. In 
our simulation, the signal-to-noise ratio is of the order of 
0dB for a noise with STD = 0.02. The error in the determina-
tion of the refractive index n out of images with a signal-to-
noise ratio of 0dB is less than 1%. Indeed, our method yields n 
= 1.5124 instead of n = 1.5. Regarding the assessment of the 
reconstructions obtained, the Shapelet-based approach pro-
vides more accurate and robust results than those obtained 
with the Wei and Klette method. However, one must keep in 
mind that the step applied to the azimuth data in order to re-
move the ambiguity is very sensitive to noise. Experimentally, 
the shapelet method appears to be less efficient, when applied 
to azimuth data without ambiguity. 

5. CONCLUSION AND FUTURE WORK 

In this contribution, we have described an approach for re-
covering the shape of transparent objects using a full Stokes 
polarimeter. The method allows to circumvent operational 
complexity usually associated with other techniques, as de-
scribed, for example, in [5,6,8,9,11], and related to object 
tilting, the use of additional measurements in the infrared 
domain, and the preliminary segmentation of the images. We 
have shown that Stokes imaging simplifies both the acquisi-
tion step and the determination of the coordinates of the 
surface normals. In order to improve the reliability of the 
reconstruction, we made use of the Scatter Plot Method, 
which proved its ability to efficiently filter out the noise in 
polarimetric images. Due to the remaining ambiguity of π  
in the azimuth data (cf. Equation (14)), reconstructions are 
presently strictly limited to convex objects. To overcome 
this restriction, future work will extend the described ap-
proach to the use of stereovision. 

 

(a) 
 

(b) 
 

(c) 
 

Figure 6 – The S3 Stokes parameter images. (a) is the noise 
free simulated image, (b) same as (a) with a white Gaussian noise 

where SNR = 0dB and (c) is the filtered one. 
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Figure 7 – Mean square error on the estimation of the zenith θ 

as a function of the noise variance. 
 

 
(a) 

 
(b) 

Figure 8 – Mean square error on surface reconstruction. (a) 
corresponds to the Wei and Klette method, (b) corresponds to the 

shapelets method. 
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