14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

A QUICK LOW COST METHOD FOR SYNCOPE PREDICTION

Mathieu Feuilloy'?, Daniel Schang' and Pascal Nicolas®

'ESEO,
4, rue Merlet de la Boulaye, BP 926,
49009 ANGERS Cedex 01, France
phone: (33)241 86 67 67, fax: (33)241 87 99 27,
email: {mathieu.feuilloy, daniel.schang} @eseo.fr

ABSTRACT

The aim of this study is to present a method that predicts
unexplained syncope or presyncope occurrences induced by
a head-upright tilt-test (HUTT). The HUTT is based on the
reproduction of symptoms in combination with hypotension
and bradycardia induced by a tilt at 70° during 45 minutes.
The main drawback is the duration of this test because, by
adding the supine position of 10 minutes, the test could reach
55 minutes. Therefore, this paper proposes a new method for
syncope prediction by using only the supine position. We de-
scribe the signals used to extract the features employed for
the prediction and we develop the preprocessing techniques
of these signals in order to increase the quality interpreta-
tion of these features. We conclude by presenting the results
obtained by the use of an artificial neural network.

1. INTRODUCTION

Syncope is currently defined as a sudden and temporary loss
of consciousness and a postural tone. Furthermore, 3% of
emergency room visits and 6% admissions hospital are di-
rectly related to symptoms of syncope. Its diagnosis is cur-
rently based on the reproduction of symptoms in combination
with hypotension and bradycardia induced by a 45 min of 60-
80° head-up tilt test [2]. This test is very used; after 10 min-
utes in a supine position, the patient is upright tilted during
45 minutes. If any symptom of syncope or presyncope oc-
curs, the patient is returned to the supine position. The major
problem is the examination duration and the challenge con-
sists in reducing it while keeping a right prediction. To eval-
uate the quality of the prediction, we use two parameters, the
specificity (the percentage of patients among the non-fainters
who are accurately classified as non-fainters) and the sensi-
tivity (the percentage of patients among the fainters who are
accurately classified as fainters). Both characterize the per-
centage of correct patients classification.

Many studies worked on the first minutes of tilting: Pitza-
lis et al. [12] have studied the 15 first minutes where the
patients are in the tilted position. They predict syncope oc-
currence with a specificity of 93% and a sensitivity of 58%
on a retrospective study of 238 patients. They reach 85% of
specificity and 80% of sensitivity in a prospective group of 80
patients. This prediction has been done by the analyze of the
systolic arterial pressure. An other study of Mallat et al. [10]
has reduced the duration of examination to 6 minutes by the
determination of a predictive criterion, based on heart rate
variation. They have obtained for a retrospective group of
110 patients, a specificity of 100% and a sensitivity of 88.6%.
With a group of unknown patients they found a specificity
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of 96.4% and a sensitivity of 87.3%. The period of exami-
nation has been reduced but these studies imply a tilting and
can cause very unpleasant symptoms (pallor, nausea). Recent
studies [1],[13] tried to achieve the prediction by using only
the supine position. An other similar characteristic of the
latter studies was the use of transthoracic impedance signal
which allows the computation of ventricular ejection varia-
tions. The first work of Bellard et al. [1] has been done only
on a retrospective group of 71 patients, they found a speci-
ficity of 63% and a sensitivity of 68%. Contrary to this study
which used thresholds to predict the syncope, Schang et al.
[13] worked with neural networks (multi-layer perceptrons);
they obtained a specificity and a sensitivity of 100% for a ret-
rospective group of patients and 73% of specificity and 69%
of sensitivity in a prospective group of patients. An other
study of Feuilloy et al. [5] obtained a good prediction for the
same period of rest. They obtained a specificity of 87% and a
sensitivity of 86% in a prospective group of 29 patients, but
they used several variables which are costly and not easily
recordable (plasma volume, hematocrit, hemoglobin).

The study presented in this paper tries to obtain a good
prediction by using variables which can be recorded and pro-
cessed quickly by using only the supine position. This diag-
nosis method is based on artificial neural networks. Thus, the
electrocardiogram (ECG) and the transthoracic impedance
signal (Z) are used to extract the features allowing the syn-
cope prediction. After a description of data acquisition, we
give an overview of the feature extraction process, then the
prediction process will be detailed. Furthermore, the results
show the interest and the performances of this method. The
performance of the measures will be evaluate in terms of Re-
ceiver Operating Characteristics (ROCs) curves, and particu-
larly the area under the ROC curves (AUCs) [9]. The results
will be compared statistically by cross-validations.

2. DATA ACQUISITION
2.1 Subjects

In the experiments, 129 patients (mean age: 43+ 15 years,
range 18-73 years, 63 males, 66 females) with history of un-
explained recurrent upright syncope or presyncope at least
twice within the last 3 months were included in the study.
For all patients, evidence of neurological, structural heart dis-
ease, metabolic and psychiatric illness was eliminated on the
basis of physical examination and additional investigations
(blood tests, ambulatory 12-lead ECG, transthoracic echocar-
diography, endocavitary investigations and carotid sonogra-
phy). The patients were included in the study only when
these data remained negative. Medications which could in-
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Figure 1: Electrodes positions to observe the ECG and Z

terfere with the test (i.e: diuretics, vasodilatators, betablock-
ers) were interrupted at least 2 days before the study. All the
patients gave their written informed consent and the study
was approved by our local ethic committee.

2.2 Protocol

The experiment was performed between 2:00 and 5:00 PM in
a quiet and temperature controlled room (24-25°C) with light
dimmed. The patients were installed in supine position on
a motorized tilt table (FGCK, Couverchel, Draveil, France)
with footboard and equipped for instrumentation, knee and
abdominal straps prevented fall. As explained earlier, after
the supine position, the patients were upright tilted at an an-
gle of 70° for 45 min [6]. If symptoms occurred, the sub-
jects were returned supine and the test ended. The upright tilt
test was considered positive on the reproduction of syncopal
(loss of consciousness and postural tone) or near-syncopal
(pallor, nausea, dizziness, lightheadedness, sensation of im-
minent syncope). If no symptoms occurred after 45 minutes
the patients were returned supine. According to the outcome
of the 45-min head-upright tilt test, the patients were divided
in two groups: non-fainters (66) with negative response to
70°-HUTT, and fainters (63), with a positive response.

2.3 Recorded variables

Changes in the transthoracic impedance signal were recorded
using an electrical impedance device (Physioflow, Manatec
Biomedical, France, [4]). The transthoracic impedance sig-
nal Z was obtained by injecting (figure 1) a high-frequency
(75 kHz) and low-amperage (1.8 mA) alternating electric
current through 4 spot electrodes (Ag/AgCl, 40493E). Two
electrodes were positioned over the neck and two over the
xyphoid process. The impedance signal was gated to Lead
II ECG collected from 2 electrodes (b and d). It is based
on the variations of transthoracic impedance caused by the
blood volume variation obtained by the application of elec-
tric current. Thus, the current was injected by the electrodes
a and c. The transthoracic impedance waveform Z and ECG
were sampled at 240 Hz. The data were stored during all the
HUTT phase.

3. METHOD

The measure during the supine position allows to obtain tem-
poral signals of 10 minutes: ECG and Z. During this period,
the signals can undergo perturbations. Indeed, with the elec-
trodes positioned on the neck and the thorax, several pertur-
bations can occur on ECG and Z, caused by strong respi-
rations, muscular contraction or patient movements. There-
fore, we choose to select a part of signal with the weakest
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Figure 2: Representation of ECG and Z signals and their
derivatives

signal perturbations on the ECG and Z curves. The extracted
part is of one minute among the 10 first minutes of the rest-
ing period. The pertinent selection of a subpart of the signals
ECG and Z is very important because it impacts strongly the
computation of the further extracted features.

3.1 Preprocessing

The analysis is based on the ECG and Z signals obtained in
the first step of TILT-test, during the supine position. These
two signals are filtered by using a 128-th order lowpass Fi-
nite Impulse Response digital filter [11] based on a Hamming
window. The cut-off frequency is of 30 Hz for the ECG and
40 Hz for the Z. The first derivative of the ECG and Z sig-
nals are computed by central derivation [7]. So, the dECG
and dZ signals are computed with the following expressions:

dECG(n) = ECG(n+1)—ECG(n—1)
dz(n) = Z(n+1)-Z(n—1)

with 1 <n <N.

3.2 Complexes extraction

The features used for the syncope prediction are extracted on
the dZ signal. So, for our analysis, we need to extract each
complex of dZ. We define a “dZ complex” of dZ signal as
a period or heartbeat of this signal (figure 2). As mentioned,
during the 10 first minutes, a continuous duration of 60 sec-
onds is extracted. The employed method extracts the heart-
beats between two TOPS, obtained by an amplitude threshold
computed on the dECG signal and equal to 0.3 -max(dECG)
[7].

3.3 Selection of a part of the dZ signal

The method is developed around three parameters: P, T and
L. The sampled signal of P points must be periodic with an
approximate duration of 7' points, where each period is de-
fined as a “complex” from the dZ signal. The method extracts
a part of L samples from the signal. Therefore, the total num-
ber of periods is equal to P/T, and the number of periods of
the extracted part is of K = L/T. Naturally, these parameters
must follow the condition: P—7 > L > 2T.

In our experimentation, P and 7 vary in function of the
recorded measures on the patients and the length of L reaches
14400 points (60 seconds). The procedure which evaluates
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Figure 3: Block diagram for the selection of the best part of
the signal

and extracts the best part is shown in the figure 5. This pro-
cedure prevents an important variation on the K successive
periods. The extracted part is called “window” (w).

The signal variability in the window w; is obtained by
taking the signal as a periodic noised signal. Thus, to com-
pute the variability, we use the Signal-to-Noise Ratio (called
SNR). The window evaluation considers the mean of all the
SNR complexes of the extracted window. The SNR of a com-
plex ¢; (equation 1) is computed by using two successive
complexes (c; and c;11), where the complex c; represents the
reference complex. Thus, the noise measured on the com-
plex c¢;y1 of the window w; is computed by the following
expression:

c’
NR; =10-1 —= 1
S C{Jrl 0810 P‘j —P; M

where, P ; is the power of the complex i of the window

Jj- Thereforel, the noise of the window w; (equation 2) is
obtained by the sum of all the SNR contained in the window.

K-1 Pc-.i
. 10-log il )
,':Zé 10 Pc{ —P;

Cit1

SNRv; = L/T—1

The evaluation of a next window w1 is determined by

the elimination from the first complex (c{ ) of the window w;
and by the addition of the next complex to the last complex
(c§) of the window w;.

After the SNR computations of each extracted window,
the method gives the window having the biggest SNR, de-
fined by w,,; which maximizes the SNR of the windows w,
with j=1,---,N.

3.4 Input feature selection in the frequency domain

Usually, the features are extracted in the time domain tak-
ing into consideration intervals time and some amplitudes of
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Figure 4: Representation of the 14 preselected frequencies
for the one patient of each group (positive/negative response
to 70-HUTT: syncopor/non-syncopor)

the signal, as [10], [12], [13] and [1]. Our approach seeks
new features by working in the frequency domain, thus the
power spectral density (PSD) S of dZ (equation 3) is es-
timated by using an improved version of the periodogram
which is Welch’s method [15]. This method has the advan-
tage to offer a diminution of the variance by a signal seg-
mentation and the overlap between segments. Moreover, the
bias is modified by using a Hamming window wj, on each
segment, 80 X(n) = dZ(n) - wy(n). The PSD is computed on
1 minute of signal, the parameters used are: an overlap of
50%, a segment size K of 2048 points (8.6 seconds) and the
number of segments M equal to 13. While the data were
sampled at 240 Hz, therefore the frequency resolution is of
0.117 Hz.

2
R 1 M—1 1 K—l~ —Zjnkl’
S(n) = i ZO I kZ{)x(mK/2+k)e K 3)
m= —|

The amplitudes of frequencies obtained on the PSD de-
termine the features allowing to establish the syncope pre-
diction. But, all the frequencies cannot contribute to the pre-
diction, therefore a selection is done by taking into consid-
eration a condition. This condition requires the presence of
the frequency on all the syncopor or/and non-syncopor pa-
tients to be preselected. In our study, 14 relevant frequencies
between 0 and 40 Hz emerged. The figure 4 shows a com-
parison between two patients (syncopor and non-syncopor)
which allows to observe some differences between the fre-
quencies of the two classes.

A procedure commonly used to evaluate the quality of the
features is the ranking computation [8] and [14]. The rank-
ing criterion is interesting for its simplicity and its rapidity.
The Pearson correlation coefficient defined by the equation 4
allows to obtain the correlation coefficient Riz, between the

i"" feature (X;) with the associated outputs (targets) Y.

XY
R — cov(X;,Y) @
var(X;)var(Y)
In our case, the output is not continuous and each sam-
ple is labeled by Y € {+1,—1}, therefore, to determine the
correlation (the relevance index) of each feature i, the use of
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Ri2 can be replaced by the Fisher criterion [3], defined by the
following expression:
1 —1)2
(‘ul+ — K )

=t 5 ) 5
" oot to! ®)

where [,li+ land crl-+l represent respectively the mean and the
variance of the /" feature for the class {+1}. This score F
must be maximized in order to increase the between-classes
variance (numerator of equation 5) and to reduce the within-
classes variance (denominator of equation 5) for each feature
i

These 14 frequencies are given with their respective cri-
terion values in the table 1.

[ frequency [[ .17 | 105 | 469 | 17358 [ 39.26 | 585 [ 2625 |
[ eriterion || 0.093 | 0.076 | 0.046 | 0.017 | 0.017 | 0.0IT | 0.010 |
[ frequency || 234 | 434 | 574 | 2754 [ 3024 [ 3293 | 2.03

[ criterion || 0.010 | 0.007 | 0.006 | 0.006 | 0.002 | 0.001 | 0.000 |

Table 1: Extracted frequencies and their criterions

They are sorted in descending (the maximum value of
criterion corresponds to the best feature), thus, the ampli-
tudes corresponding to frequencies are used as features and
they are proposed to the classification and prediction tool.
In our experiments, we add progressively a new feature by
following the order induced by the criterion.

3.5 Prediction by neural networks

Among Artificial Neural Networks (ANNs), Multi-Layer
Perceptrons (MLPs) [3] are often used, particularly in pat-
tern recognition applications. In this study of syncope pre-
diction, an architecture of one-hidden-layer has been chosen,
with activation functions of sigmoid type. The inputs of MLP
are the amplitudes of the frequencies selected in the previous
section. The MLP is trained by the “Levenberg-Marquardt”
algorithm [3], during the learning phase. The use of the soft-
max function normalizes the outputs and interprets them as
posterior probabilities of class membership. Thus, the deci-
sion of the output for a feature input vector is defined by the
largest posterior probability.

3.6 Performance measure

The performance measure commonly used for a classifier is
the classification accuracy. This method must consider two
conditions to interpret suitably the results: the distribution of
classes must be constant and the misclassification data must
be equal. Both conditions are not often satisfied in real prob-
lems, thus contrary to the classification accuracy, the ROC
curves are often used. The ROC method has the advantage
of being independent of class distribution and independent of
misclassification data proportion. The curves are constructed
by plotting the sensitivity with 1 — specificity for different
cutoff values of a diagnosis test. The area under the ROC
curve [9] can be interpreted as the test accuracy: the highest
the area, the highest the accuracy is reached.

To estimate the generalization error, K-fold cross-
validation is often used [3]. This technique allows to give
an estimation with a small bias and a small variance. Thus,
the data set is randomly divided into K subsets (K-folds) of
equal size. The classifier is trained on K — 1 subsets, then
the validation is measured by testing the subset that was not
used during the learning phase. This process is repeated K
times by using a different subset to estimate the validation.

Test set

[

Dataset -
Training set

O — =

Frequency selection phase

Training set
Validation set

Training set
Validation set

Selected
frequency subset >

Frequency
selection with
K-fold cross
validation

Evaluation phase

Figure 5: Block diagram for the selection of the best part of
the signal

Therefore, the performance of the classifier is obtained by
averaging the K AUCs.

4. EXPERIMENTATION AND RESULTS

The 129 patients included in this study are divided into two
groups. Each group was builded with 50% =+ 5% of fainters
and non-fainters, randomly chosen. The first (70 patients)
is used to construct and to determine the best feature subset
with the forward selection method based on ranking. The
patients in the second group (59 patients) are only used to
estimate the performance of selected subsets, thus these test
data are not employed in the feature selection phase. This
decomposition of the dataset is shown in figure 5.

Cross-validation is a method of estimating generalization
performance, and the obtained results are often used to com-
pare models. In our experiments, this method is used to es-
timate the syncope prediction in order to eliminate a bias,
which could be caused by a favorable data distribution in
our classification problem. Thus, each group is divided into
7-folds (K=7), by keeping the same proportion between the
syncopor and the non-syncopor patients for each subdataset.
The performances on the validation and test sets are obtained
by averaging the K AUCs, called respectively AUCy and
AUCr.

In order to increase the statistical estimation, the K-fold
cross-validation is repeated several times. Thus, the learning
has been done hundreds of times for each case, with several
number of neurons in the hidden layer (from 2 to 10). In our
experiments, each input, composed by the amplitudes of the
frequencies, is normalized to obtain a mean value of 0 and
a standard deviation of 1. All signals were analyzed off-line
using a software that we have developed, in MatLabe (The
Mathworks Inc., South Natic, MA, USA).

4.1 Evaluation of the relevance of frequencies

The Fisher coefficients are computed on the training set. The
figure 6 shows the prediction results AUCy, on the K vali-
dation sets with the architecture (number of neurons in the
hidden layer optimizing the prediction). These results are
computed by increasing the size of the input vector (for ex-
ample, for a size of input vector set to 4, we use the 4 first
frequencies appearing in table 1). Thus, with the use of the
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Figure 6: Evolution of the AUCy during the forward input
selection, on the validation sets. The line in the middle of the
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box are the 25th and 75th percentile of the sample

10 first frequencies the prediction of syncope is optimal (fig-
ure 6).

4.2 Evaluation of the syncope prediction

The amplitudes of these 10 frequencies are extracted from
PSDs on the second group of patients (noted “Test set” on
the figure 5). The average estimation of the generalization
reaches similar value to the performances from the previ-
ously phase of the frequency selections. The median value of
the AUCrs is equal to 0.794 (0.728 and 0.856 for the 25th and
75th percentile), thus the generalization performances are
confirmed with these descriptive features. With the adapted
parameters for the classification model, the best performance
among the hundreds of times of learning reaches 0.967. In
table 2 we compare our results with the results of the other
studies described in the introduction. Thus, we can notice
that this study can predict unexplained syncope occurrences
by using only the supine position with a better specificity
and sensitivity than other studies using the tilted position. So
far, we obtain a mean estimation of 86% for the specificity
and 79% for the sensitivity. Moreover, it is important to no-
tice that our sensitivity (false negative) is superior or equal to
other studies. This fact shows the interest of the diagnosis,
indeed, the cost of false negative errors (no detection of the
pathology when it exists) is more catastrophic than the cost
of false positive errors (detection of the pathology when none
pathology exists).

State of patient supine position tilted position
this study
Studies mean and SD optimal [51 [13] [10] [12]
values value
[ Specificity (%) [[ 79£0.014 ] 97 [ 87 1 73 1 9% [ 8 |
| Sensitivity (%) [| 86£0.007 [ 100 [ 8 | 69 | 87 | 80 |

Table 2: Comparison of prediction methods

5. CONCLUSIONS

This study is a step in the direction of early syncopes pre-
diction by using only the resting period of the 70°-HUTT.
Indeed, we obtain a prediction with an average specificity
and sensitivity of 79% and 86% on a prospective group of
unknown patients, reaching respectively 97% and 100% for

the best initialization parameters of the MLP. These results
show the possibility to improve the prediction by a choice
of adapted classifiers (parameters or models). The obtained
performances contribute to a new approach in the early de-
tection of positive outcome contributing as a first step in the
avoidance of the costly and time consuming HUTT in the
future.

Moreover, the use of these variables which are easily
recordable, offers a considerably advantage, indeed in this
case, the processing can be done on-line and the diagnosis
can be obtained during the exam.
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