
PARALLEL TRAINING ALGORITHMS FOR CONTINUOUS SPEECH
RECOGNITION, IMPLEMENTED IN A MESSAGE PASSING FRAMEWORK

Vladimir Popescu1, 2, Corneliu Burileanu1, Monica Rafaila1, Ramona Calimanescu1

1Faculty of Electronics, Telecommunications and Information Technology, University “Politehnica” of Bucharest
Bd. Iuliu Maniu 1–3, 7000, Bucharest, Romania

2“CLIPS” Laboratory, Institut National Polytechnique de Grenoble
46, Av. Félix Viallet, 38031, Grenoble, France

email: vladimir.popescu@imag.fr

ABSTRACT
A way of improving the performance of continuous speech
recognition systems with respect to the training time will be
presented. The gain in performance is accomplished using
multiprocessor architectures that provide a certain process-
ing redundancy. Several ways to achieve the announced per-
formance gain, without affecting precision, will be pointed
out. More specifically, parallel programming features are
added to training algorithms for continuous speech recogni-
tion systems based on hidden Markov models (HMM). Sev-
eral parallelizing techniques are analyzed and the most ef-
fective ones are taken into consideration. Performance tests,
with respect to the size of the training data base and to
the convergence factor of the training algorithms, give hints
about the pertinence of the use of parallel processing when
HMM training is concerned. Finally, further developments
in this respect are suggested.

1. INTRODUCTION

It is known that nowadays, though significant progress has
been achieved in the microelectronics industry and comput-
ers are becoming more and more powerful, large vocabulary
continuous speech recognition systems challenge comput-
ers when real-time performance is necessary. This is why
spoken language technology specialists worldwide are trying
to build continuous speech recognition systems and appli-
cations with less critical demands with respect to comput-
ing resources required. Unfortunately, this relaxation on the
resources required involves usually a loss in the precision
of modeling and recognition accuracy, through the usage of
techniques such as vector quantization (VQ), discrete HMMs
(DHMMs), search space pruning.

The alternative approach, taken into consideration by the
scientific community [2], is followed here: the usage of par-
allel computer architectures. More specifically, the train-
ing of HMM-based medium vocabulary continuous speech
recognition systems is in the focus of our paper. The message
passing paradigm for parallel processing has been preferred
as a choice of developing and testing framework.

The existence of parallel programming facilities in-
tegrated in development environments and of continuous
speech recognition applications development baseline plat-
forms, algorithms that add parallel processing facilities to ex-
isting speech recognition systems can be designed and tested.

However, previous steps have been pursued in paralleliz-
ing speech recognition, both at the principial level [9], [10]
and at the practical level [3], [4], [8]. Nevertheless, the main

focus of these early researches was the actual speech recog-
nition, i.e., the Viterbi decoding process [11], given the re-
quirements of real-time speech recognition.

For these reasons, and since performance improvements
of the recognition process are being tackled in parallel by
our team [6], it is a natural goal to ameliorate the timely
performance of the training process for continuous speech
recognition. Although several parallel training strategies de-
sign hints are provided in the literature [10], [11], no actual
parallel training module is available for continuous speech
recognition systems. Hence, a research aiming at a feasable
parallelizing strategy for continuous speech recognition sys-
tems training that should lead to a practical, working paral-
lel training module is motivated by several possible applica-
tions. These include, but are not limited to, the following:
• rapid adaptation of a speaker-independent speech recog-

nition system, to the particular voice of a certain speaker,
in order to improve recognition accuracy [11]; this can
be done either by traditional speaker adaptation meth-
ods, such as the Maximum Likelihood Linear Regression
(MLLR) [11], or by a partial re-training of the system, to
a particular voice [1], the particular application influenc-
ing on the choice of the adaptation strategy;

• rapid adaptation of a continuous speech recognition sys-
tem trained for one language (reach in linguistic re-
sources - such as English), to another language (poorer
in terms of linguistic ressources - such as Romanian);

2. CHOICES IN PARALLELIZING TRAINING
ALGORITHMS

Since recently the issue of training HMM-based speech
recognition systems has not been entirely mitigated, be-
cause systems training is basically an offline process for
which the real-time requirements are not mandatory. How-
ever, with the advent of commercially available large speech
databases, large vocabulary speaker-independent continuous
speech recognition systems training may become cumber-
some in terms of time consumed: it may take tens to hun-
dreds of hours for such systems to be trained in a satisfactory
manner.

Moreover, the adaptation of speaker-independent sys-
tems to particular speakers or to new languages may take
tens of minutes to several hours to complete. Hence, a reduc-
tion in training time is a desirable goal that can be achieved
through parallel processing, as shown in this paper.

This way, in parallelizing baseline HMM training algo-
rithms, such as the Baum-Welch and Viterbi algorithms [11],

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



several options can be considered:

• program parallelism — the parallelization is made with
respect to the algorithm itself. In turn, the program par-
allelism can be achieved in two ways:
– algorithm-dependent — the parallelization depends

on the parameter estimation algorithm used (e.g.
Baum-Welch or Viterbi) ; a discussion is provided in
[7];

– algorithm-independent — the parallelization is inde-
pendent of the used training algorithm; relevant in-
sights are provided in [10];

• data parallelism — the parallelization is made with re-
spect to the data managed by the training algorithm. In
turn, the data parallelism can be achieved in several ways:
– algorithm-dependent — the parallelization depends

on the parameter estimation algorithm. Taking into
account the widespread use of the Baum-Welch algo-
rithm, such a parallelization could be performed with
respect to the training data; design hints are provided
in [11];

– algorithm-independent — the parallelization is inde-
pendent of the algorithm. Instead, the training data
are distributed across several processing units and the
algorithm is ran in several instances, for each ele-
ment of the data partition. In turn, the algorithm-
independent data parallelism can be performed in two
ways:
∗ with respect to the training data — the

parametrized speech along with the correspond-
ing labels is spread across several processors and
training is performed in parallel, for each element
of the data partition;

∗ with respect to the set of HMMs (e.g. the phone
set of a given language, if phoneme-level model-
ing is used) — the set of HMMs is partitioned and
distributed across several processing units, each
unit having the whole training data; the training
is performed in parallel, for each group of acous-
tic models;

Algorithm-dependent program parallelism could solve
the linear equations systems giving the model parameters
through parallel algorithms, such as parallel Jacobi [7]. How-
ever, since iterative processing is alternated with recursions
used in computation of the forward and backward probabil-
ities involved in the Baum-Welch algorithm, this manner of
parallelization did not lead to performance improvements.

Algorithm-independent program parallelism could be
achieved through acoustic vectors partitioning. While
the data parallelism involves “space” partitioning (i.e., the
training data space is being partitioned), the algorithm-
independent program parallelism hinted in [10] implies
“time” partitioning (i.e., the acoustic vectors are being split
and distributed across several processing units). However,
treating each sub-vector independently does not seem to be
an appropriate choice for speech recognition systems train-
ing since: a) the acoustic vectors are rather short (usually,
each feature vector accounts for a few tens of values) and b)
the elements within each acoustic vector are strongly corre-
lated. As such, program parallelism may not be well suited
for training HMM-based speech recognition systems.

A form of algorithm-dependent data parallelism that ex-

Figure 1: Algorithm-dependent data parallelism

plicitly takes into account the Baum-Welch parameter es-
timation process is suggested in [11]. However, [11] al-
lows only the simulation of parallel processing, needing a
human expert that handles the data transfers and accesses.
This is why a real parallel algorithm designed in this manner
should also take into account the management of data ac-
cesses. Thus, such an algorithm can be thought in a master-
slave framework, i.e., one processing unit is master, launch-
ing the algorithm and commanding several slave processing
units, which do not directly interact with each other. The flow
of the algorithm is suggested in the message sequence chart
(MSC) given in figure 1. The figures illustrating the par-
allelization strategies are expressed in an Unified Modeling
Language (UML)-derived notation; the symbols are UML-
specific, except for:
• the continuous full arrows — represent procedure calls;
• the continuous empty arrows — represent control mes-

sages;
• the dashed empty arrows — represent data messages;
• the dashed double arrows — represent label positions;
• the circled empty arrows — represent repetitive actions;
• the outgoing continuous empty arrows — represent alter-

native evolution points;
Basically, the algorithm states that the slave processors

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



compute accumulated statistics using elements of the data be-
ing partitioned, and the master (root) processor receives these
statistics, combines them and updates the HMM set. The ac-
cumulated statistics management works as follows: the slave
processing units compute the forward and backward proba-
bilities based on a fraction of the total number of feature vec-
tors, partial sums of functions of these probabilities are com-
puted; finally, the master processor adds these partial sums
and performs the appropriate division operations in order to
determine the updated model parameters: the transition ma-
trix, the mean vector and covariance (diagonal) matrix of the
Gaussians approximating model output. Relevant hints and
mathematical details are provided in [11].

A form of algorithm-independent data parallelism with
respect to the actual training data involves re-estimation of
the HMM set already trained on a subset of the training data,
using another subset of the data. In order to provide consis-
tency and practical value to such parallel algorithm, a form
of convergence measure can be provided, i.e., a convergence
criterion and a distance metric for HMM sets comparison.
Detailed insights are given in [7]. As distance measure, an
Euclidean-derived distance between the parameters of the
models may be chosen [7], in this case the convergence crite-
rion being the minimization of the distance between HMMs.
The flow of the algorithm is suggested in the MSC given in
figure 2. In this case also, the slave processing units do not
interact with each other. Basically, the algorithm states that
the slave processors perform actual HMM training on subsets
of the speech training data base.

The master processor gathers the estimated models from
all the slaves, compares them and, if necessary (the distance
is above an empirically-chosen threshold), re-sends the mod-
els to the slaves. This way, a slave does not retrain a model
that had already been trained with the same data. In order to
avoid an avalanche effect (i.e., the excessive multiplication of
the HMM sets), a decimation mechanism may be provided:
re-send, to a slave processing unit, the HMM set that is the
farthest from the HMM set already trained by that slave pro-
cessor. Alternatively, other decimation mechanisms may be
provided, e.g. the random selection of an HMM set to be sent
to a slave processor for re-training.

A form of algorithm-dependent data parallelism with re-
spect to the HMM set involves the partitioning of the set of
models in a number of subsets equal to the number of proces-
sors; the subsets should be as balanced as possible, in terms
of component models. Then, the slave processing units train
their corresponding subsets using all the training data avail-
able. The master processor gathers all the estimated HMM
subsets and rebuilds the entire HMM set, containing the up-
dated models. The flow of the algorithm is similar to that
illustrated in figure 1; the only difference consists of the ob-
ject of the exchange: whereas in figure 1 it is the actual data
that is being partitioned and the accumulated statistics that
are being exchanged, in the latter algorithm it is the HMM
set that is being partitioned and the elements of the HMM set
that are being exchanged. In our opinion, considering sev-
eral experiments, from which some reported in [7], out of
the parallelization strategies pointed out above, the program-
level ones are not appropriate for speech recognition applica-
tions, whereas the data-level ones open interesting perspec-
tives. From these latter parallel algorithms, the one depen-
dent on the actual Baum-Welch estimation procedure offers
the advantage of being very efficient with respect to the train-

Figure 2: Algorithm-independent data parallelism, with re-
spect to the training data

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



ing time. The other two, independent of the estimation pro-
cedures, offer the advantage of generality: any HMM param-
eter estimation method could be used in the parallel frame-
work provided.

3. EXPERIMENTAL RESULTS

For the experiments related to the parallelization strategies
described in this paper, the following choices have been
made: as baseline HMM training system, a subset of the
“Hidden Markov Modelling Toolkit” (HTK), provided by
Cambridge University [11], has been considered, whereas
the parallel framework used was the MPICH implementation
of the ‘Message Passing Interface” (MPI) standard [5].

The experiments investigate the relationship between the
HMM training time in a sequential framework and in a
parallel framework consisting of the data-level parallel ap-
proaches, versus the amount of training data and the required
modeling precision.

The acoustic modeling has been performed at phoneme
level, with shared transition matrix (so that the models have
exactly the same topology); the 34 phonemes of the Roma-
nian language, along with the short pause, /sp/ and the silence
between words, /sil/, were considered. The models are 5-
state left-right continuous mixture Gaussian HMMs, the out-
put of each state being modeled through 4 Gaussians. Global
model parameter estimation through embedded training is
performed [11]. The speech data base used for HMMs train-
ing consists of continuously uttered sentences in Romanian
language, evenly taken from 10 native Romanian speakers.
The sentences use a vocabulary of 3000 words. The charac-
teristics of the database are summarized in table 1.

Size [seconds] 21680
Sample frequency [Hz] 16000
Window size [samples] 600

Pre-emphasis coefficient 0.97
Parametrization Mel Cepstrum

Number of features / frame 12
Differential features Delta Cepstra

Table 1: Speech database acoustic characteristics

The training has been performed for an increasing num-
ber of speakers, from 1 to 10. The results of the measure-
ments are synthesized in figure 3, for a cluster computer fit-
ted with 3 AMD Athlon processors, out of which one was the
master (at 1.7 GHz), and two were the slaves (at 3 GHz). In
figure 3, the legend is as follows:
• #1 — no parallelism;
• #2 — algorithm-dependent data parallelism;
• #3 — algorithm-independent data parallelism, with re-

spect to the training data;
• #4 — algorithm-independent data parallelism, with re-

spect to the HMM set.
From the graphs plotted in figure 3, one can observe that

the most effective parallelization strategy is the one follow-
ing the data-level algorithm-dependent approach (notation
#2), giving a time twice lower than for the sequential case
(notation #1). The data-level algorithm-independent strat-
egy, with respect to the HMM set (notation #4), performs
better than the data-level algorithm-independent paralleliza-

Figure 3: Time measurements for training algorithms, with
respect to the size of the training data

tion with respect to the training data (notation #3); the ap-
proach #3 gives a reduction in training time, compared to the
sequential case (#1), of approximately 25 percent, for the 3-
processors parallel computer used. This can be explained by
the fact that the parallel algorithm #3 involves the retraining
of already estimated acoustic models. The approach #4 of-
fers better results because the groups of HMMs are estimated
only once.

Yet, another experiment has been made, which points out
a more subtle characterisation of the performances offered by
the training algorithms. Thus, the runtime results of the par-
allel algorithms, as compared to the non parallel ones, can
be evaluated with respect to the convergence factor of the
Baum-Welch parameter re-estimation algorithm1. For refer-
ence purposes, we state that in the previous experiment, a
convergence factor of 10−2 was used.

The experimental setup chosen consisted in a reduced
training data base, of 425 seconds of speech material, taken
from one speaker and processed according to table 1.

On this data, the algorithm-independent parallelization
strategy, with respect to the training data, was chosen, due
to its generality. This generality could allow for paralleliza-
tions of other parameter estimation algorithms, using the
aforementioned strategy (e.g. the Viterbi algorithm). More
specifically, for this experiment the runtime performance of
the non parallel training (notation #1) was compared to the
algorithm-dependent parallel training, with respect to the
training data (notation #3). The results obtained for this ex-
periments are shown in figure 4, where the notations are the
same as in figure 3.

From this figure one can observe that, for a convergence
factor superior to 10−2 (a “standard” value [11], used in the
first experiment also), the non parallel algorithm outperforms
the parallel one. This is due to the fact that, for low preci-
sion requirements in the estimation of parameters, the inter-
processor communication time is important, significantly de-
grading the performances of the parallel training. However,
as the convergence factor lowers (which implies a finer pa-
rameter estimation), the actual parameter estimation process
becomes important in terms of time consumed, thus yielding
better performances for the parallel training algorithm.

1The convergence factor is defined as the relative change between suc-
cessive values of the probability that a given observation sequence had been
generated by a certain acoustic model [11].

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Figure 4: Time measurements for training algorithms, with
respect to the convergence factor

Nevertheless, it can be seen (putting alltogether the two
experiments) that, even for a convergence factor of 10−2, the
parallel algorithm outperforms the sequential one as long as
there is an important amount of training data available.

As for the interprocess communication time for the paral-
lelization strategies proposed, informal investigation shows it
to be negligible with respect to the computing time for a con-
vergence factor lower than 10−2; however, the interprocess
communication time becomes more important for a conver-
gence factor greater than 10−2.

4. CONCLUSIONS AND FURTHER WORK

Although the practical advantages of using parallel process-
ing, when training on large data sets is concerned, are well
known, our experiments tried a finer characterisation of vari-
ous parallelization strategies, that can give valuable hints on
which parallel algorithm to use when building large vocabu-
lary speech recognizers. The research described in this paper
also tries to bridge the gap between theoretical considera-
tions concerning parallel HMM training strategies, and prac-
tical implementations, that normally involve, as pointed out
in [2], considerable logistics, in terms of development and
testing time.

One saw that the algorithm-dependent parallelism, with
respect to data, offers the best results, but lacks the general-
ity required for an eventual usage on other parameter estima-
tion algorithms (e.g. the Viterbi algorithm, commonly used
for the initialisation of the HMMs, before the actual Baum-
Welch parameter estimation is performed [11]). This is why,
in terms of portability, an algorithm-independent paralleliza-
tion, with respect to data, seems more suited for applications
where the development cost is a relevant issue.

Therefore, it can be observed that, when training preci-
sion is concerned, or there is an important amount of training
data available, the parallel training is a promising practical
alternative to the sequential one.

Moreover, since the parallel computer used for the ex-
periments reported in this paper comprises only three pro-
cessors, using a cluster computer containing several tens or
hundreds of processors, an important gain in performance,
much significant than that reported in the paper, is expected
to be obtained.

A further step in parallelizing the HMM training process

may concern the construction of phonetic decision trees, used
in order to reinforce the recognition results [11]. It is known
that the time for the construction of such a tree, out of the
training data, is comparable to the HMM training time itself,
or even higher [6]. Hence, a parallel approach in this respect
could bring further performance improvements to continuous
speech recognition systems.

REFERENCES

[1] C. Burileanu, V. Popescu, “Isolated Word Recognition
Engine, Implemented on a Java Platform”, in Proc. Of
The 3rd European Conference on Intelligent Systems
and Technologies “ECIT” 2004, Iasi, Romania, 2004.

[2] M. Fleury, A. C. Downton, A. F. Clark, “Parallel Struc-
ture in an Integrated Speech Recognition Network”, in
Proc. Of The 5th International Euro-Par Conference
On Parallel Processing, Lecture Notes in Computer
Science, vol. 1685, pp. 995-1004, Springer, 1999.

[3] O. Kimball, L. Cosell, R. Schwartz, M. Krasner, “Ef-
ficient Implementation of Continuous Speech Recogni-
tion on a Large Scale Parallel Processor”, in Proc. Of
ICASSP 1987, Dallas, Texas, April 1987.

[4] S. J. Melnikoff, P. B. James-Roksby, S. F. Quigley, and
M. J. Russell, “Reconfigurable Computing for Speech
Recognition: Preliminary Findings”, in Proc. Of
10th International Conference on Field Programmable
Logic and Applications, Lecture Notes in Computer
Science, vol. 1896, pp. 495-504, 2000.

[5] MPI Forum, MPI: A Message-Passing Interface Stan-
dard, http://www.mpi-forum.org, 2001.

[6] D. Munteanu, E. Oancea, C. Burileanu, “Continuous
Speech Recognition Systems Improvements”, in Proc.
Of The 3rd Conference on Speech Technology and
Human-Computer Dialogue “SpeD2005”, Romanian
Academy Publishing House, Bucharest, 2005.

[7] V. Popescu, C. Burileanu, “Parallel Implementation of
Acoustic Training Procedures for Continuous Speech
Recognition” , in Proc. Of The 3rd Conference on
Speech Technology and Human-Computer Dialogue
“SpeD2005”, Romanian Academy Publishing House,
Bucharest, 2005.

[8] M. K. Ravishankar, “Parallel Implementation of Fast
Beam Search for Speaker-Independent Continuous
Speech Recognition”, Computer Science & Automa-
tion, Indian Institute of Science, Bangalore, India,
1993.

[9] S. J. Stolfo, Z. Galil, K. McKeown, R. Mills, “Speech
Recognition in Parallel”, in Proc. Of The Workshop
On Speech And Natural Language, Human Language
Technology Conference, pp. 353-373, Cape Cod, Mas-
sachussets, 1989.

[10] W. Turin, “Unidirectional and Parallel Baum-Welch Al-
gorithms”, IEEE Trans. Of Speech and Audio Process-
ing, IEEE, pp. 516-523, Nov. 1998.

[11] S. Young, G. Evermann, D. Kershaw, G. Moore, J.
Odell, D. Ollason, D. Povey, V. Valtchev, Ph. Wood-
land, The HTK Book, Cambridge University, United
Kingdom, 2005.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


