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ABSTRACT 
Multichannel acoustic cancellation problem requires work-
ing with extremely large impulse responses.  Multirate adap-
tive schemes such as the partitioned block frequency-domain 
adaptive filter (PBFDAF) are good alternatives and are 
widely used in commercial echo cancellation systems nowa-
days. However, being a Least Mean Square (LMS) derived 
algorithm, the convergence speed may not be fast enough 
under some circumstances. 
In this paper we propose a new scheme which combines 
frequency-domain adaptive filtering with conjugate gradient 
techniques in order to speed up the convergence time. The 
new algorithm (PBFDAF-CG) is developed and its behav-
iour is compared against previous PBFDAF schemes. 

1. INTRODUCTION 

The Multichannel Acoustic Echo Cancellation (MAEC) 
problem has to deal with very long adaptive filters in order to 
achieve good results. Depending on the environment and its 
reverberation time, the echo paths can be characterized by 
FIR filters with thousands of taps.  
The so-called Partitioned Block Frequency-Domain Adaptive 
Filter (PBFDAF) [1] was developed to deal efficiently with 
such situations. The PBFDAF algorithm is a more efficient 
implementation of the Least Mean Square (LMS) algorithm 
in the frequency-domain. It reduces the computational bur-
den and user-bounded delay. This technique makes a sequen-
tial partition of the impulse response in the time-domain prior 
to a frequency-domain implementation of the filtering opera-
tion. This time segmentation allows to set up individual coef-
ficient updating strategies concerning different sections of 
the adaptive canceller, thus avoiding the need for disabling 
the adaptation in the complete filter. The adaptive algorithm 
is based on the know frequency-domain adaptive filter 
(FDAF) for every section of the filter [2].  
In general, the PBFDAF algorithm is widely used due to its 
good trade-off between speed, computational complexity and 
overall latency. However, when working with long acoustic 
impulse responses (AIR), the convergence properties pro-
vided by the algorithm may not be enough. Besides, the mul-
tichannel adaptive filter is structurally more difficult, in gen-
eral, that the single channel case.  

 

 
Figure 1 – Multichannel adaptive filtering 

Figure 1 shows the working framework where [ ]px n , 

1, ,p P= K  ( P  is a number of channels), represents the 
input signals recorded by the microphones in the remote 
room, d  the echo signal received after convolving with the 
AIR in the local room, y  the output of adaptive filtering, 
and e  the error signal we try to minimize. In typical scenar-
ios, the filter input signals, are highly correlated which fur-
ther reduces the overall convergence of the filter coefficients 

pmw , 0, , 1m L= −K  ( L  is the filter length). 
This effect is particularly relevant when dealing with the 
MAEC problem as all the input signals px  come from a 
single source located in the remote room and the nearness 
between the microphones (especially when working with 
microphone arrays) can increase the coherence between 
channels. 
In order to increase the convergence speed we propose a new 
algorithm which employs much more powerful Conjugate 
Gradient (CG) optimization techniques, but keeping the fre-
quency block partition strategy to allow computationally 
realistic low latency situations. The paper is organizes as 
follows: Section II reviews the Multichannel PBFDAF ap-
proach and its implementation. Section III develops the Mul-
tichannel Conjugate Gradient Partitioned Frequency Domain 
Adaptive Filter algorithm (PBFDAF-CG). Results of the new 
approach are presented in Section IV followed by conclu-
sions. 
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Figure 2 – Multichannel PBFDAF (Overlap-Save method) 

2. PARTITIONED BLOCK FREQUENCY-
DOMAIN ADAPTIVE FILTERING 

The main idea of frequency domain adaptive filter is to fre-
quency transform the input signal in order to work with ma-
trix multiplications instead of dealing with slow convolu-
tions [2]. This is especially interesting when using long fil-
ters as in our case. The frequency domain transform em-
ploys one or more discrete Fourier transforms (DFTs) and 
can be seen as a pre-processing block that generates decorre-
lated output signals. 
In the more general FDAF case, the output of the filter in the 
time domain can be seen as a direct frequency domain trans-
lation of the Block LMS (BLMS) algorithm 

  [ ] [ ]
1

1 0

P L

p pm
p m

y n x n m w
−

= =

= −∑∑ . (1) 

In the PBFDAF case, the filter is partitioned transversally in 
an equivalent structure. Partitioning pw   in Q segments 

( K - length) we obtain 

  [ ] [ ] ( )

1 1
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QP K

p p qK m
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y n x n qK m w
− −

+
= = =

= − −∑∑∑ . (2) 

Where the total filter length L , for each channel, is a multi-
ple of the length of each segment L QK= , K L≤ . Thus, 
using the appropriate data sectioning procedure, the Q  linear 
convolutions (per channel) of the filter can be independently 
carried out in the frequency domain with a total delay of K  
samples instead of the QK  samples needed in standard 
FDAF implementations. 
Figure 2 shows the block diagram of the algorithm using the 
overlap-save method. In the notation we are using a  for 
scalar, a  for vector and A  for matrix. a , A  denotes vec-
tor and matrix respectively in a frequency domain. F  repre-
sents the DFT matrix defined as 2j kl M

kl e π−=F , with 

, 0, , 1k l M= −K , 1j = −  and  1−F  as its inverse. Of 
course, in the final implementation, the DFT matrix is substi-
tuted by much more efficient FFTs. 
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In the frequency domain with matricial notation, equation (2) 
can be expressed as 
  = ⊗Y X W . (3) 
Where = FXX  represents a matrix of dimensions  
M Q P× ×  which contains the Fourier transform of the Q  
partitions and P  channels of the input signal matrix X . 
Being X , 2K P× -dimensional (supposing 50% overlap-
ping between the new block and the previous one). 
It should be taken into account that the algorithm adapts 
every K  samples. W  represents the filter coefficient matrix 
adapted in the frequency domain (also M Q P× ×  - dimen-
sional) while the ⊗  operator multiplies each of the elements 
one by one; which in (3) represents a circular convolution. 
The output vector y  can be obtained as the double sum 
(rows) of the Y  matrix.  First we obtain a  M P×  matrix 
which contains the output of each channel in the frequency 
domain py , 1, ,p P= K , and secondly, adding all the 
outputs we obtain the output of the whole system y . Finally, 
the output in the time domain is obtained by using 
  =y  last K  components of −F y1 . (4) 
Notice that the sums are performed prior to the time domain 
translation. In this way we reduce ( )( )1 1P Q− −  FFTs in 
the complete filtering process. 
As in any adaptive system the error can be obtained as 
  = −e d y , (5) 

where [ ] [ ]1 T
d mK d mK K⎡ ⎤= + −⎣ ⎦d K . 

The error in the frequency domain (for the actualization of 
the filter coefficients) can be obtained as 

   1K×⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0
F

e
e . (6) 

As can see, a block of K  zeros is added to ensure a correct 
linear convolution implementation. In the same way, for the 
block gradient estimation, it is necessary to employ the same 
error vector in the frequency domain for each partition q  
and channel p . This can be achieved generating an error 
matrix E with dimensions M Q P× ×  which contains 
replicas of the error vector, defined in (6), of dimensions P  
and Q  ( ←E e  in the notation). The actualization of the 
weights is performed as 
  [ ] [ ] [ ] [ ]1 2m m m mµ+ = + ⊗W W G . (7) 
The instantaneous gradient is estimated as 
  *= − ⊗G X E . (8) 
This is the unconstrained version of the algorithm which 
saves two FFTs from the computational burden at the cost of 
decreasing the convergence speed.  As we are trying to im-
prove specifically this parameter we have implemented the 
constrained version which basically makes a gradient projec-
tion. The gradient matrix is transformed into the time domain 

and is transformed back into the frequency domain using 
only the first K  elements of G  as 

  
K Q P× ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

G
F

0
G . (9) 

3. CONJUGATE GRADIENT PARTITIONED 
BLOCK FREQUENCY-DOMAIN ADAPTIVE 

FILTERING 

Conjugate Gradient (CG) algorithm is a technique originally 
developed to minimize quadratic functions which was later 
adapted for the general case [3]. Its main advantage is its 
speed as it converges in a finite number of steps. In the first 
iteration it starts estimating the gradient, as in the steepest 
descent (SD) method, and from there it builds successive 
directions that create a set of mutually conjugate vectors 
with respect to the positively defined Hessian (in our case 
the autocorrelation matrix R in frequency domain). The 
mean square error minimization of the multichannel signal 
with respect to the filter coefficients is equivalent to the 
Wiener-Hopf equation 
  1−=w R r . (10) 

Where { }HE=R xx  represents the autocorrelation matrix 

and { }*E d=r x  the cross-correlation vector in the time 

domain. In each m-block iteration the conjugate gradient 
algorithm will iterate ( )1, , min ,k N K= K  times; where 

N  represent the memory of the gradient estimation, 
N K≤ .  In a practical system the algorithm is stopped 
when it reaches a user-determined mean square error (MSE) 
level. To apply this conjugate gradient approach to the 
PBFDAF algorithm the weight actualization equation (7) 
must be modified as 
  [ ] [ ] [ ]1m m mα+ = +w w v . (11) 

Where w  is the coefficient vector of dimension 1MQP×  
which results from rearranging matrix W  (in the notation 

←w W ). v  is a finite R-conjugated vector set which 
satisfies 0,H

i j i j= ∀ ≠v Rv . The R-conjugacy property 
is useful as the linear independency of the conjugate vector 
set allows expanding the wo  solution as  

  
1

0 0
0

K

k k k k
k

α α α
−

=

= + + =∑w v v vo K . (12) 

Starting at any point 0w of the weighting space, we can de-

fine 0 0= −v g  being 0 0←g G , ( )0 0= ∇G W ,  

0 0←p P , ( )0 0 0= ∇ −P W G  

  1k k k kα+ = +w w v  (13) 

  
( )

H
k k

k H
k k k

α =
−

g v
v g p

 (14) 
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  1 1k k+ +←g G , ( )1 1k k+ += ∇G W  (15) 

 1 1k k+ +←p P , ( )1 1 1k k k+ + += ∇ −P W G  

  1 1k k k kβ+ += − +v g v  (16) 

  
( )
( )

1 1

1

H
k k kHS

k H
k k k

β + +

+

−
=

−
g g g
v g g

 (17) 

Where kp  represents the gradient estimated in k k−w g . 

For that, it is necessary to evaluate ( )= ⊗ −Y X W G , (4), 

(5), (6) and (8). In order to be able to generate nonzero direc-
tion vectors which are conjugate to the initial negative gradi-
ent vector, a gradient estimation is necessary [4]. This gradi-
ent estimation is obtained by averaging the instantaneous 
gradient estimates over N  past values. The ∇  operator is 
an averaging gradient estimate with the current weights and 
N  past inputs X  and d , 

  ( )
1

0 , ,

2

k k n k n

N

k k k n
nN

− −

−

−
=

= ∇ = ∑
dW X

G W G . (18) 

This alternative approach does not require knowing neither 
the Hessian nor the employment of a linear search [4]. Notice 
that all the operations (13-17) are vector operations that keep 
the computational complexity low. The equation (17) is 
known as the Hestenes-Stiefel method but there are different 
approaches for calculating kβ : Fletcher-Reeves (19), Polar-
Ribière (20) and Dai-Yuan (21) methods. 

  1 1
H

FR k k
k H

k k

β + +=
g g
g g

 (19) 

  
( )1 1

H
k k kPR

k H
k k

β + + −
=

g g g
g g
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( )

1 1

1

H
DY k k
k H

k k k

β + +

+

=
−

g g
v g g

 (21) 

The constant kβ  is chosen to provide R-conjugacy for the 

vector kv  with respect to the previous direction vectors 

1 2 0, , ,k k− −v v vK . Instability occurs whenever kβ  ex-
ceeds unity. In this approach, the successive directions are 
not guaranteed to be conjugate to each other, even when one 
uses the exact value of the gradient at each iteration. To en-
sure the algorithm stability the gradient can be initialized 
forcing 1kβ =  in (16) when 1kβ > .  

4. COMPUTATIONAL COST 

Table 1 shows a comparative analysis for both algorithms in 
terms of operations number (multiplications, sums) clustered 
by functionality.   
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Figure 3 – Working environment for the tests  ( 5P = ) 

For one iteration ( 1k = ), the computational cost of the 
PBFDAF-CG is 40 times higher than that of the PBFDAF. 

5. SIMULATION EXAMPLES 

The scenario employed in our tests simulates two small 
chambers imitating a typical teleconference environment.  
Following an acoustic opening approach, both chambers can 
be acoustically connected by means of linear arrays of mi-
crophones and loudspeakers. Details of this configuration 
follow. Room dimensions are [2000 2440 2700] mm.  
The impulse responses are calculated using the image 
method [5] with an expected reverberation time of 70ms 
(reflection coefficients [0,8 0,8; 0,5 0,5; 0,6 0,6]). The 
speech source, microphones and loudspeakers are situated as 
in figure 3. In the emitting room, the source is located in 
[1000 500 1000] and the microphones in [{800 900 1000 
1100 1200} 2000 750]. Notice that the microphone separa-
tion is only 10 cm, which would be a worse case scenario 
that provides with highly correlated signals. In the reception 
room the loudspeakers are situated in [{500 750 1000 1250 
1500} 100 750] and the microphone in [1000 2000 750].  
The directivity patterns of the loudspeakers ([elevation 0º, 
azimuth -90º, aperture beam 180º]) and the microphones ([0º 
90º 180º]) are modified so that they are face to face. We are 
considering 5P =  channels as it is a realistic situation for 
home applications, enough for obtaining good spatial local-
ization and significantly more complex than the stereo case. 
The source is a male speech recorded in an anechoic cham-
ber at a sampling rate of 16 kHz and the background noise 
in the local room has a power of -40 dB of SNR. 

Alg.\Op. Gradient Estimation and Convolution Updating Constrained Version 
PBFDAF ( ) ( )( )22 log 1 1A P O O P Q M K O= + + + + + +  9B O=  22 logC O O=  

PBFDAF-CG ( )( )( )( )( )1 1 1 2 1 1N A k+ + + + +  ( )13 2O k+  ( )2 1CN k +  

Table 1 – Computational Cost Comparative  ( O PQM= ) 
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Figure 4 – Constrained PBFDAF 
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Figure 5 – Constrained PBFDAF-CG 
Figure 4 shows the constrained PBFDAF algorithm behav-
iour. For equation (6) we are using a power normalizing ex-
pression as 

  [ ] [ ]
m

m
µµ

δ
=

+U
. (22) 

  [ ] ( ) [ ] 21 1m mβ β= − − +U U X . (23) 

Where [ ]mµ  is a matrix of dimensions M Q P× × , µ  is 

the step size, β  an averaging factor, and δ  a constant to 
avoid stability problems. In our case 0,025µ = , 

0, 25β =  and 0,5δ = . 
Figure 5 shows the result of using the PBFDAF-CG algo-
rithm with the Hestenes-Stiefel method where the difference 
in convergence can be observed. A maximum of 

N K⎢ ⎥= ⎣ ⎦  or when MSE below -45 dB is employed.  

For both algorithms we use 8Q = , partitions 1024L =  

taps, 128K L Q= =  taps for each partition. The length of 
the FFTs is 2 256M K= = . Working with sample rate of 
16 kHz means 8 ms of latency (although a delayless ap-
proach already has been studied).  
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Figure 6 – PBFDAF-CG Iterations 

Again in both cases the algorithm uses the overlap-save 
method (50% overlapping). The upper part of the figures 
show the echo signal d  (black) and the residual error e  
(grey). The centre shows the Mean Square Error (dB) and the 
lower picture the misalignment (also in dB) obtained as 
ε = −h w h , being h  the unknown impulse response 

and 1
T T

P⎡ ⎤= ⎣ ⎦w w wK  the estimation. Figure 6 shows 

the k  PBFDAF-CG iterations versus time. The total number 
of iterations for this experiment is 992 for PBFDAF and 
1927 for PBFDAF (80 times higher computational cost). 

6. CONCLUSIONS 

The PBFDAF algorithm is widely used in commercial AEC 
systems with good results. However, especially when work-
ing in multichannel, high reverberation environments (like 
teleconference) its convergence may not be fast enough.  
In this article we have presented a novel algorithm based the 
same structure, but using much more powerful Conjugate 
Gradient techniques to speed up the convergence time and 
improve the mean square error and misalignment perform-
ance. As shown in the results, the proposed algorithm con-
verges a lot faster than its counterpart while keeping the com-
putational burden relatively low, as all the operations are 
performed between vectors in the frequency domain, al-
though we are working on better gradient estimation methods 
in order to reduce computational cost. Besides, it is possible 
to arrive to a compromise between complexity and speed 
modifying the maximum number of iterations. 
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