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ABSTRACT 

This paper introduces new variations about the codes recently 
introduced by Jafarkhani & al named Super Orthogonal Space 
Time Trellis Codes (SOSTTC). Using powerful set partitioning 
rules, these codes are able to combine the coding advantage of 
STTC’s together with the advantage diversity of STBC. This 
partitioning is based mainly on the determinant criterion 
introduced first by Tarokh. In this paper we propose a new 
application field of these codes in the difficult context of a three 
transmit antenna system. The new obtained STTC codes enables to 
improve significantly the performances of the best existing STTC 
codes. 

1. INTRODUCTION 

Since the first studies presented by Tarokh & al in [1] who gave 
the main criteria to optimize the construction of Space Time 
Codes, particularly the rank and determinant criteria, there has 
been a great deal of research aiming at improving the designs of 
Space Time Trellis Codes (STTC) [2]. A recent idea provided by 
Jafarkhani & al in [3] and by Fitz & al in [4] is to use a 
combination of STBC and STTC based on Ungerboeck’s partition 
rules [5], which offers always a maximum diversity in the case of 
two transmit antennas. For the construction of subsets, the 
classical Euclidean distance criterion is replaced here by the 
determinant criterion which consists in maximizing the minimum 
determinant of the product, of the difference of the transmission 
matrices for two codewords, by its transpose conjugate. This 
criterion is quantified by the coding gain distance (CGD). After 
the set partitioning step, a trellis is built, affecting a particular 
STBC from a set of possible candidates to transitions originating 
from a state. Doing this, it is always guaranteed that we get the 
diversity of the corresponding STBC while it is possible to find 
some particular STBC matrices which enable to build a trellis with 
the maximum coding gain. This is the other contribution of 
Jafarkhani who demonstrated that it was possible to expand the 
well known transmit STBC scheme of Alamouti [6] resulting in 
several possible STBC candidates for each trellis state. The 
resulting codes exhibit outstanding performances when compared 
for example to the optimized STTC in the open literature, even in 
the case of a moderate number of states and are named Super 
Orthogonal Space Time Trellis Codes (SOSTTC).  
We propose in this paper a new Space Time Block Code design 
for the difficult case of three transmit antennas. Our goal is to 
show that it is possible to build powerful STTC codes with STBC 
designs with maximum transmission rate r = 1, even in the case 
where orthogonality is broken. The proposed STBC design is 
based on the coupling of two quasi-orthogonal 2×2 STBC codes to 
form a quasi orthogonal 3×3 STBC code and is named classically 
quasi-orthogonal STBC. We optimize the coding gain within each 
coset by maximizing the distance between codewords. 
Furthermore, in the case where we build trellises, we optimize the 

diversity gain between codewords belonging to different cosets by 
multiplying the basic STBC matrix with a particular unitary 
matrix transform, in each state. Using this method, we eventually 
build a flexible powerful STTC code. The design is highly flexible 
since, operating at different levels of set partitioning, we can build 
trellises with different number of states. The search of unitary 
matrices aims at maximizing the distance between codewords 
belonging to different cosets and is done with extensive computer 
search.  
Simulation results show the efficiency of the proposed codes when 
we compare their performances with those of the best existing 
STTC codes in the open literature [7-8]. Comparing codes with 
the same number of states, we obtain gains of 1 dB at FER = 10-2, 
10-3 with QPSK modulations and 0.5 dB with 8PSK for the same 
FER levels.  
The paper is organized as follows. In the second part we recall the 
main key parameters to design a performing space time block code 
based on set partitioning and then, we build our quasi orthogonal 
STBC design which is then expanded to obtain STTC code. Part 
three contains the simulation results including comparisons with 
some existing STTC codes. Conclusion is eventually given in 
section four. 

2. STBC DESIGNS FOR THREE TRANSMIT 
ANTENNA SYSTEM 

The ultimate goal of set-partitioning is to achieve a better coding 
gain through using a trellis code structure. The pairwise distance is 
a measure that can be used to achieve a better coding gain. 
Depending on the kind of code, the pairwise distance could be 
defined differently. For example for the orthogonal space-time 
block codes the pairwise distance is the determinant criterion. 
However, pairwise error probability and Euclidean distance could 
be other criteria for different kinds of codes. In the paper, we will 
always use the determinant criterion to establish our partitioning 
rules. 
The SOSTTC concept has been first studied in [3-4] in the case of 
two transmit antennas. These codes combine set partitioning and a 
super set of orthogonal space-time block codes to provide full 
diversity and improved coding gain over earlier space-time trellis 
code construction. The super-orthogonal set is derived using 
constellation rotation with angles chosen so as to not (if possible) 
expand the transmit symbols constellation. The set partitioning is 
obtained using the criteria of minimum CGD. This powerful 
design tool is obtained as follows: let us denote the transmission 
matrix of the used space-time code as: 1 1 2( , )c x x= �  where 

1 2,x x  are the transmitted symbols and the difference of the 
transmission matrices for codewords c1 and c2 
as: 1 2 1 21 2( , ) ( , ) ( , )c c x x x x′ ′−D = � � . Following the definitions of 
[3], the diversity of such a code is defined by the minimum rank of 

the matrix 
1 2

( , )c cD . The code is said to be a full-diversity code 
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when 1 2( , )c cD  is full rank for every pair of codewords. The 

minimum of the determinant of the matrix 

1 2 1 2 1 2( , ) ( , ) ( , )Hc c c c c c=A D D  over all possible pairs of 
distinct codewords c1 and c2 corresponds to the coding gain. Using 
this definition, it is then straightforward to define the CGD 
between codewords (c1,c2) as: 

2
1 2 1 2 1 2( , ) ( , ) det( ( , ))CGD c c d c c c c= = A .  

2.1. Quasi-orthogonal STBC design 
The first task is to find a simple STBC structure to derive a set 
partitioning rule. This structure will be the basis to obtain a 
powerful quasi orthogonal structure which will be incorporated 
into a trellis. The goal is to obtain a final STBC structure which is 
able to outperform the classical STTC designs when used in a 
trellis. We decided to use first the simple matrix code given in (1) 
which is made of two 2×2 STBC orthogonal designs coupled via 
symbol x2. As it can be seen, symbols 1x  and 3x  only repeat twice 
per three symbols, so this code obviously cannot achieve full 
diversity and presents bad performances. However, it is possible, 
in this case, to obtain simple partitioning rules that will be reused 
for the final code design. The STBC matrix looks like : 
 

                 

*
2 1

* *
1 2 3 1 2 3

*
3 2

0

( , , )

0

x x

x x x x x x

x x

−
= −
� �
� �
� �
� �

�                  (1) 

The computation of the determinant of matrix 1 2( , )c cA  yields to 
the following expression : 

2 2 2 2 2
1 2 2 2 1 1 2 2 3 3det( ( , )) | | (| | | | | | )c c x x x x x x x x′ ′ ′ ′= − − + − + −A

 

With : 31 2
1 2 3

. .. . . .
, ,

j lj l j l
x e x e x e

ωω ω= = =  and 1
1

. .j k
x e

ω′ = , 

32
2 3

. .. .
,

j kj k
x e x e

ωω′ ′= =  we eventually obtain : 

  

2 2 2
1 2

2 2 2 23 31 1 2 2

| |
det( ( , )) 64.sin ( )

2

| || | | |
(sin ( ) sin ( ) sin ( ))

2 2 2

k l
c c

k lk l k l

ω

ω ω ω

−
= ×

−− −
+ +

A

(2) 

We have 2. / Lω π=  (L is the size of the transmit constellation ) 
and / 2ω π=  for a QPSK constellation. The expression (2) 

clearly implies that symbols 22
andx x′  have to be different in 

each coset to maintain a non-null CGD. This yields to a set 
partitioning with at least sixteen cosets and, within each coset, 

symbols 
1 31 3, , andx x x x′ ′ , can be chosen either accordingly to the 

partitioning rules already given in [3] Fig. 3, this gives the set 
partitioning tree of Table I, either by filling all couples of symbols 

1 1,x x′  and 3 3,x x′  with different values, this gives the set 

partitioning tree of Table II. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The minimum CGD value within each coset obtained by this code 
is equal to 72 with the set partitioning of Table I. This first 
approach induces us to think of a performing SOSTTC with 
transmission rate r=1. Starting from the structure (1), we add two 
symbols to completely fill the matrix, we obtain the form (3). 
Since it does not exist any simple closed form expression for 

1 2det( ( , ))c cA , we will optimize the new proposed STBC 
structure by computer search. Thus, we test the following STBC 
matrix: 
 

             

* *
2 1 1

* *
1 2 3 1 2 3

* *
3 3 2

.

.

.

( , , )

.

j

j

x x x e

x x x x x x

x e x x

β

α

−

= −

� �
� �
� �
� �
� �

�             (3) 

Angles α , β  belong to the constellation symbol, if we don’t 
want to expand the constellation. They constitute new degrees of 
freedom to obtain a set partitioning with a lower number of cosets 
when compared to tables I-II. The difficulty here is to find an 
optimum set partitioning algorithm since it does not exist any 

simple closed form expression for 1 2det( ( , ))c cA . Recently, M. 
Janani and A. Nosratinia proposed a general procedure which can 
handle our particular problem [9]. Using their algorithm and the 
basic structure given in (3), we obtain the set partitioning given in 
Fig. 1 for QPSK constellation. The set partitioning at the first level 
(four cosets) corresponds to the case where there are always two 
different symbols in each triplet belonging to a given coset. At the 
first level of set partitioning, we can obtain a mathematical 
expression of 1 2det( ( , ))c cA . Denoting 1 1 1z x x′= − , 2 2 2z x x′= −  

and 3 3 3z x x′= − , we have to consider three cases: 

a) symbols 1x  and 1x′  are equal i.e. 1 0z = , this yields to : 

22
1 2

2 2

*

2 3

*

2 .
2 2 3

.
2 3 3 2

0 ( ) ( ).

( , ) 0 0

( ).( ) 0 2.

.

.

j

j

z z z

c c z z

z z z z

e

e

α

α

−−

= +

− +

� �
� �
� �
� �
� �
� �

A  

and :  

( )222 2
1 2 2 2 3det( ( , )) .c c z z z= +A  

b) symbols 2x  and 2x′  are equal i.e. 2 0z = , this yields to : 
*

22* *
1 2

2*

*
3 1

1 3

*
3 1

2 .
1 3 1

. .
3 1 3 1

.
3 1 3

2. ( ).( ) . ( ) .( )

( , ) ( ) .( ). ( ).( ) .

( ).( ) ( ) .( ). 2.

j

j j

j

z z z e z z

c c z z e z z z z e

z z z z e z

β

β α

α

− −

−

= − +

� �
� �
� �
� �
� �
� �

A  

 
and :  

2 44 2 * 3 3
1 2 1 3 1 3 3 1

.( )det( ( , )) 2.Re[( ) ( ) . ]jc c z z z z z z e α β−= + −A  

 
c) symbols 3x  and 3x′  are equal i.e. 3 0z = , this yields to : 

TABLE II 
Set partioning for QPSK with 16 states and three transmit antennas 

TABLE I 
Set partioning for QPSK with 16 states and three transmit antennas 
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2 2
1 2

2

.

1 2

* .

2 2 *
2 1 1 2

1 2 2

2. 0 ( ) .( ).

( , ) 0 0

( ).( ) . 0

j

j

z z z z e

c c z z

z z e z

β

β−

+

= +

� �
� �
� �
� �
� �
� �

A  

and : 

( ) ( )2 22 2 2
1 2 2 1 3 2 3det( ( , )) . .c c z z z z z= + +A  

Hence, considering case b), angles (α,β) are mainly needed to 
separate triplets of symbols which share the same second symbol. 
We give the minCGD value within each coset and the 
corresponding couple of angles (α,β) which enables to reach this 
value on Fig. 1. The choice of (α,β) which maximizes the 
minCGD within each coset is done by computer search with a 
sampling rate /16π . One can remark that the obtained values for 
(α,β) does not correspond to QPSK constellation points. This 
entails that constellation expansion is needed if we want to use set 
partitioning with maximum minCGD values. Using a set 
partitioning level with 32 cosets with those given in Fig .1 enables 
to obtain a minCGD value equal to 256. The obtained values for 
16 and 32 states are superior to those exhibited by the best STTC 
given in [7-8]. Without constellation expansion, using the set 
partitioning with sixteen cosets of Fig. 1, we found a minCGD 
equal to 8 with (α,β)=(0,0).  
The next problem to use the STBC code (3) into a STTC design 
consists in the way to expand the basic structure to obtain a trellis. 
We have to obtain a final design with full diversity. In fact, 
according to [1], proving the full diversity is equivalent to 

showing the determinants of matrices 1 2( , )c cA  are nonzero over 
all possible codewords c1 and c2. Since it is clearly the case when 
they belong to the same coset, this entails that we have to check if 

matrices 1 2( , )c cA  are full rank when c1 and c2 belong to different 
cosets. Without any new tool to separate the coset, it is clear, for 
whatever kind of set partitioning we used, that we did not obtain a 
full diversity code. For example, we check that the minimum of 

1 2det( ( , ))c cA  is equal to zero when c1 belongs to coset 1 and c2 
belongs to coset 2 in Fig. 1, with sixteen levels of set partitioning. 
To solve this problem, we assign different unit transform matrices 

ΘΘΘΘ  to each state. In fact, a unitary matrix jΘΘΘΘ corresponds to a 

rotation and preserves distances among the sent constellation 
points. This means that minCGD value is left unchanged by 

applying an unitary transform jΘΘΘΘ  to 
1 2 3

( , , )x x x�  within each 

coset. The search for unitary matrices , 1, ...,16j i =ΘΘΘΘ  is done 

using the parametrization given in [10].  
With this parametrization and depending on the selected 
partitioning level we used, we look for unit matrices whose umber 
is equal to the number of cosets and with the property to obtain a 
maximum separation distance between the cosets. The distance is 
once again quantified by the determinant criterion and the distance 
between coset i and coset j will be defined as the minimum of 

1 2det( ( , ))c cA  when c1 belongs to coset i and c2 belongs to coset j.  
Using the set partitioning with sixteen cosets and the set 
partitioning illustrated on Fig. 1, we found sixteen unitary 
matrices with min 1 2det( ( , ))c cA  maximum value equal to 1.22, 
after 107 computer runs. For a set partitioning with eight cosets in 
Fig. 1, we obtain a min 1 2det( ( , ))c cA  maximum value equal to 
4.16. The STTC final code with sixteen cosets is illustrated on 
Fig. 2.  
Using, the basic structure of (3) we built a set partitioning with 8-
PSK modulation too. We found the first level of set partitioning 
by assigning triplets containing at least two different symbols to a 

given coset. This leads to eight cosets with sixty four elements in 
each coset. The minCGD value in each coset is equal to 3.10-2 for 
the eight cosets partitioning, 0.25 for the sixteen coset partitioning 
and 0.8 for the thirty two coset partitioning. For the first 
partitioning level with eight cosets we found eight unitary 
matrices to separate the cosets with a minimum distance equal to 
4.25. This distance drastically reduces to 8.2 10-2 for the sixteen 
coset partitioning and 2.5 10-2 for the thirty two coset partitioning. 

2.2. Decoding of quasi-orthogonal STBC based STTC 
codes 

Using the quasi-static block Rayleigh fading model, we can write 
the received signal : (For simplicity reasons we only consider the 
case of one receive antenna) 

1 2 3
. . ( , , )j x x x= +Y H NΘΘΘΘ �  

H  contains the channel coefficients, which are supposed constant 

for the duration of a packet. jΘΘΘΘ  is the 3×3 unitary matrix used in 

state j. We note : 1 2 3[ ] .j j j
jh h h = H ΘΘΘΘ . N  is the vector of additive 

Gaussian noise with zero mean and variance 2σ . In the case of 
multiple receive antennas, the considered SNR in the plotted FER 
curves will correspond to a SNR per receive antenna. Writing the 
received signal within three successive time slot intervals, we 
obtain:  

* * * .

1 1 2 2 1 3 3 1

2 1 1 2 2 3 3 2

* . * *

3 1 1 2 3 2 33

. . . . e

. . .

. . e . .

j

j j j

j j j

j j j

j

y h x h x h x n

y h x h x h x n

y h x h x h x n

α

β

= − + + +

= + + +

= − + +

 

In order to compute the branch metrics and in accordance with the 
different candidates’ symbol triplets, we form the auxiliary 
quantities : 

* .

1 1 3 3

2 2 3 3

2 2 1 1

* .

3 3 1 1

. . e

.

.

. . e

j j

j

j

j j

y y h x

y y h x

y y h x

y y h x

α

β

′ = −

′ = −

′′ = −

′ = −

 

It is then possible to use maximum ratio combining MRC 
technique to obtain: 

         

( )
( )

( )
( )

2 2* * * *

1 2 1 2 1 2 1 2 1 1 2

2 2* * * *

1 1 2 2 1 2 2 2 2 1 1

2 2* * * *

3 3 2 2 2 3 2 2 2 3 3

2 2* * * *

3 2 3 2 2 3 3 2 3 3 2

. . . . .

. . . . .

. . . . .

. . . . .

j j j j j j

j j j j j j

j j j j j j

j j j j j j

y h h y h h x n h n h

y h h y h h x n h n h

y h h y h h x n h n h

y h h y h h x n h n h

′ ′+ = + + +

′ ′− + = + + −

′ ′′+ = + + +

′ ′′− + = + + −

     (4) 

It is thus possible by summing lines 2 and 3 in (4) to obtain a 
matrix form as given in (5):  
 
                                        . ′= +Z M X N                                    (5) 

with:

* *

1 2 2 1

* * *

1 1 2 2 3 3

* *

3 2 2 3

. .

. 2. . .

. .

j j

j j j

j j

y h y h

y h y h y h

y h y h

+

= − + +

− +

� �
� �
� �
� �� �
� �

Z ,

1

2

3

x

x

x

=

� �
� �
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� �

X , 

 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
* *

1 2 2 1

* * *

1 1 2 2 3 3

* *

2 3 3 2

. .

. 2. . .

. .

j j

j j j

j j

n h n h

n h n h n h

n h n h

+

′ = − + +

−

� �
� �
� �
� �� �
� �

N  

and the maximum likelihood receiver has to minimize the 
following metric : 

                         1( . ). .( . )H
N N
−

′ ′− −Z M X R Z M X                     (6) 

with N N′ ′R , the autocorrelation matrix of ′N . The STBC based 

STTC code is then decoding using the classical Viterbi algorithm 
with metric branches given by (6). 

3. SIMULATION RESULTS 

Clearly, our goal is to prove that our optimized quasi-orthogonal 
design is able to outperform the best existing STTC codes in the 
open literature for three transmit antenna systems. We use as 
reference STTC codes, the optimized codes proposed by Vucetic 
& al in [7-8] with the rank & determinant criteria or the trace 
criterion. 
The channel between each pair of transmit-receive antenna is a flat 
quasistatic Rayleigh fading channel and the channel coefficients 
are zero mean complex Gaussian variables with variance 0.5 per 
complex dimension. The packet length is taken equal to 130 PSK 
symbols, either from a QPSK or a 8-PSK constellation. The 
results are obtained by Monte-Carlo simulation runs and are 
averaged over 1000000 channel realizations at FER = 10-3. The 

Figure 1 – Set Partitioning for QPSK 
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fading channels are considered uncorrelated. The performances of 
the proposed codes are given in terms of Frame Error Rate (FER) 
and we always give the corresponding outage capacity.  
a-QPSKmodulation: We use optimized STTC codes with 16, 32 
and 64 states. For the STBC based STTC codes, we used the set 
partitioning of Fig.1 and we tested two kinds of codes with 16 and 
32 states. The results for the case of three transmit-one receive 
antennas are given on Fig. 3. We can see that our STBC quasi-
ortho 32-state outperforms the STTC 64-state by approximately 
0.2 dB at FER = 10-2. Furthermore, when we compare codes with 
the same number of states, we notice that our quasi-orthogonal 
STBC designs enables a gain of 1.3 dB for the 16 state codes and 
1 dB for the 32 state codes.  
b-8-PSKmodulation: We use optimized STTC codes with 8, 16 
and 32 states. For the STBC based STTC codes, we tested two 
kinds of codes with 16 and 32 states. The results are given on Fig. 
4 for the case of one receive antenna. The conclusions are the 
same as those given for the QPSK case but the advantage of the 
proposed STBC designs is less obvious. In fact, working with the 
same number of states, our STBC designs enable a gain of 0.5 dB 
at FER = 10-2. The case of two receive antennas is depicted of Fig. 
5. The STBC based STTC codes outperform the optimized STTC 
by approximately 0.3 dB at FER = 10-2  

4. CONCLUSION 

In this paper we have generalized the use of Super Orthogonal 
Space Time Trellis Codes (SOSTTC) in the context of three 
transmit antenna systems with non-orthogonal STBC designs. 
Based on the determinant criterion, we build new performing 
space-time trellis codes which exhibit high minimum CGD values 
within each coset. The design we found is made of the coupling of 
two quasi orthogonal 2 × 2 space-time block codes. To build a 
trellis with the chosen STBC basic structure, the cosets are 
separated by means of unitary transform matrices. Doing this, we 
are ensured that our code always exhibits maximum diversity. We 
compare the performances of our STBC based STTC codes with 
those of the best existing STTC codes and we found that our 
designs enables a gain of 1 dB at FER = 10-2 ,10-3 for QPSK 
modulation and a gain of 0.5 dB for 8-PSK modulation for the 
same FER levels.  
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Figure 3 - Performance comparison of STTC and STBC based 
STTC QPSK codes for three transmit-one receive antennas 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Performance comparison of STTC and STBC based 
STTC 8-PSK codes for three transmit-one receive antennas 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 - Performance comparison of STTC and STBC based 

STTC 8-PSK codes for three transmit-two receive antennas
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