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ABSTRACT
Pre-equalization of MIMO systems is required for a wide variety of
applications, e. g. in channel equalization and spatial sound repro-
duction. However, traditional adaptive algorithms fail for channel
numbers of some ten or more. It is shown that the problem becomes
tractable by decoupling of the MIMO adaptation problem, e. g. by
a generalized singular value decomposition. This method iscalled
eigenspace adaptive filtering. The required singular vectors depend
on the unknown system response to be equalized. An reasonable
approximation by data-independent transformations is derived for
the example of listening room compensation yielding the approach
of wave-domain adaptive filtering.

1. INTRODUCTION

The pre-equalization of MIMO systems by adaptive filtering is a
well-known topic, e.g. in communications for channel equaliza-
tion in multi-antenna scenarios. The same problem arises aswell
in acoustics for massive multichannel reproduction systems such as
wave field synthesis (WFS) or higher order Ambisonics. The the-
oretical background of these reproduction methods assumesfree-
field propagation of acoustic waves. However, reproductionsys-
tems in theaters, studios, and homes are always subject to acoustic
reflections at the walls of the listening room. Passive measures like
damping material will diminish these reflections to some extent, but
they are not very effective for low frequencies.
An active measure is the pre-equalization of the loudspeaker signals
such that their emitted waves together with the unavoidablereflec-
tions produce the desired wave field. This process is also called
active room compensation and constitutes an inverse filtering prob-
lem. Unfortunately, the response of the listening room to acoustic
excitations is non-stationary and depends on several imponderabil-
ities, like opening of doors, motion of persons, and changesin the
room temperature. Consequently, only adaptive algorithmsare suit-
able for active room compensation. It will be shown in this paper
that conventional adaptive algorithms are ineffective foracoustic
pre-equalization in the context of MIMO systems with a high num-
ber of channels.
An escape to this situation has been shown in a previous contri-
bution [1]. By using a set of spatio-temporal transformations the
MIMO adaptation problem was approximately decoupled. This
resulted in the highly efficient wave-domain adaptive filtering
(WDAF) algorithm. This contribution looks at the MIMO pre-
equalization problem from a more theoretical perspective and pro-
vides the foundations to the WDAF approach from [1].
The paper is organized as follows: Sec. 2 prepares the groundby
discussing a generic MIMO pre-equalization approach. Sec.3 at-
tacks the decoupling problem by a generalized singular value de-
composition (GSVD) which leads to a solution called eigenspace
adaptive filtering (Sec. 4). However, for perfect decoupling, the
singular vectors have to be determined according to the unknown
acoustical characteristics of the systems. Sec. 5 presentsan approx-
imate solution at the example of active listening room compensation
based on a physical interpretation of the singular vectors.For listen-
ing rooms with moderate reverberation they may be represented by

circular harmonics which are independent of the particularlistening
room. The presented results reveal that a thorough mathematical
method (GSVD) in combination with physical insight (circ. har-
monics) gives the theoretical foundation of the WDAF methodpro-
posed in [1].

2. ADAPTIVE PRE-EQUALIZATION OF MIMO SYSTEMS

The following section briefly reviews adaptive pre-equalization of
MIMO systems and outlines the fundamental problems of tradi-
tional adaptation algorithms within the context of massiveMIMO
systems.

2.1 Description of Scenario

The generic MIMO pre-equalization scenario illustrated bythe dis-
crete time and space block diagram shown in Fig. 1 will be consid-
ered in the following. The matrices of impulse responsesR(k),
F(k) and C(k) describe discrete linear multiple-input/multiple-
output (MIMO) FIR systems. The driving signals are denoted by
the vectord(N)(k) = [d1(k),d2(k), · · · ,dN(k)]T , where dn(k) de-
notes the signal of then-th channel. The filtered driving signals
are denoted by the vectorw(N)(k), the output signals byl(M)(k),
the desired signal bya(M)(k) and the error between the analyzed
and the desired signal bye(M)(k). The elements of these vectors are
given according tod(N)(k).
The unknown systemR(k) with N-input andM-output channels
and impulse responsesrm,n(k) is pre-equalized by the equalization
filter C(k) with coefficientscn,n′(k). The fundamental problem
of adaptive pre-equalization is to compute a pre-equalization filter
such that the overall response ofC(k) andR(k) matches the de-
sired system responseF(k) as closely as possible. For few input
and output channels numerous solutions to this problem havebeen
developed in the past, e. g. [2]. However, algorithms for MIMO sys-
tems with a high number of channels (massive MIMO systems) still
remain a challenge as will be shown in the following.

2.2 Non-adaptive Computation of Pre-equalization Filters

In order to gain more insight into the solution of the pre-equalization
problem the non-adaptive case will be discussed first. For this pur-
pose a frequency-domain description of the pre-equalization prob-
lem depicted in Fig. 1 is used.
Performing a discrete-time Fourier transformation (DTFT)[3] of
the respective signals and systems yields the signal at theM analy-
sis points in the frequency domain as

l
(M)(ω) = R(ω) w

(N)(ω) , (1)

whereR(ω) denotes the DTFT transformed matrix of impulse re-
sponses from each synthesis to each analysis position,l

(M)(ω) and
w

(N)(ω) the DTFT transformed signals at the analysis positions and
filtered driving signals respectively.
The errore(M)(ω) between the desireda(M)(ω) and the actual
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Figure 1: Block diagram illustrating the generic MIMO pre-equalization approach.

l
(M)(ω) signal at theM analysis positions can be derived as

e
(M)(ω) = a

(M)(ω)− l
(M)(ω) =

= F(ω)d(N)(ω)−R(ω)C(ω)d(N)(ω) .
(2)

Optimal pre-equalization is obtained by minimizing this error:
e

(M)(ω) → 0. The least-squares solution to Eq. (2) in this sense,
with respect to the compensation filter, is given as [4]

C(ω) = R
+(ω)F(ω) , (3)

whereR+(ω) denotes the pseudoinverse ofR(ω).
Calculating the pre-equalization filters by evaluation of Eq. (3) has
two major drawbacks: (1) the filters cannot cope with time-variant
system characteristics and (2) the exact solution may require filters
with a high number of coefficients [5]. In order to overcome these
drawbacks an adaptive computation of the pre-equalizationfilters
based on a least-squares error (LSE) criterion is derived inthe fol-
lowing section.

2.3 Least-Squares Error Adaptation of the Pre-Equalization
Filter

The following section briefly reviews the derivation of the normal
equation for the adaptive pre-equalization problem introduced in
Section 2.1. A detailed discussion for acoustic MIMO systems
can be found e. g. in [2, 6]. The normal equation is the basis for
the derivation of the filtered-x recursive least squares algorithm (X-
RLS).
The cost function of the filtered-x RLS algorithm is given as

ξ (ĉ,k) =
k

∑
κ=0

λ k−κ
M

∑
m=1

|em(κ)|2 , (4)

where 0< λ ≤ 1 denotes an exponential weighting factor. The op-
timal filter coefficients in the mean-squared error (MSE) sense are
found by setting the gradient with respect to the estimated filter co-
efficientsĉ of the cost function to zero. The normal equation is then
derived by expressing the errore

(M)(k) in terms of the filter coeffi-
cients, introducing the result into the cost function (4) and calculat-
ing its gradient. The resulting normal equation is given as

Φ̂dd(k) ĉ(k) = Φ̂da(k) , (5)

whereĉ(k) denotes the vector of all filter coefficients at the time
instantk

ĉ
(N)
n (k) = [ ĉ

T
n,1(k) ĉ

T
n,2(k) · · · ĉ

T
n,N(k) ]T , (6a)

ĉ(k) = [ ĉ
(N)
1 (k)T

ĉ
(N)
2 (k)T · · · ĉ

(N)
N (k)T ]T . (6b)

The vector ˆcn,n′(k) of estimated filter coefficients at time-instant
k is given as ˆcn,n′(k) = [ĉn,n′(0), ĉn,n′(1), · · · , ĉn,n′(Nc−1)]T where
Nc denotes the number of filter coefficients. TheN2Nc × NcN2

matrix Φ̂dd denotes the time and analysis position-averaged auto-
correlation matrix of the filtered driving signals

Φ̂dd(k) =
k

∑
κ=0

λ k−κ
DR(κ)DT

R(κ) , (7)

whereDR(κ) denotes the matrix of filtered driving signals. The
matrix of filtered driving signals is given as follows

d
(N)
m,n(k) = [ d

T
m,n,1(k) d

T
m,n,2(k) · · · d

T
m,n,N(k) ]T , (8a)

d
(N,N)
m (k) = [ d

(N)
m,1(k)

T
d

(N)
m,2(k)

T · · · d
(N)
m,N(k)T ]T , (8b)

DR(k) = [ d
(N,N)
1 (k) d

(N,N)
2 (k) · · · d

(N,N)
M (k) ] , (8c)

wheredm,n,n′(k) denotes aNc×1 vector composed from the result
of the convolutiondn′ (k) ∗ rm,n(k) of the driving signals with the
system response. TheN2Nc × 1 vectorΦ̂da can be interpreted as
the time and analysis position-averaged cross-correlation vector be-
tween the filtered driving signals and the desired signals which is
defined as

Φ̂da(k) =
k

∑
κ=0

λ k−κ
DR(κ)a(M)(κ) . (9)

The optimal pre-equalization filter with respect to the costfunc-
tion (4) is given by solving the normal equation (5).
The filtered-x RLS algorithm can be derived from the normal equa-
tion (5) by computing the sums (7) and (9) in a recursive fashion and
by applying the matrix inversion lemma. The filtered-x RLS algo-
rithm deviates from the standard RLS algorithm by using a filtered
version of the driving signal for adaptation.

2.4 Fundamental Problems of Adaptive Inverse Filtering

Four fundamental problems of adaptive pre-equalization can be
concluded from the normal equation (5). These are:
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1. non-uniqueness of the solution,
2. ill-conditioning of the auto-correlation matrix̂Φdd(k),
3. computational complexity for massive MIMO systems, and
4. required a-priori knowledge of the room transfer function.
The first problem is related to the minimization of the cost func-
tion ξ (ĉ,k). The optimal pre-equalization filter is given by calcu-
lating the inverse filter to the system response (see Eq. (3)). How-
ever, minimization of the cost functionξ (ĉ,k) may not provide the
optimal solution in these terms. Depending on the driving signals
d

(N)(k) there may be multiple possible solutions for ˆc that minimize
ξ (ĉ,k) [7]. This problem is termed as thenon-uniqueness problem
in the following.
The second and third fundamental problem is related to the solution
of the normal equation (5). The normal equation has to be solved
with respect to the coefficients of the room compensation filter.
However, due to the dimensionality and potential ill-conditioning
of the auto-correlation matrix̂Φdd(k) this may become an infeasible
task for a large number of input and output channels. Additionally
an exact solution may not always exist [2].
The calculation of the filtered driving signals requires knowledge
of the system responseR(k). Hence, the system response has to
be identified additionally. There are various on-line identification
methods for this task. An overview on possible methods can be
found in [2, 8]. However, most of these algorithms are not capable
of handling the massive multichannel case [7] for the same reasons
as mentioned above.
The following section will derive a generic framework for pre-
equalization which explicitly solves the third problem by utilizing
signal and system transformations. It will be shown additionally
that the other problems are highly alleviated by the proposed ap-
proach. The basic idea is to perform a decoupling of the MIMO sys-
temsR(ω) andF(ω). This decoupling yields a decoupling of the
MIMO adaptation problem and the auto-correlation matrixΦ̂dd(n)
as will be shown in the remainder of this paper.

3. DECOUPLING OF THE MIMO SYSTEMS

This section shows how the desired decoupling of the transfer ma-
tricesR(ω) and F(ω) can be obtained using the concept of the
(generalized) singular value decomposition (SVD).

3.1 Generalized Singular Value Decomposition

It will be assumed in the following thatR(ω) andF(ω) have the
dimensionsM ×N with N ≥ M. However, the derived results can
be generalized straightforwardly to arbitraryM andN.
The singular value decomposition (SVD) states that any matrix
can be decomposed into two unitary matrices and a diagonal ma-
trix [4, 9]. The concept of the SVD can be generalized to the diag-
onalization of a pair of matrices. This decomposition is known as
generalized singular value decomposition (GSVD) [9]. The GSVD
for the matricesR(ω) andF(ω) is given as follows:

R(ω) = X(ω)R̃(ω)VH(ω) , (10a)

F(ω) = X(ω)F̃(ω)UH(ω) . (10b)

The matricesX(ω), V(ω) andU(ω) are unitary matrices with the
dimensionsM ×M, N×M and N×M, respectively. The matrix
X(ω) is the generalized singular matrix ofR(ω) andF(ω), the
matricesV(ω) andU(ω) the respective right singular matrices of
R(ω) andF(ω). The matricesR̃(ω) andF̃(ω) are diagonal ma-
trices constructed from the singular values ofR(ω) andF(ω). The
diagonal matrixR̃(ω) is defined as

R̃(ω) = diag{ [σR,1,σR,2, · · · ,σR,M ]} , (11)

whereσR,1 ≥ σR,2 ≥ ·· · ≥ σR,B > 0 denote theB nonzero singular
valuesσR,b of R(ω). Their total numberB is given by the rank of
the matrixR(ω) with 1≤ B≤ M. ForB < M the remaining singu-
lar valuesσR,B+1,σR,B+2, · · · ,σR,M are zero. Similar definitions as

given above forR̃(ω) apply to the matrixF̃(ω).
The relation given by Eq. (10a) can be inverted by exploitingthe
unitary property of the joint and right singular matrices. This re-
sults in

R̃(ω) = X
H(ω)R(ω)V(ω) . (12)

Hence each matrixR(ω) can be transformed into a diagonal matrix
R̃(ω) using the joint and right singular matrixX(ω) andV(ω).
A similar relation as given by Eq. (12) can be derived straightfor-
wardly for F̃(ω). The GSVD transforms the matricesR(ω) and
F(ω) into their joint eigenspace using the singular matricesX(ω),
V(ω) andU(ω). In general, these singular matrices depend on the
matricesR(ω) andF(ω). The GSVD is adata-dependent trans-
formation.
The SVD can be used to define the pseudoinverseR

+(ω) of the
matrixR(ω) [4]

R
+(ω) = V(ω)R̃

−1
(ω)XH(ω) . (13)

Equation (10b) and Eq. (13) can be combined to derive the follow-
ing result

R
+(ω)F(ω) = V(ω) R̃

−1
(ω)F̃(ω) U

H(ω) , (14)

where it is assumed thatR(ω) andF(ω) have both full rank. Equa-
tion (14) will be used to derive the desired decoupling of theMIMO
adaptation problem.

3.2 Decoupling of the MIMO System R(ω)

The SVD, as introduced in the previous section, can be used to
transform the MIMO system into a decoupled representation.Equa-
tion (12) together with the unitary property of the joint andright
singular matrices can be used to reformulate Eq. (1) as follows

X
H(ω) l(M)(ω)

︸ ︷︷ ︸

l̃
(M)

(ω)

= R̃(ω) V
H(ω)w(N)(ω)

︸ ︷︷ ︸

w̃(M)(ω)

, (15)

where theM × 1 vectorsl̃
(M)

(ω) and w̃
(M)(ω) denote the trans-

formed signals at the analysis positions and the transformed driv-
ing signals respectively. Hence, in the context of signals and sys-
tems the SVD can be understood as a transformation. The joint
and right singular matricesX(ω) andV(ω) constitute the kernels
of this transformation. The transformation of the MIMO system
R(ω) can be performed by pre- and post-filtering the system with
V(ω) andX

H(ω). The pre- and post-filters constitute MIMO sys-
tems themselves. Thus, Eq. (1) can be expressed entirely in the
transformed domain. The benefit of using this transform domain
description of the system lies in the simplified structure ofR̃(ω).
As stated in the previous sectioñR(ω) denotes the diagonal matrix
composed of the singular values ofR(ω). Due to its diagonal struc-

ture, the transformed signalsl̃
(M)

(ω) at the analysis positions can
be computed by scalar multiplication of the main diagonal elements
R̃m(ω) of R̃(ω) with the transformed driving signals ˜w

(M)(ω)

L̃m(ω) = R̃m(ω) W̃m(ω) , (16)

whereL̃m(ω) andW̃m(ω) denote them-th component of the vector

l̃
(M)

(ω) andw̃(M)(ω) respectively. Hence, the transformation of the
signals and systems using the SVD decomposes the MIMO system
given byR(ω) into M single-input/single-output (SISO) systems.

4. EIGENSPACE ADAPTIVE FILTERING

The previous section derived a decomposition of the MIMO system
R(ω) into a series of SISO systems by using an SVD based trans-
formation. This section derives a decoupling of the entire adaptive
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Figure 2: Block diagram illustrating the eigenspace adaptive inverse filtering approach to room compensation.

system depicted by Fig. 1 using the GSVD. For this purpose a de-
coupling of Eq. (2) will be derived, resulting in a decoupling of the
MIMO adaptive inverse filtering problem. The basic idea is todi-
agonalize the system transfer matrixR(ω) and the desired system
responseF(ω) using the GSVD. It will be assumed first that both
transfer matrices are known and have full rank. The results can be
generalized straightforwardly to the case thatF(ω) and/orR(ω)
do not have full rank.

4.1 Decoupling of the Adaptive System

The decompositions of the transfer matricesF(ω) andR(ω) are
given by Eq. (10). It remains to choose a suitable decomposition
of the compensation filterC(ω). The non-adaptive solution for the
pre-equalization filter is given by Eq. (3). Hence, an eigenspace ex-
pansion ofC(ω) is given by Eq. (14). However, the system transfer
matrixR(ω) is not known in general and has to be identified addi-
tionally. An expansion of the pre-equalization filter can begiven by
using Eq. (14) but with unknown expansion coefficientsC̃(ω)

C(ω) = V(ω)C̃(ω)UH(ω) , (17)

whereC̃(ω) denotes a diagonal matrix, where some diagonal ele-
ments may be zero. Using Eq. (17) together with Eq. (10a) yields

the transformed signall̃
(M)

(ω) at the analysis points

l̃
(M)

(ω) = R̃(ω)C̃(ω) d̃
(M)

(ω) , (18)

wherel̃
(M)

(ω) = X
H (ω) l(M)(ω) andd̃

(M)
(ω) = U

H (ω)d(N)(ω).
Decomposition of the desired system response according to
Eq. (10b) yields the desired signal in the transformed domain as

ã
(M)(ω) = F̃(ω) d̃

(M)
(ω) , (19)

where ã
(M)(ω) = X

H (ω)a(M)(ω). Equation (18) together with
Eq. (19) allows to decouple Eq. (2) in the transformed domain

ẽ
(M)(ω) = F̃(ω) d̃

(M)
(ω)−R̃(ω)C̃(ω) d̃

(M)
(ω) , (20)

where ẽ
(M)(ω) denotes the error signal for allM components in

the transformed domain. SincẽR(ω), C̃(ω) andF̃(ω) are diago-
nal matrices, them-th component of the error signalẼm(ω) in the
transformed domain is given by

Ẽm(ω) = F̃m(ω)D̃m(ω)− R̃m(ω)C̃m(ω)D̃m(ω) , (21)

whereR̃m(ω), C̃m(ω) and F̃m(ω) denote them-th component of
the main diagonal ofR̃(ω), C̃(ω) and F̃(ω) respectively. The

error Ẽm(ω) is only dependent on them-th component of the re-
spective signals and systems. Thus, Eq. (21) states that theMIMO
adaptive inverse filtering problem can be decomposed intoM SISO
adaptive inverse filtering problems using the GSVD. The computa-
tion of the pre-equalization filters can be performed independently
for each of theM transformed components. The transformation of
the systems and signals is performed by transforming them into the
joint eigenspace ofR(ω) andF(ω) using the GSVD. Therefore
this approach will be termed aseigenspace inverse adaptive filter-
ing. Please note that the transformation is not dependent on the
driving signals. Figure 2 illustrates the eigenspace inverse adaptive
filtering approach.

4.2 Adaptation of the Decoupled Pre-Equalization Filter

In the following the normal equation of the multichannel adaptive
pre-equalization problem presented in Section 2.3 will be special-
ized to the decoupled MIMO system. Due to the decoupling, the
cost functionξ (ĉ,k) given by Eq. (4) can be minimized indepen-
dently for each componentm= 1. . .M. The normal equation in the
transformed domain is then given as

ˆ̃Φdd,m(k) ˆ̃cm(k) = ˆ̃Φda,m(k) , (22)

where ˆ̃Φdd,m(n) denotes the time-averaged auto-correlation matrix
of them-th component of the transformed filtered loudspeaker driv-
ing signal, ˆ̃Φda,m(n) the corresponding cross-correlation matrix be-
tween the filtered loudspeaker driving signal and the desired sig-
nal and ˆ̃cm(k) the filter coefficients. The auto-correlation matrix
ˆ̃Φdd,m(n) has the dimensionsNc×Nc. Due to this reduction in di-
mensionality, the solution of theM equations given by Eq. (22) is
much more efficient than for the adaptation using the original (not
transformed) signals. Equation (22) corresponds to the well known
single channel normal equation [4]. The cross-channel correlations
present inΦ̂dd(k) have been removed in the transformed domain
by the spatial decoupling of the MIMO systems. Thus, the non-
uniqueness and ill-conditioning problem discussed in Section 2.4
are highly alleviated. There may still be time-domain correlations
present in the filtered input signals which cause problems when
solving the normal equation (22). However, there are numerous ap-
proaches known in the literature on single-channel adaptive filtering
to overcome these problems [4].

5. APPLICATION TO ACTIVE LISTENING ROOM
COMPENSATION

Sound reproduction aims at recreating an (virtual) acoustic scene at
a remote place or at a later time. When realized properly a perfect
auditory illusion of the original scene is created. However, the per-
fect acoustic illusion has not been realized by the currently available
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Figure 3: Absolute value of the first eight right singular vectors (f = 80 Hz) of a circular WFS system sorted by descending singularvalues.

reproduction systems. One source of impairments is the acoustics of
the room were the reproduction system is placed (listening room).
Most reproduction systems assume an anechoic listening room, an
assumption which is typically not met.
Spatial sound reproduction systems with a large number of loud-
speakers are increasingly being used. These advanced reproduction
systems, like WFS, provide a reasonable amount of control over the
reproduced wave field. This control can be used to perform active
compensation of the listening room acoustics by pre-equalization of
the loudspeaker driving signals. Hence, in the context of multichan-
nel reproduction systems listening room compensation is subject to
the same fundamental problems as discussed in Section 2.4. The
concept of eigenspace adaptive filtering provides a solution to most
of these problems. In general, the computation of the GSVD will be
too complex to benefit from the complexity reduction given bythis
decomposition of the MIMO adaptation problem. However, pre-
suming an efficient transformation ofR(ω) andF(ω) with equiv-
alent properties as the GSVD based transformation of the systems
and signals may result in a highly reduced complexity.
Recently active listening room compensation using wave-domain
adaptive filtering (WDAF) has been proposed [1]. Here a transfor-
mation based on circular harmonics has been proposed for thede-
coupling of the MIMO adaptation problem. The results presented
in this paper provide a theoretical background to WDAF as will be
shown in the following. For this purpose the right singular vectors
of a particular measured room transfer matrix are computed.The
considered WFS-based reproduction system consists of a circular
loudspeaker array with diameterDLS = 3 m with 48 equidistantly
positioned loudspeakers. The loudspeaker array is placed in the
center of the listening room with the size 5.9 m× 5.8 m× 3.1 m
at a height of 1.80 m. The room has a reverberation time of
T60 ≈ 400 ms. A circular microphone array with 48 microphone
positions and a diameter ofDMic = 1.50 m is placed concentric in-
side the loudspeaker array. Figure 3 shows the absolute value of
the right singular values for this particular scenario. Thepresented
results resemble strong similarities with the basis functions of cir-
cular harmonics. The basis functions of the circular harmonics are
given by the free-field solutions of the two-dimensional wave equa-
tion in polar coordinates [6]. Hence, a transformation based on the
circular harmonics provides an optimal decomposition of the free-
field transfer matrixF(ω) only. However, for rectangular listening
rooms with not too much reverberation they will also providea rea-
sonable basis for the representation ofR(ω) as illustrated by Fig. 3.
This has also been proven by simulations of various other rooms and

loudspeaker setups [6].
The combination of prior physical knowledge and eigenspaceadap-
tive filtering thus yields an efficient practical solution.

6. CONCLUSIONS

A novel framework for efficient pre-equalization of massiveMIMO
systems has been presented. It is based on a decomposition ofthe
MIMO adaptation problem into a series of single channel adapta-
tion problems by decomposing the MIMO system into the joint
eigenspace of the desired system responseF(ω) and the system
responseR(ω). The presented concept of eigenspace adaptive fil-
tering provides the framework for wave-domain adaptive filtering.
It was further shown that the investigation of the singular vectors for
a particular problem may lead to efficient algorithms for active lis-
tening room compensation. The same procedure can also be applied
to other massive multichannel adaptation problems.
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