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ABSTRACT 

Real-Time and High-Quality video coding is gaining a wide 
interest in the research community, mainly for entertainment 
and leisure applications. Furthemore H.264/AVC, the most 
recent standard for high performance video coding, can be 
successfully exploited in such a critical scenario. The need 
for high-quality imposes to sustain up to tens of Mbits/s. To 
that purpose in this paper optimized architectures for 
H.264/AVC most critical tasks, Motion Estimation (ME) and 
Context Aware Binary Arithmetic Coding (CABAC) are pro-
posed. Post synthesis results on a 0.18 � m standard cells 
technology show that the proposed architectures can actu-
ally process in real time 720x480 video sequences at 30 Hz 
and grant more than 20Mbits/s in the simplest configuration. 
Keywords: Video coding, H.264/AVC, Hardware architec-
tures,  motion estimation, entropy coder 

1. INTRODUCTION 

H264/AVC is the new video coding standard released by 
ITU-T and ISO/IEC. Compared to previous standards, 
H.264/AVC superior perceptual quality and high scalability, 
make it suitable for different scenarios. The implementation 
of hardware co-processors, able to sustain real-time and high 
quality H.264/AVC video coding, is particularly relevant to 
grant high performance. Figure 1 shows a block diagram of 
the H.264/AVC encoding scheme. With respect to previous 
coding standards, H.264/AVC includes additional features, 
particularly in the Motion Estimation (ME) task, adopting 

multi-reference frames and variable block sizes, and in the 
Entropy Coding (EC) task, adopting a Context Adaptive 
Binary Arithmetic Coder (CABAC). A performance and 
complexity profiling analysis on the C-level model of the 
coder proves that these features improve the coding effi-
ciency by a factor two at the expense of an increased im-
plementation cost (computation and memory) by one order 
of magnitude [1,2]. Hence the design of hardware co-
processors for ME and CABAC is mandatory. Two dedi-
cated architectures are presented in the paper allowing for 
real-time implementation of H.264/AVC video coding. 
These architectures are well suited for high quality scenarios 
where up to tens of Mbits/s are reached, as in the Main Pro-
file of the standard.  
In the literature several works have been proposed concern-
ing the implementation of single blocks of the H.264/AVC 
standard. In [3] H.264/AVC integer transform implementa-
tion is addressed. Few recent works concern the CABAC 
implementation: in [4] and [5] mixed HW/SW systems are 
proposed, whereas [6] concentrates on a CABAC coproces-
sor. Many fast ME engines have been proposed in literature 
[7-11] to reduce the complexity of conventional Full Search 
(FS). Among them UMHexagonS [7] has been officially 
accepted as the standard fast ME solution in the JM refer-
ence software model [12,13]. It realizes a predictive search 
which adopts a hexagonal window in the refining phase plus 
proper stop criteria. In most of known motion estimation 
algorithms, the basic search is repeated multiple times.  

 
  

 
Figure 1. Block diagram of the H.264/AVC encoding scheme 
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This is critical in case of multiple reference frames or vari-
able block sizes. Since ME operations increase with the 
number of blocks and reference frames, unnecessary redun-
dancy is introduced in computations and memory accesses.   
It is worth pointing out that this paper concentrates on the 
whole H.264/AVC framework and deals with the most com-
putationally intensive tasks, showing architectures suited for 
real-time, high-quality video coding. As far as CABAC is 
concerned a modular implementation has been developed in 
order to grant an incoming rate scalable with the number of 
CABAC cores employed. For ME an adaptive algorithm 
with its relevant hardware architecture is proposed. The 
novel technique avoids unnecessary computations and 
memory accesses, whereas it allows the same high coding 
quality of FS. Hereafter Section 2 deals with CABAC and 
ME algorithmic description. Relevant hardware architec-
tures are described in Section 3. Conclusions are drawn in 
Section 4.     

2. ALGORITHMS DESCRIPTION 

2.1 CABAC  
CABAC [14], whose structure is reported in Figure 2, is the 
Context Adaptive Binary Arithmetic Coder used in H.264 as 
the entropy encoding engine. It can be employed in the Main 
Profile to improve the coding efficiency with respect to the 
Context Adaptive Variable Length Coding (CAVLC). In fact, 
as proved in [14], for the range of acceptable video quality 
for broadcast applications (about 30-38dB) bit-rate savings of 
9% to 14% can be achieved.  
 

 

Figure 2. CABAC structure 

Since CABAC arithmetic encoding engine works only on a 
binary alphabet, it requires to binarize the input symbols. In 
fact many symbols employed in H.264 are not binary sym-
bols (e.g. motion vectors), thus they ought to be converted in 
a sequence of binary symbols (bins). Furthermore, as 
CABAC is a context adaptive coder, for each bin a proper 
context ought to be selected among the probability models 
defined by the standard. Then the encoding engine performs 
data compression while updating the probability estimation 
(see Figure 2). The binarization is achieved through different 
techniques depending on the symbol to be binarized. 
• Unary Binarization (U): it is used for unsigned syntax 

elements. They are represented as a sequence of ‘1’ ter-
minated by a ‘0’. 

• Truncated Unary Binarization (TU): it is used for a 
limited number of unsigned syntax elements. Given a 
threshold cMax, for a syntax element less than cMax, U is 
employed. A syntax element equal to cMax is coded as a 
sequence of ‘1’ with length cMax. 

• Concatenated Unary/k-th order Exp-Golomb (UEGk) 
Binarization: it is used for signed elements. It is made of 

a prefix generated with TU and a suffix generated with k-
th order Exp-Golomb codes. 

• Fixed length binarization (FL): it is used for a limited 
number of syntax elements whose values are integers 
∈[0,cMax]. 

During the binarization a Context Identifier is assigned to 
each syntax element. This identifier and the current bin posi-
tion, through some thresholds, generate an index (ctxIdx), 
that allows finding the correct context. In fact contexts are 
stored in a table that contains the different initial probability 
values for the arithmetic encoder. Each context can be univo-
cally identified, through ctxIdx. The coding engine is based 
on the arithmetic encoding of a bin with its context. As the 
arithmetic coder is binary, only two symbols are allowed, 
namely the least probable symbol (LPS) and the most prob-
able symbol (MPS). The arithmetic coding is based on the 
recursive partition of the probability interval [0,1] in sub-
intervals whose width is proportional to the probability of the 
symbol to be coded. Given the probabilities of the LPS (pLPS) 
and of the MPS (pMPS=1-pLPS), the sub-intervals width (RLPS, 
RMPS) can be updated as 
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where R is the current interval width. Let's introduce low as 
the lower point of the current interval, it holds true that: 
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 To avoid the use of multiplications to perform the arithmetic 
coding, in H.264 significant values of the interval width (R) 
and of the LPS probability (pLPS) are pre-calculated and 
stored in two vectors, called Q and P. Furthermore R� pLPS 
values, obtained with Q and P, are stored into a 4x64 matrix 
(M) [14]. Given the current interval width and the current 
LPS probability, a finite state machine (FSM) manages the 
transitions on the M matrix values; this FSM will be referred 
as FSMM. Furthermore to avoid the interval to become too 
small some renormalizations are employed. 
 
2.2 Variable block size, multi frames ME 
At algorithmic level we propose to add a low complexity 
context aware controller to basic ME search engines, FS or 
Fast technique as UMHexagonS. The controller extracts from 
the search engine some partial results: 1) Motion Vectors 
(MV), 2)  Sum of Absolute Difference (SAD) cost, 3) infor-
mation on the input signal statistic. Then the controller uses 
them to automatically configure the ME search parameters: 
number of reference frames, valid block modes and search 
area for each 16x16 block and its sub-partitions down to 4x4-
pixel blocks. The global control combines three basic algo-
rithms: 
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A) The Search Area Control, originally proposed for a FS 
engine in [10]. The optimal search size for the block under 
estimation is derived by comparing with proper thresholds 
the SAD and MV values of already encoded neighbouring 
blocks: 3 spatial and 1 temporal. In this paper the same con-
trol has been successfully applied to UMHexagonS.  
B) The Modes Control. Profiling analysis of the standard 
proves that using the smaller block sizes is useful for images 
with complex texture while it can be avoided for homoge-
nous ones to reduce complexity. The control over smaller 
block sizes (4x8, 8x4 and 4x4 partitions) decides which of 
them must be enabled for ME each time a 16x16 block is 
encoded. Moreover it accomplishes its task by comparing 
the SAD cost of the current 16x16 partition with two thresh-
olds. Depending on the results of the comparison the ME 
will continue using other 6, 5 (avoiding 4x4) or 3 (avoiding 
4x4, 4x8 and 8x4) block sizes. 
C) The Frame Control, which decides the maximum number 
of reference frames to be used for the ME of a 16x16 block 
and its selected subpartitions. The data (SAD cost, MV and 
optimal reference frame) of the already encoded 16x16 par-
tition are used to decide how many reference frames are 
useful: for the enabled smaller sub partitions, for the same 
16x16 partition in the next frame.  
The encoding process, using the three controls is accom-
plished according to this processing flow: (i) the optimal 
search area and reference frame number for the 16x16 block 
are preliminarily sized using the algorithms in A) and C). 
(ii) The basic search engine, UMHexagonS or FS, performs 
the ME for the 16x16 partition. (iii) using data (MV, SAD 
value and optimal reference frame) from the previous opera-
tion the controls in B) and C) decide which sub partitions 
must be enabled for ME and how many reference frames 
must be used for their search. The search size is the same 
derived for the 16x16 partition. 
Table 1 compares our control applied to UMHexagonS vs. 
conventional FS: our technique allows for a complexity re-
duction of two orders of magnitude with an average bit-rate 
loss below 1%. Results are expressed as % changes of bit-
rate for a given PSNR quality (

�
BR%) and of ME process-

ing time (
�

MET%) when integrating our controller into the 
JM model and running it on a AMD 2.4+ processor.  
Figure 3 compares for the Tennis CCIR video the JM9 en-
coder with FS and the JM9 encoder with UMHexagonS plus 
our controller in terms of absolute PSNR and bit-rate values. 
The same high coding quality of FS is kept unaltered for bit-
rate applications up to 55 Mbits/s. 

Table 1 –UMHexagonS with all three controls vs. FS 

 

Figure 3. Rate-distortion curve for Tennis CCIR 

3. COPROCESSORS ARCHITECTURES 

3.1. CABAC coprocessor  
This section describes the most critical aspects to implement 
a CABAC coprocessor. 
First, analyzing in detail the JM reference software model 
[12], it has been observed that most of the encoding time is 
required by the Encode Decision and Encode Bypass routines 
(roughly 20% of the CABAC processing time). Moreover, 
since the value R� pLPS depends on R, an As Late As Possible 
(ALAP) strategy can be employed, as suggested in [5]. In 
fact R is quantized on only 4 values (vector Q contains only 4 
elements), the 4 corresponding R� pLPS values can be read 
together from a memory (where the FSMM transitions are 
stored) and loaded into 4 registers. Then the right value can 
be selected based on the correct R value. Furthermore since 
the arithmetic coder  produces a variable number of output 
bits, the output register needs to be carefully designed. Based 
on a simulative approach a 48 bits output register has been 
employed as detailed in the following. 
The processing blocks shown in Figure 4 have been devel-
oped with a modular design methodology. The architecture is 
composed of a main control unit, EC CU in Figure 4, with a 
sixteen states FSM devoted to send the proper start signal 
and commands to the different CABAC encoder blocks. Two 
simple blocks, namely Init FSM and CTX, are enabled by the 
EC CU. The former is devoted to send the proper initial 
probability values to FSMM. The latter is made of two small 
RAMs devoted to store, for each context, the MPS and the 
current state of the FSM that manages symbol probabilities. 
The computation part of the proposed architecture is made of 
a ROM where the FSMM transitions are stored and a unit to 
compute R and low (R low Unit). The R low Unit is made of 
a 16 bits counter for already coded symbols and a 16 bits 
counter for the syntax elements. An adder and a subtracter 
are used to calculate R and low respectively with the afore-
mentioned ALAP strategy. 

 

 Stefan Tempete Coastguard Foreman Akiyo 
 SIF CIF QCIF CIF CIF 

�
MET% -93,98 -95,35 -95,88 -96,48 -99,53 

�
BR% 1,01 1,57 0,1 1,54 -0,75 
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Figure 4. Proposed architecture block scheme 

A multiplexer allows to correctly select the input values for 
the R low Unit depending on the current symbols encoding 
method. The interval renormalization is managed by the 
Renorm Unit. In order to keep the renormalization simple, it 
has been implemented as a 16 bits subtracter and a shifter. 
Observing that the smallest value for R is 0x0001 and that 
the renormalization stops when R �  0x0100, the worst 
case is eight iterations. The output of the encoder is man-
aged by the Put Byte Unit.  This block has been imple-
mented through some adders, few logic and two 32 bits shift 
registers (left-shift and right-shift) as depicted in Figure 5. 

 

 

Figure 5. Put byte Unit 

Through simulations on the JM software model, it has been 
found that 32 bits grant to be able to store the coded bits in 
the worst case. As the worst case we considered the case 
when one coded bit is generated after the maximum number 
of  “ follow”  bits. The output register, devoted to store the 
coded bytes needs to be carefully sized in order to accom-
modate the output bits without dropping or stopping the 
coding process. Considering that the renormalization can 
generate up to 8 bits (one for each renormalization step), 
that the follow requires up to 32 bits and that the last gener-
ated bit could complete a byte, the output register should be 
48 bits wide. Finally the content of this register is stored into 
the Output Buffer. The flushing procedure required to termi-
nate the coding of a slice [13] is implemented by the Flush 
Unit (see Figure 4). Its internal structure is the same as for 
the Put Byte Unit. The only difference is that the follow is 
not required and that, if necessary, a certain number of pad-
ding bits are added to complete the last byte. 
The proposed architecture requires 11 clock cycles to encode 
a symbol. The VHDL model developed for the proposed ar-

chitecture has been synthesized on a 0.18 � m CMOS stan-
dard-cells technology. Since the amount of ROM and RAM 
required by the proposed architecture is extremely small, the 
use of macros generated by ROM and RAM generators 
would produce an excessive overhead in terms of area. As a 
consequence, the ROM has been mapped as logic cells and 
the RAM as an array of flip-flops.  
Post synthesis results show that up to 250 MHz clock fre-
quency can be used with an occupation of 176 kgates. Thus 
the proposed architecture is able to sustain an incoming rate 
of 22.73 Mbits/s. This rate allows to process in real time 
720x480 video at 30 Hz even at low compression ratios (e.g. 
5:1). Compared with the solutions described in [4], [5] and 
[6] the proposed architecture shows some common points 
and some differences. In particular, since in [4] an FPGA 
implementation is considered a fair comparison is not possi-
ble.  On the other hand we can compare the proposed archi-
tecture with [5] and [6]. The performance of the architecture 
described in [5] is given in terms of full adders. So that we 
evaluated the performance of a full adder on the same 0.18 

� m technology employed for our design. The result is that [5] 
can sustain up to 20 Mbits/s with near the same complexity 
of the proposed architecture. Considering the architecture 
proposed in [6] we can state that it achieves a more than 3 
times higher throughput with a nearly double complexity 
with respect to the proposed architecture. Nevertheless, it is 
worth pointing out that the reduced complexity and the 
modularity shown by the proposed architecture makes it suit-
able for a parallel implementation. As an example resorting 
to two instances of the proposed architecture the total incom-
ing rate can be doubled at the expense of roughly 350 kgates.  

 
3.2. Adaptive ME coprocessor  
The results reported in Section 2 for ME refer to a software 
implementation. The original FS and UMHexagonS software 
implementations are quite far from real-time coding. How-
ever, thanks to the complexity reduction of our technique, 
real-time is achieved for the 30 Hz QCIF videos; for CIF 
ones the real-time is allowed at a frame rate between 15 and 
30 Hz depending on the sequence dynamism. To achieve 
real-time for larger formats and/or to reduce the power con-
sumption of the software approach for low-power terminals a 
dedicated hardware architecture is needed. In this case the 
proposed technique can be implemented according to the 
architecture sketched in Figure 6. The context-aware control 
system can be easily realized in real–time, also for larger 
video formats (e.g. CCIR, VGA, 4CIF).  A simple microcon-
troller such as the 8051, public available as reusable VHDL 
macrocell, with an implementation complexity of roughly 10 
kgates in 0.18 � m CMOS standard-cells technology is well 
suited for this task. The basic search engine can be realized 
reusing one of the systolic architectures proposed in the lit-
erature for FS, e.g. [11]. In fact [11] features an array of 256 
SAD processing elements with a circuit complexity of 
roughly 105 kgates and a throughput of 1 macroblock (MB) 
matching per clock cycle. A local memory of 13 kBytes can 
be used as MB search area buffer to reduce access frequency 
to large background frame memories. The operation flow for 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



both search engine and context-aware controller is described 
hereafter. 
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Figure 6. Block diagram of the ME hardware architecture  

The search engine starts performing the 16x16 partition ME 
while the system control waits for prediction cost and opti-
mal reference frame data (step 1). After that, such informa-
tion can be processed to figure out the allowed partitions and 
their relative maximum number of reference frames while the 
ME engine is waiting (step 2). In step 3 the ME engine con-
cludes the estimation while the control system can work on 
the 16x16 partition for the next MB. According to this flow 
the systolic search engine is stalled only in step 2 and the 
estimated percentage stall time is roughly 2%. The required 
system clock frequency to process in real-time a 720x480 
video at 30 Hz is about 70 MHz considering the throughput 
of 1 MB matching per clock cycle and the 2% processing 
stall.   

4. CONCLUSIONS 

In this paper two optimized hardware co-processors, one for 
CABAC and one for variable block size multi frames ME, 
have been presented. Both concern the fast implementation 
of the most demanding H.264/AVC parts; so that they are 
particularly suited for real-time and high-quality video cod-
ing. Post synthesis results on a 0.18 � m standard cells tech-
nology show that 720x480 video at 30 Hz and more than 20 
Mbits/s can be sustained, proving the proposed coprocessors 
effectiveness. 
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