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ABSTRACT
In this paper we describe a Bayesian approach for separa-
tion of linear instantaneous mixtures of audio sources. Our
method exploits the sparsity of the source expansion coeffi-
cients on a time-frequency basis, chosen here to be a MDCT.
Conditionally upon an indicator variable which is 0 or 1,
one source coefficient is either set to zero or given a Stu-
dentt prior. Structured priors can be considered for the in-
dicator variables, such as horizontal structures in the time-
frequency plane, in order to model temporal persistency. A
Gibbs sampler (a standard Markov chain Monte Carlo tech-
nique) is used to sample from the posterior distribution of the
indicator variables, the source coefficients (corresponding to
nonzero indicator variables), the hyperparameters of the Stu-
dentt priors, the mixing matrix and the variance of the noise.
We give results for separation of a musical stereo mixture of
3 sources.

1. INTRODUCTION

Blind Source Separation (BSS) consists in estimatingn sig-
nals (the sources) from the sole observation ofm mixtures
of them (the observations). In this paper we consider linear
instantaneous mixtures of time series: at each time index,
the observations are a linear combination of the sources at
the same time index. If many efficient approaches exist for
(over)determined (m≥ n) non-noisy linear instantaneous, in
particular within the field of Independent Component Analy-
sis, the general linear instantaneous case, with mixtures pos-
sibly noisy and/or underdetermined (m < n) is still a very
challenging problem.

A now common approach to the latter problem is the use
of source sparsity assumptions, as introduced in the seminal
papers [1, 2]. The assumption of sparsity means that only
a few coefficients of the sources are significantly non-zero.
If the sources are not sparse in their original domain (e.g,
the time domain for audio signals), they might be sparse in a
transformed domain (e.g, the Fourier domain, wavelet trans-
form). Within a Bayesian framework, we modeled in [3]
the expansion coefficients of the sources on a chosen basis
by identically and independently distributed (i.i.d) Student
t processes with low degrees of freedom; a Gibbs sampler
was proposed to sample from the posterior distribution of
the mixing matrix, the input noise variance, the source co-
efficients and hyperparameters of the Studentt distributions.

Most of this work was done while the author was a Research Asso-
ciate with University of Cambridge (Signal Processing Lab, Engineering
Dept). The author acknowledges the European Commission funded Re-
search Training Network HASSIP (HPRN-CT-2002-00285) for financial
support.

An extension of this approach was proposed in [4], where a
frequency-dependent (instead of i.i.d) model of the sources
was considered. The method was successfully applied to de-
termined and underdetermined noisy audio mixtures, decom-
posed on a MDCT basis (a local cosine basis).

This paper presents further developments of the above
mentioned Bayesian approach. The coefficients of the
sources are now given a “strict” sparse prior: conditionally
upon an indicator variable which is 0 or 1, one source co-
efficient is either set to zero or given a Studentt distribu-
tion (which does not need to have a low degree of freedom
anymore). The indicator variable can be given an indepen-
dent Bernoulli prior or, more interestingly,structured pri-
ors. For example, when using a time-frequency basis such
as a MDCT, horizontal structures can be favored in the time-
frequency plane to model tonals of musical sources. This
model was successfully applied to audio denoising in [5].1

Temporal Markov chain source models have also been used
for BSS purposes in [6, 7]. The scope of these papers is how-
ever slightly different than ours. Reference [6] deals with
convolutive mixtures, but assumes the mixing filters known,
and relies on prior training of the Markov transition prob-
abilities. Reference [7] addresses more specifically musical
(non-percussive) source separation, exploiting prior informa-
tion about the microphones spatial configuration and relying
on thorough note models training. Our approach, though lim-
ited at the moment to instantaneous mixtures, is in contrast
completely adaptive: we are able to estimate both the mix-
ing matrix and the sources, and do not need any prior model
training.

This paper is organized as follows. Section 2 introduces
notations and presents the source models. Section 3 gives the
update equations of the Gibbs sampler. Separation results of
a linear instantaneous stereo mixture of 3 audio sources are
given in Section 4, with comparison to our previous work.
Conclusions and perspectives are given in Section 5.

2. MODEL

2.1 Linear instantaneous mixture model

We consider the following standard linear instantaneous
model,∀t ∈ J1,NK:

xt = Ast +nt (1)

wherext = [x1,t , . . . ,xm,t ]T is a vector of sizemcontaining the
observations,st = [s1,t , . . . ,sn,t ]T is a vector of sizen contain-
ing the sources andnt = [n1,t , . . . ,nm,t ]T is a vector of sizem

1Reference [5] even considers overcomplete dictionaries; however in this
paper we limit ourselves to an orthonormal basis.
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containing additive noise. Variables without time indext de-
note whole sequences of samples,e.g, x = [x1, . . . ,xN] and
x1 = [x1,1, . . . ,x1,N].

The aim of the following work is to estimate the sources
s and the mixing matrixA up to the standard BSS indetermi-
nacies on gain and order, that is, compute ˆs andÂ such that
ideallyÂ =ADP andŝ =PT D−1s, whereD is a diagonal
matrix andP is a permutation matrix.

2.2 Time domain / Transform domain

Let x ∈ R1×N → x̃ ∈ R1×N denote a bijective linear trans-
form, preferably orthonormal. Denoting fork∈ J1,NK, x̃k =
[x̃1,k, . . . , x̃m,k]T and ñk, s̃k similarly, by linearity of the t-f
transform we have

x̃k = As̃k + ñk (2)

Furthermore, the transform being bijective, solving the prob-
lem defined by Eq. (1) in the time domain is equivalent to
solving Eq. (2) in the transform domain. In the rest of this
paper we will more specifically use a MDCT with time res-
olution lframe/ fs and frequency resolutionfs2 /lframe, where
fs is the sampling frequency. When required, the index
k ∈ J1,NK will be more conveniently rewrittenk = (q, p) ∈
J1, lframeK× J1,nframeK, with nframe= N/lframe and whereq is
a frequency index andp is a frame index.

2.3 Priors

2.3.1 Coefficients priors

The coefficients ˜si,k, i ∈ J1,nK, k ∈ J1,NK are given the fol-
lowing hierarchical prior:

p(s̃i,k|γi,k,vi,k) = (1− γi,k)δ0(s̃i,k)+ γi,k N(s̃i,k|0,vi,k)(3)
p(vi,k|αi ,λi) = IG(vi,k|αi ,λi(q)) (4)

whereN(u|µ,v) andIG(u|α,β ) are the normal and inverted-
Gamma distributions as defined in Appendix,δ0(u) is the
Dirac delta function andγi,k ∈ {0,1} is an indicator variable.
When γi,k = 0, s̃i,k is set to zero; whenγi,k = 1, s̃i,k has a
normal distribution with zero mean and variancevi,k, which
is in turn assigned a conjugate inverted-Gamma prior.λi(q)
(whereq is the frequency index ink = (q, p)) is a frequency
dependent scale parameter.λi(q) should decrease with fre-
quency, modeling the non-uniform energy distribution of au-
dio signals. In practice we usedλi(q) = λi f (q) with

f (q) =
1

(1+((q−1)/q0)2)
, q∈ J1, lframeK (5)

Integrating outvi,k, the prior of s̃i,k conditionally upon
γi,k = 1 is simplyt(s̃i,k|2αi ,

√
λi(q)/αi), wheret(u|α,λ ) is

the Studentt distribution defined in the Appendix. The hier-
archical formulation of the prior (3)-(4) is preferred because
it allows for easy Gibbs sampling.

2.3.2 Indicator variable priors

We consider two scenarios for the indicator variablesγi,k:
1. Bernoulli priors: no structure is imposed on the indicator

variables, which are assigned the following independent
Bernoulli priors:

P(γi,k = 1|Pi) = Pi P(γi,k = 0|Pi) = 1−Pi (6)

2. “Horizontal” Markov models: in order to model tempo-
ral persistency of the t-f coefficients, we give a prior hori-
zontal structure to the indicator variable. More precisely,
when a MDCT basis is used andk= (q, p), for a fixed fre-
quency indexq the sequence{γi,q,p}p=1,...,nframe is mod-
eled by a 2-state first order Markov chain with transition
probabilitiesPi,0→0 andPi,1→1.

2.3.3 Noise variance prior

The noise varianceσ2 is given an inverted-Gamma (conju-
gate) priorp(σ2|ασ ,βσ ) = IG(σ2|ασ ,βσ ).

2.3.4 Hyperparameters priors

The scale constantsλi of each source are given independent
Gamma (conjugate) priorsp(λi |αλi

,βλi
) = G(λi |αλi

,βλi
), al-

lowing an automatic adaptation to the scaling of the coeffi-
cients in each basis. The degrees of freedomαi can be fixed
to a certain value or estimated like in [3]. In our simulations
the value ofαi happened to have little influence on the results
and in practice we fixed it to 1. The probabilitiesPi in the
Bernoulli models andPi,0→0, Pi,1→1 in the Markov models
are given uniform priors on[0,1], which may be routinely ex-
tended to Beta priors if required to favor certain values over
others.

3. METHOD

We propose to sample from the posterior distribution of the
parametersθ = {s̃i ,vi ,αi ,λi}i=1,n∪σ2, using a Gibbs sam-
pler. The Gibbs sampler is a standard Markov Chain Monte
Carlo technique which simply requires to sample from the
conditional distributions of each parameter upon the others
[8]. Point estimates can then be computed from the obtained
samples of the posterior distributionp(θ |x̃). In contrast with
EM-like methods which aim directly at point estimates (ML
or MAP), MCMC approaches are very robust because they
scan the full posterior distribution and are thus unlikely to
fall into local minima. This is however at the cost of a higher
computational burden. We now give the expression for the
update steps of the parameters. In the following most of the
derivations have been skipped, further details can be found in
[3, 9, 5]. Note that all the conditional posterior distributions
of all the parameters can be easily sampled from.

3.1 Update ofA and σ2

Let r1, . . . ,rm be then× 1 vectors denoting the transposed
rows of A, such thatAT = [r1 . . . rm]. With uninforma-
tive uniform prior p(A) ∝ 1, the rows ofA are a posteriori
mutually independent with

ri ∼ N(µri
,Σr) (7)

whereΣr = σ2 (∑k s̃k s̃T
k )−1 andµri

= 1
σ2 Σr ∑k x̃i,k s̃k. 2

A can be integrated out in the posterior distribution ofσ ,
resulting in

σ
2 ∼ IG(ασ ,βσ ) (8)

with ασ = (N−n)m
2 and 2βσ =

∑m
j=1

(
∑k x̃2

j,k−
(
∑k x̃ j,ks̃T

k

) (
∑k s̃ks̃T

k

)−1 (∑k x̃ j,ks̃k
))

.

2In practice the columns ofA are normalized to 1 to solve the BSS
indeterminacy on gain.
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3.2 Update of(γi , s̃i)

Two main sampling strategies can be considered for(γi , s̃i).
The first option is make block draws from the vectors
γk = [γ1,k, . . . ,γn,k]T and s̃k. The second option is to up-
date(γi,k, s̃i,k) individually, conditionally upon(γ−i,k, s̃−i,k),
where−i denotesJ1,nK\ i. In theory, the first option is better
as sampling as many parameters as possible together is sup-
posed to improve the rate of convergence of the Gibbs sam-
pler [10]. However, in practice, the second option can lead to
a faster implementation. Indeed, the first option requires 1)
samplingγk, which requires computing the posterior prob-
abilities of its 2n possible values, 2) sampling ˜sk, whose
posterior distribution is multivariate Gaussian (see [3]) and
thus involves inverting an× n matrix for eachk ∈ J1,NK
and at each iteration of the Gibbs sampler. The second op-
tion involves 1) computing the two posterior probabilities
p(γi,k = 1|γ−i,k, . . . , x̃) and p(γi,k = 0|γ−i,k, . . . , x̃), 2) sam-
pling from p(s̃i,k|s̃−i,k, . . . , x̃), which is simply a univariate
Gaussian distribution. In practice, the two latter steps can be
efficiently vectorized (alongk), avoiding long loops and sig-
nificantly reducing the computation times (in particular when
using MATLAB). In this paper we only consider the second
option. To do so, note that Eq. (2) can be rewritten

x̃k = s̃i,kai + ∑
j 6=i

s̃j,ka j + ñk (9)

whereA = [a1, . . . ,an] and thus

aT
i x̃k

aT
i ai

−∑
j 6=i

aT
i a j

aT
i ai

s̃j,k = s̃i,k +
aT

i ñk

aT
i ai

. (10)

Hence, inferring ˜si,k conditionally upon the other source co-
efficients can be regarded as a simple regression problem,
with unknowns̃i,k and data ˜xi|−i,k, where ˜xi|−i,k denotes the
left term of Eq. (10).

As pointed out in [11], an implementation of the Gibbs
sampler consisting of sampling alternatively ˜si,k|γi,k and
γi,k|s̃i,k cannot be used as it leads to a nonconvergent Markov
chain (the Gibbs sampler gets stuck when it generates a value
s̃i,k = 0). Thus, as in [11], we jointly draw from(γi,k, s̃i,k) by
marginalizing ˜si,k from the posterior conditional distribution
of γi,k, leading to

p(γi,k = 0|σ2,vi,k, x̃i|−i,k) = 1/(1+ τi,k) (11)

p(γi,k = 1|σ2,vi,k, x̃i|−i,k) = τi,k/(1+ τi,k) (12)

with

τi,k =

√
σ2

σ2 +vi,k
exp

(
x̃2

i|−i,k vi,k

2σ2(σ2 +vi,k)

)
p(γi,k = 1|γi,−k)
p(γi,k = 0|γi,−k)

(13)
where γi,−k denotes the set of all indicator variables
{γi,l}l=1,...,N exceptγi,k. The expression of the ratiop(γi,k =
1|γi,−k)/p(γi,k = 0|γi,−k) changes according to the chosen
prior for the indicator variables. Whenγi,k has a Bernoulli
prior, this ratio is simplyPi/(1−Pi). Whenγi,k has a Markov
horizontal structure andk = (q, p), this ratio depends on the
values ofγi,q,p−1 andγi,q,p+1. The exact expressions are stan-
dard results from the Markov chain literature (seee.g, [12]).

The posterior distribution of ˜si,k is written as

p(s̃i,k|γi,k,vi,k,σ
2, x̃i|−i,k) =

(1− γi,k)δ0(s̃i,k)+ γi,k N(s̃i,k|µs̃i,k,σ
2
s̃i,k

) (14)

with σ2
s̃i,k

=
(
1/σ2 +1/vi,k

)−1
andµs̃i,k = (σ2

s̃i,k
/σ2) x̃i|−i,k.

3.2.1 Update of vi

The conditional posterior distribution ofvi,k is

p(vi,k|γi,k, s̃i,k,αi ,λi) =

(1−γi,k) IG
(
vi,k|αi ,λi(q)

)
+γi,k IG

(
vi,k|

1
2

+αi ,
s̃2
i,k

2
+λi(q)

)
(15)

3.2.2 Update of the hyperparameters

• The posterior distribution of the scale parameters is
p(λi |vi) = G

(
λi |Nαi +αλi

,∑k f (q)/vi,k +βλi

)
. How-

ever, because we are looking for sparse representations,
most of the indicator variablesγi,k take the value 0 and
thus most of the variancesvi,k are sampled from their
prior (see Eq. (15)). Thus, the influence of the data in
the full posterior distribution ofλi becomes small, and
the convergence ofλi can be very slow. A faster scheme,
employed in [13, 9], consists of making one draw from
p({vi,k : γi,k = 1}|{s̃i,k : γi,k = 1},λi ,αi), then one draw
from p(λi |{vi,k : γi,k = 1},αi) and finally one draw from
p({vi,k : γi,k = 0}|λi ,αi).

• When the indicator variables are given Bernoulli pri-
ors, the posterior distribution ofPi is simply p(Pi |γi) =
B(Pi |#γi +1,N−#γi +1), whereB(x|α,β ) is the Beta dis-
tribution defined in the Appendix and #γi is the number
of values ofγi,k equal to 1. Similarly, when the indicator
variables are given Markov priors, the posterior distribu-
tions of the transition probabilities can be sampled using
a Metropolis-Hasting step as in [13]. In this work we
simply update them as the number of transitions from 0
to 0 and 1 to 1 divided byN.

4. RESULTS

We present results for blind separation of a stereo mixture
(m = 2) of n = 3 musical sources (voice, acoustic guitar,
bass guitar). The sources were obtained from the BASS-dB
database [14]. They consist of excerpts of original tracks
from the songAnabelle Lee(Alex Q), published under a
Creative Commons Licence. The signals are sampled at
fs = 22.5kHz with lengthN = 131072 (≈ 6s). The mixing
matrix is given in Table 1; it provides a mixture where the
voices1 is in the middle, the acoustic guitars2 originates at
67.5o on the left and the bass guitars3 at 67.5o on the right.
Gaussian noise was added to the observations withσ = 0.01,
resulting in respectively 25dB and 27dB input SNR on each
channel. We applied a MDCT to the observations using a
sine bell and 50% overlap, with time resolution (half the win-
dow length)lframe = 512 (22ms). We present the following
results:
a) We apply the method in [3], in which the source coeffi-

cients are given a Studentt distribution. This amounts
to setγi,k = 1 for all k, but the scale parameters and the

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Original matrix

A =
[
0.7071 0.9808 0.1951
0.7071 0.1951 0.9808

]
Method (a)

Â =

 0.7077 0.9810 0.1949
(±0.0037) (±0.0017) (±0.0048)

0.7065 0.1941 0.9808
(±0.0037) (±0.0086) (±0.0009)


Method (b)

Â =

 0.7070 0.9811 0.1946
(±0.0035) (±0.0012) (±0.0046)

0.7073 0.1935 0.9809
(±0.0035) (±0.0060) (±0.0009)


Method (c)

Â =

 0.7044 0.9821 0.1943
(±0.0039) (±0.0023) (±0.0060)

0.7098 0.1881 0.9809
(±0.0039) (±0.0118) (±0.0012)


Method (d)

Â =

 0.7079 0.9811 0.1946
(±0.0003) (±0.0001) (±0.0006)

0.7064 0.1933 0.9809
(±0.0003) (±0.0007) (±0.0001)


Table 1:Estimates ofA.

degrees of freedom are both updated. The sources are up-
dated with block draws of ˜sk. Using a MATLAB imple-
mentation running on a 1.25GHz Powerbook G4, 1000
iterations of the sampler take 6.6 hours. Approximate
convergence was usually observed after 1500 iterations.

b) We apply the approach of a), but the sources are updated
one by one, conditionally upon the others. 1000 itera-
tions of the sampler take 1.1 hours. Approximate conver-
gence was usually observed after 2000 iterations.

c) We apply the method described in this paper, with a
Bernoulli prior onγi,k. 1000 iterations of the sampler take
50min. Approximate convergence was usually observed
after 5000 iterations.

d) We apply the method described in this paper, with hori-
zontal Markov priors onγi,k. The computational burden
is unchanged and 1000 iterations of the sampler still take
50min. Approximate convergence was usually observed
after 5000 iterations. Fig. 1 shows the sampled values of
the parameters over 10000 iterations of the sampler.

In the four cases the values ofασ , βσ , αλi
, βλi

were chosen
as to yield Jeffreys noninformative priors,A was initialised
to [1 1 1; 0 0 0], s̃i to x̃1/3, vi to ones,λi to 0.1. The samplers
were run for 2500 iterations in case (a) and for 10000 itera-
tions in the other cases.σ2 was annealed to its true posterior
distribution during the first 500 iterations in case (a) and dur-
ing the first 1000 iterations in the other cases (see [3]). Mini-
mum Mean Square Error estimates of the source coefficients
were computed in each case by averaging the last 1000 sam-
ples. Table 2 presents separation evaluation criteria for the
estimated sources in each case. The criteria are described in
[15], but basically, the SDR (Source to Distortion Ratio) pro-
vides an overall separation performance criterion, the SIR
(Source to Interferences Ratio) measures the level of inter-
ferences from the other sources in each source estimate, SNR
(Source to Noise Ratio) measures the error due to the additive

ŝ1 (voice)
Method SDR SIR SAR SNR

a) 4.3 14.7 4.9 28.9
b) -4.0 7.6 -3.0 24.2
c) 0.1 5.6 2.6 28.4
d) -0.75 12.0 -0.23 28.3

ŝ2 (acoustic guitar)
Method SDR SIR SAR SNR

a) 6.0 17.4 6.4 28.8
b) 1.7 6.9 4.1 27.9
c) 0.7 7.7 2.4 27.4
d) 3.1 10.3 4.5 38.6

ŝ3 (bass guitar)
Method SDR SIR SAR SNR

a) 10.7 22.2 11.1 39.8
b) 5.7 11.4 7.4 38.9
c) 5.9 14.4 6.7 51.5
d) 7.4 15.1 8.3 50.1

Table 2: Performance criteria.

0

0.5

1

Row r
1

0

0.5

1

Row r
2

0.97

0.98

0.99

1

Transition probabilities P
00

0.97

0.98

0.99

1

Transition probabilities P
11

2000 4000 6000 8000 10000
0

0.5

1
Scale parameters λ

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2
σ

Figure 1: Gibbs sampler updates of the various model pa-
rameters; blue = source 1, green = source 2, red = source 3.

noise on the sensors and the SAR (Source to Artifacts Ratio)
measures the level of artifacts in the source estimates. Source
estimates can be listened to athttp://www-sigproc.
eng.cam.ac.uk/˜cf269/eusipco06/ , which is per-
haps the best way to assess the quality of the results. Fig. 2
presents thesignificance mapsof the source coefficients, i.e
the Maximum A Posteriori estimates ofγ1, γ2 andγ3, in the
Bernoulli and Markov cases.

5. CONCLUSIONS

We have described in this paper a Bayesian approach to
source separation in which the source coefficients in a trans-
form domain are given an exact sparse prior: conditionally
upon an indicator variable, the coefficients are either set to
zero or given a hierarchical prior. The advantage of this
framework over other sparse priors is the ability to favor
structures in the time-frequency plane by choosing relevant
priors for the indicator variables. Our method is also com-
pletely adaptive, none of the model parameters need to be
trained.

An interesting issue of this paper is the individual update
of each source conditionally upon the others, as compared to
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Figure 2: Significance maps of the estimated sources, ob-
tained with Bernoulli priors (left) and horizontal markovian
priors (right).

block draws. Though the two methods should theoretically
yield similar source estimates after a “large enough” number
of iterations, in practice, over an horizon of 10000 iterations,
method (a) still yields better estimates, in particular in terms
of SIRs. We believe this is because the individual update of
each source conditionally upon the others creates some cor-
relation between the sources. If the amount of correlation
should theoretically fade away when averaging a large num-
ber of samples, well after the burn-in period, in practice this
seems to be a problem over our limited horizon. We also no-
ticed that, depending on the initializations and the random
sequence seeds, method (b) could get stuck for long peri-
ods in some irrelevant areas of the posterior distribution of
the mixing matrix, and that full exploration of the posterior
could be tedious. In contrast, method (a) reliably explores
the modal areas ofp(A|x̃), and convergence is rather fast
whenσ2 is annealed.

Table 1 shows that the four methods give very good es-
timates of the mixing matrix, with best results obtained with
method (d). Table 2 shows that methods (c) and (d), de-
scribed in this paper, do not beat method (a) in terms of SIRs
and SARs, but they yield source estimates with subjectively
good audio properties. They perform very well in terms of
denoising (see the SNRs), in particular for the acoustic and
bass guitars. Poorer results are obtained for the voice with
method (d) rather than (c) because horizontal Markov struc-
tures are better suited for the latter instruments rather than
for voice (which is more inharmonic).

Future work will involve building a framework allowing
efficient block draws of(γk, s̃k) as well as using audio models
involving overcomplete dictionaries, in the fashion of [5].

A. STANDARD DISTRIBUTIONS

Normal N(x|u,σ2) = (2πσ2)−1/2 exp− (x−u)2

2σ2

Beta B(x|α,β ) = Γ(α+β )
Γ(α)Γ(β ) xα−1 (1−x)β−1, x∈ [0,1]

Gamma G(x|α,β ) = β α

Γ(α) xα−1 exp(−β x), x≥ 0

inv-Gamma IG(x|α,β ) = β α

Γ(α) x−(α+1) exp(− β

x ), x≥ 0

The inverted-Gamma distribution is the distribution of 1/X whenX
is Gamma distributed.
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