
FAST PROTOTYPING OF DIGITAL SIGNAL PROCESSING SYSTEMS BY MEANS
OF A MODEL-BASED CODESIGN ENVIRONMENT

Leonardo Maria Reyneri* and Fabio Ancona**
* Department of Electronics, Politecnico di Torino

C.so Duca degli Abruzzi, 24, 10129 TORINO (ITALY)
phone: + (39) 011 5644038, fax: + (39) 011 5644099, email: leonardo.reyneri@polito.it

web: polimage.polito.it/~lmr

** Sundance Italia, s.r.l.
Corso XXV Aprile 55/3, 16040 S. Salvatore di Cogorno (GE) (ITALY)

phone: + (39) 0185 385193, fax: + (39) 0185 385370, email: fabio.a@sundance.com
web: www.sundance.com

ABSTRACT

This paper presents a novel tool, based on Simulink™, for
model-based high-level HW/SW codesign of high-
performance digital signal processing systems. The tool has
been tailored to support HW/SW configurable platforms, in
particular those from Sundance Microprocessor Technology
[1].

1. INTRODUCTION

Modern digital signal processing systems (DSPS) require
increasingly performant HW supports to be able to meet
tight speed, power and accuracy requirements.
Uptodate and cost effective DSPS’s often require an ad-hoc
integration of SW, digital and analog HW subsystems (hy-
brid systems), which often have to interact with an external
environment providing input signals to and receiving output
signals from the DSPS.
The design of hybrid DSPS’s usually requires the develop-
ment, testing and tuning of a set of configuration codes (for
instance, one or more C --> EXE for the SW subsystem(s);
one or more HDL --> fusemap for FPGA(s), schematic dia-
grams for analog subsystems).
Each configuration code usually has its own design flow,
made of a different language, simulator, compiler and debug-
ger. The integration of the different subsystems therefore
requires, during the desing phase, the cosimulation of differ-
ent codes, usually written in different languages (mostly, C,
VHDL, SPICE). Unfortunately at present there is no com-
mercial simulator, which integrates all these capabilities.

1.1 Model-based Hybrid Codesign and Cosimulation

As an alternative to the design flow outlined above, modern
codesign environments are based on a common language,
which allows the description, simulation, debugging and
optimization of hybrid systems as a whole.
There are basically two families of such environments:

• textual, which use textual languages, like System-C,
Handel-C, Precision-C. Textual languages are usually
flexible and powerful, although they usually require a
deep knowledge and experience in the field. The optimi-
zation phase with textual tools may be rather difficult,
especially when interfacing analog environments

• visual, which use visual languages, like Ptolemy and
Simulink. Visual languages are usually more user-
friendly, as they can be mastered nearly by everybody,
including also non-electric engineers.
In particular, Simulink™ [2] is a well-known environ-
ment, which is commonly used in a large number of en-
gineering fields and allows high-level description and
simulation of virtually any system, among which
DSPS’s.
Yet, Simulink as such is not a HW description language,
therefore it does not support the generation of FPGA
configuration codes.
There are a number of add-ons to Simulink (for instance,
Xilinx’s System Generator [3]), which partially solve
this problem, although they only support HW subsys-
tems (no SW code can be generated); and only the com-
pilation of proprietary FPGA’s; in addition, they are not
really high-level description languages, but rather a vis-
ual register-level environment to describe purely digital
circuits.

Existing commercial tools are therefore seldom satisfactory
for the design of high-performance hybrid DSPS’s, creating a
large gap between the performance and capabilities offered
by commercial fast-prototyping boards and the ease of use
which one would appreciate from them
This paper presents CodeSimulink/SMT6040 [4,5], a novel
HW/SW codesign environment based on MATLAB and
Simulink, which has been developped to fill the gap between
the requirements of engineers and the capabilities of hybrid
fast-prototyping HW/SW platforms, such as those manufac-
tured by Sundance Microprocessor Technology [1] (see an
example in fig. 1).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

2. CODESIMULINK/SMT6040 AND FAST HW/SW
PROTOTYPING

As mentioned above, at present, most existing design tech-
niques for digital HW systems are based on either schematics
at gate and register levels or on HW description languages
like Verilog and VHDL, on accurate but slow simulators and
on high performance synthesis and place&route tools.
Therefore, overall system simulations are not feasible due to
the different languages used for each part (usually, VHDL for
digital HW, C for SW, Spice for analog circuits, etc.). Design,
simulation, tuning and optimization are often quite long
steps, causing a long time-to-market, with a huge economical
impact on the project.
Optimal cost/performance ratio and a short time-to-market
can only be achieved by:
i) designing and simulating the whole system (both

software, digital and analog parts) in its entirety, to-
gether with its interactions with the external world
(for instance, mechatronical systems, human inter-
action, etc.);

ii) performing functional and system-level architec-
tural optimization (for instance, signal resolution,
sample rate, filter sizes, etc.);

iii) properly partitioning the system into digital HW,
analog HW and SW for optimal cost/performance;

iv) automatically compiling and assembling: digital
HW subsystems first into one or more VHDL
code(s), then into FPGA fusemap(s); SW subsys-
tems first into one or more C code(s), then into ex-
ecutable(s);

v) downloading fusemaps and executable into a fast
prototyping platform, such as one of the Sundance
products shown in fig. 1 [6].

This approach, which is usually called HW/SW codesign,
was unaffordable until a few years ago, due to the lack of
appropriate languages, simulators and tools.

Another drawback of the few commercial codesign tools is
that they require a specific experience in electronic design,
which is not always available and, they cannot easily model
analog subsystems, like ADC’s, DAC’s, sensors, etc.
To overcome these and a few other problems, a novel tool
has been developed at Polytechnic of Turin in cooperation
with Sundace Italy, called CodeSimulink/SMT6040 [4,5],
which is based on MATLAB and Simulink™ [2] and allows
a straightforward and accurate design, simulation and tuning
of mixed-signal systems.
CodeSimulink/SMT6040 is more user-friendly than other
environments, as it allows to design in a homogeneous way,
with a common description and simulation language, any
data-dominated system made of digital HW, analog HW and
SW parts, together with any external system, like sensors, RF
channels, etc., therefore it is perfectly suited to develop high
performance DSPS’s.
A DSPS can be designed as a Simulink model, therefore in a
well-known visual environment. The user can then easily
partition the system into, for instance, digital HW, analog
HW and SW blocks, by flagging each block appropriately, by
means of the dialog box shown in fig. 2. Each block assumes
a different color according to its implementation.
System-level functional simulations can then be carried on:
i) to decide whether the algorithm works as desired;
ii) to tune functional parameters (for instance, filter

length, sample rates);
iii) to optimize architectural parameters (for instance,

parallelism, resolution, virtualization, etc.) with the
goal of optimizing a given cost function (for in-
stance, complexity, cost, speed, power consump-
tion).

HW/SW partitioning and architectural exploration (steps ii
and iii above) can also be performed automatically by means
of all the MATLAB capabilities and toolboxes.
The designer is also given the chance to specify, during the
planning phase, which kind of prototyping board or FPGA is
targeted, from a list of commercial boards or devices. All
most popular Sundance boards are supported.

Figure 1 Sundance’s Software Defined Radio kit (SMT8036E), hosting of a Texas Instrument 1GHz DSP, a Xilinx
VIrtex-II FPGA, two 16-bits DAC’ and two 14-bits ADC’s

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

In addition, as CodeSimulink/SMT6040 runs under
MATLAB-Simulink™, it has a tight interaction with the
MATLAB Workspace. MATLAB can therefore be used, for
instance: i) to supply input values/waveforms during simula-
tion; ii) to evaluate, plot and post-process output signals (for
instance, to compute spectra); iii) to interactively modify and
assess the effects of functional parameters on system per-
formance, etc.
CodeSimulink/SMT6040 supports numeric real-valued sig-
nals (either scalars or vectors or matrices), both integer,
fixed- and floating-point of any resolution. In particular, low-
resolution (less than 8 bits) floating point formats are quite
effective, as they often offer an excellent cost/performance.
Further details on CodeSimulink can be found in [4,5].

2.1 Compilation Model

As soon as performance are considered satisfactory (for in-
stance, speed is enough, size fits into the chosen device, cost
is compatible with the market, etc.), the system can auto-
matically be compiled into C code and/or executables, for
SW, and VHDL and/or fusemap, for HW, and downloaded
onto the DSP and/or FPGA.
An appropriate compiler block must be placed into the
model. The pression of a button on it triggers the activation
of a sequence of automatic steps:
• block parameter calculation, as CodeSimu-

link/SMT6040 has a more powerful parameter handling
than Simulink itself;

• hierarchy flattening;
• properly splitting the model into digital HW, analog HW

and SW subsystems; HW/SW interfaces are duplicated;
• generation of a VHDL file from the digital HW subsys-

tem; subsequent activation of the chosen synthesizer and
place&route tool (e.g. Mentor Graphics Spectrum, or
Xilinx ISE Foundation);

• activation of Real Time Workshop (a commercial Simu-
link --> C compiler) on the SW subsystem;

• all other blocks are disregarded.

2.2 Vectors and Matrices

The capability of handling vectors and matrices is a unique
feature of CodeSimulink/SMT6040. Several DSPS’s deal
with groups of signals which have to be handled as a whole
and can conveniently be arranged into either vectors or ma-
trices. Examples of vectors are: the left and right channels of
stereo sound; the channels of multi-antenna arrays. Examples
of matrices are the images.
All Simulink-based HW generators (such as Xilinx System
Generator [3]) do not treat vectors; the user must then con-
sider them either as a time sequence or as the parallel of in-
dependent signals and take the burden to synchro-
nize/duplicate vector/matrix components.
CodeSimulink/SMT6040, similarly to Simulink, considers
vectors and matrices as a single vectorial signal, therefore it
either sequences or duplicates vector/matrix components
transparently to the user. This feature becomes increasingly
useful when HW and SW subsytems interact, as described in
next section.
Vectors and matrices are seen as a wire in the CodeSimu-
link/SMT6040 model, but they can be implemented in HW
in either of two ways, transparently from the user: serial,
when vector components are transferred sequentially on the
same physical connection and computation resources are
time-shared accordingly; parallel, when vector components
and computing resources are parallelized, therefore automati-
claly replicated.

2.3 HW/SW Interfaces

The interconnection between HW and SW subsystems is the
most critical issue in model-based codesign environments. A
HW/SW interface has to handle, in a user-friendly manner,
the interconnection between HW and SW subsystems, while
keeping it as transparent to the user as possible.
Since the major task of a HW/SW interface is to transfer in-
formation between two environments with completely differ-
ent computation and timing paradigms, it is worth to briefly
outline both of them:
• HW subsytems are intrinsically parallel, in the sense that

each physical resource remains allocated forever and re-
sources are synchronized together either by a common
clock or by a dataflow protocol, either synchronous or
asynchronous;

• SW subsystems are intrinsically sequential, in the sense
that a unique common resource (the arithmetic and logc
unit), or a small set of them, is sequentially used by the
algorithm steps and synchronization is intrisically guar-
anteed by the sequentiality of processes or by appropri-
ate scheduling.

As a consequence of that, HW and SW subsystems may have
a significantly different speed and/or throughput. Thus a
HW/SW interface has to take care of transferring pieces of
information across the boundary between two such different
worlds, while keeping data consistency (that is, synchroniza-
tion) and data structure (in particular, vectors and matrices).

Figure 2 CodeSimulink/SMT6040 dialog box to select
block parameters and implementation technology. Other

implementation-specific parameters (e.g. resolution
parameters) are in another dialog box (not shown).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

We conceived two major communication paradigms, both
compatible with the above constraints, that we call:
• synchronous transfer, whenever data are neither lost

nor duplicated. That is (depending on transfer direction):
a. the SW waits until the HW has new data to

transfer, or it is ready to receive new data;
b. the HW waits until the SW has new data to

transfer, or it is ready to receive new data;
c. in addition, the first, second, ... element of a

vector/matrix for the HW shall be seen as the
first, second, ... element also by the SW and
viceversa (see also section 2.2).

This transfer paradigm implies that the data transfer re-
source (made of a piece of C code on the DSP and a
piece of VHDL code on the FPGA) may block both the
HW and the SW. On the SW side this is a common con-
cern, which is intrinsically solved by the SW sequential-
ity, while on the HW side it may create a number of non-
trivial problems, since one should add some data valida-
tion protocol to guarantee that a HW block processes
data if and only if these are valid.
CodeSimulink/SMT6040 solves this problem in a trans-
parent way, by using a dataflow computation paradigm
(either synchronous or asynchronous) also for HW sub-
sytems, therefore the user need not take care of the syn-
chronization burden;

• asynchronous transfer, whenever data may be either
lost or duplicated, that is (depending on transfer direc-
tion):

a. the source of data (on one side of the interface;
either SW or HW) writes data whenever it has
a new one. The receiver side may read it when-
ever it needs. Therefore the receiver may re-
peatedly read the same data (duplication) if it is
faster than the source; or it may read one data
out of many, if it slower than the source (loss);

b. yet, the first, second, ... element of a vec-
tor/matrix for the HW shall still be seen as the
first, second, ... element also by the SW and
viceversa (see also section 2.2).

This transfer paradigm implies that the transfer resource
(made of a piece of C code on the DSP and a piece of
VHDL code on the FPGA) can block neither the HW
nor the SW. There is therefore no need for synchroniza-
tion, altough an appropriate number of registers is
needed to store data, yet data consistency must be main-
tained.
CodeSimulink/SMT6040 solves this problem in a trans-
parent way, by inserting automatically an appropriate
number of registers and storing/retrieving data according
to vector/matrix structure.

HW/SW interfaces are a prerogative of CodeSimu-
link/SMT6040, which is the only tool based on Simulink
which can cogenerate interacting HW and SW subsystems
starting from a unique HW/SW model.
An example of all that in the field of Software Defined Radio
(SDR; a particular case of DPSP’s) is given in next section.

3. AN APPLICATION EXAMPLE: UMTS UPLINK

We have tested the proposed approach by developping a
complete 8-channels UMTS uplink to be implemented on a
Sundance SDR kit (SMT8036E) [6]. This is a commercial
HW/SW fast prototyping board tailored to SDR systems,
which is made of a Texas Instruments TMS320C64 DSP
running at 1GHz, one Xilinx Virtex-II, two 140Msample/s
DAC’s and two 100Msamples/s ADC’s, plus a PCI-
compatible host board (see fig. 1).
Figure 3 shows the whole system implemented in CodeSimu-
link/SMT6040, made of six macro blocks:
1. the signal acquisition block runs on a host PC and is

aimed at sampling input microphones and other sources
of data (in our implementation, one stereo microphone is
transmitted on two channels, while the other channels
transmit synthetic data). It is therefore implemented as a
CodeSimulink/SMT6040 SW subsystem;

2. the packet framing blocks runs on the DSP of the SDR-
kit board. Its task is to assemble input samples into
packets by properly adding error detection and framing
headers. It is therefore implemented as another Code-
Simulink/SMT6040 SW subsystem;

3. the spreading, scrambling and filtering block is the most
computationally intensive subsystems, therefore it is ad-
vantageously implemented into the FPGA of the SDR-
kit board. It is therefore implemented as a CodeSimu-
link/SMT5040 digital HW subsystem. Fig. 4 shows fur-
ther the interior of this block, which is implemented us-
ing CodeSimulink/SMT6040 primitives and other hyer-
archical blocks;

4. the DAC and RF block is the interface to the analog
world, as it contains two 16-bits DAC’s and the RF
modulator; the former is part of the SDR-kit, while the
other is an esternal 2.4GHz IQ modulator (demo board
from Analog Devices). The block is implemented as a
CodeSimulink analog HW subsystem;

5. the RF channel is a numerical model of the radio chan-
nel. Several models can be chosen (e.g. fading, Gaussian

Figure 3 An application example: a complete UMTS

uplink: transmitter, channel and receiver. Blue,
green, yellow, orange blocks are digital HW, SW,

analog HW and interface blocks, respectively

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

noise, multi-path, etc.), to assess by simulation the ef-
fects of different channel non-idealities. It is imple-
mented as a pure Simulink model;

6. the UMTS receiver is there only to demodulate and de-
code received signals and measure bit error rate as a
function of different system parameter (see further) . It is
implemented as a hybrid CodeSimulink/SMT6040 sub-
system (partly in analog HW, partly in digital HW and
partly in SW).

Once described the whole system as outlined above (mind
that each block is fully described, as it internally goes down
to the level of Simulink/SMT6040 primitives), extensive
simulations have been performed. Fig. 5 shown the I/Q
channel after the RF demodulator; the classical UMTS wave-
forms, superposed to noise can easily be detected.
A bit comparator allows to measure bit error rate over long
sequences, versus noise and implementation parameters
Simulations with different architectural parameters served to
optimize the whole architecture and its parameters, among
which: data width and oversample rate of output and input
shaping filter; resolution of DAC’s and ADC’s; datawidth of
receiver integrator; parallelism (that is, resource sharing) of
digital HWsubsystem.

The extensive use of vectors (e.g. the eight input and output
channels are an 8-elements vector; the I/Q channel are a 2-D
vector; all generators of spreading and scrambling sequences
are vectorial generators; the HW/SW interface transfer 8 data
values per sample as a vector). This allowed verifying the
cost/performance tradeoff for different parallel/sequential
architectures, without having to redesign the whole system.
As soon as the system has been optimized, pressing on an
appropriate button on the compiler block (see fig. 3) has
automatically generated the executable for the PC, the DSP
and the fusemap for the FPGA (obviously analog blocks are
not compiled), which have been downloaded onto the SDR-
kit board by means of the appropriate download tools.
The following table compares the time spent for each step of
the design with traditional techniques (C+VHDL languages).

Development step Devel. time with

CodeSimulink
Devel. time with
traditional tools

Design 2 days >10 days
Simulation/debugging 1 day 3-5 days
Optimization 1 day 2-6 days
Code generation 20 min -
Compilation/synthesis 1 hour 1 hour

REFERENCES

[1] Sundance web site, www.sundance.com
[2] -, “Simulink manual”, http://www.themathworks.com
[3] -, "System Generator manual'', http://www.xilinx.com
[4] -, “Codesimulink/SMT6040 user manual”,

http://polimage.polito.it/groups/codesimulink.html
[5] -, “SMT6040 product description”,

http://www.sundance.com/edge/files/productpage.asp?
STRFilter=SMT6040

 [6] -, “SMT8036 product description”,
http://www.sundance.com/edge/files/productpage.asp?
STRFilter=SMT8036E

Figure 4 An application example: the digital HW subsystem of anUMTS uplink transmitter. Blue blocks are digital HW

primitive blocks, while white blocks are hyerarchical blocks.

Figure 5 Simulation results: the UMTS signal after
the RF demodulator with a Gaussian-noise channel

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

