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ABSTRACT 
In this paper, The problem of blind recovery  of QAM 
signals for Multiple-Input Multiple-Output (MIMO) 
communication systems is investigated. We propose a new 
criterion based on the real (or equivalently the imaginary) 
part of the equalizer outputs, with a cross correlation 
constraint. A performance analysis reveals the absence of 
any undesirable local stationary points, which ensures 
perfect recovery of all transmitted signals and global 
convergence of the algorithm. From the proposed criterion 
an adaptive algorithm is derived. It is shown that the 
proposed algorithm presents a lower computational 
complexity compared to the constant modulus algorithm 
(CMA) and multimodulus algorithm (MMA). The 
effectiveness of the proposed algorithm is illustrated by 
some numerical results. 

1. INTRODUCTION 

The use of multiple antennas at both sides of communica-
tion link increases significantly the spectral efficiency [1], 
especially when blind techniques, without the use of 
training sequences, are considered. A large number of 
techniques have been proposed so far in the literature that 
offer different trade-offs of complexity and performance. 
The well known and more studied is the constant modulus 
algorithm (CMA) [2], [3]. It is very robust in practice and 
can be applied to non-constant modulus communication 
signals. Other algorithms have been proposed: Multi-
modulus algorithms (MMA) [4], Constant norm algorithms 
(CNA) [5], Multiuser kurtosis (MUK) [6], and others [7]. In 
contrast to the large number of algorithms that have been 
proposed is the low number of algorithms whose 
convergence has been studied. 
In this paper, we present a new criterion for blind recovery 
of QAM signals for MIMO communication systems, with 
its convergence analysis. The algorithm combines HOS 
criterion with a deflation convergence procedure. The 
criterion consists in penalizing the deviation of the real ( the 
imaginary) part of the equalizer output from a constant 
calculated from a statistics of input signals. The use of only 
the real (the imaginary) part results in low computational 
complexity compared to CMA [2], [3] and MMA [4] that 
use both real and imaginary parts. The analysis of the 

criterion shows that the algorithm is free of any stable 
undesired local stationary points for any number of source 
signals; hence, it is globally convergent to a setting that 
recovers them all. From the proposed criterion we derive an 
adaptive algorithm. At each iteration, the algorithm 
combines a stochastic gradient algorithm (SGA) update and 
a Gram Schmidt orthogonalization procedure. 
The rest of the paper is organized as follows. In section II, 
the problem formulation and assumptions are introduced. In 
section III, we present the criterion. Convergence analysis 
is carried out in section IV. In section V, we present an 
adaptive implementation of the algorithm. Finally, section 
VI presents some numerical results. 

2. PROBLEM FORMULATION 

We consider a linear data model of the form:  
                            )(B)(A)(Y nnn += H                            (1) 
Where A is the (M×1) vector of the source signals, H is the 
(N×M) MIMO linear memoryless channel, Y(n) is the (N 
×1) vector of the received signals and B is the  (N×1) noise 
vector. M and N represent the number of antennas at the 
transmitter and receiver respectively.  
We assume that: H has full column rank M, the noise is 
additive white Gaussian independent from the source 
signals, and the source signals are independent and 
identically distributed (i.i.d), mutually independent 

)I]AA[( 2
Ma

HE σ=  and drawn from QAM constellation. 
In order to recover the source signals, the received signal 
Y(n) is processed by a (N × M) receiver matrix W . Then, 
the receiver output can be written as : 
                   nnnn TT )(B)(A)(Y)(Z +==  HWW                      

                  )(B)(A nnT +=G                                     (2)  
Where Z(k) is the (M ×1) vector of the receiver output, 

WHG T=  is the (M × M) global system matrix and )(B n  
is the filtered noise at the receiver output. 
The matrix W  is feasible to separate the source signals, 
except for a possible permutation and up to a unitary scalar 
rotation. 
Notation: we use capital letters and capital boldface letters 
to denote vectors and matrices respectively. The symbols 
(.)* and (.)T denote the complex conjugate and transpose 
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respectively,  (.)H  is the Hermitian transpose, and pI  is the 
)( pp×  identity matrix. 

3. THE CRITERION 

The proposed cost function to be minimized is : 
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Where: iRz ,  represents the real part of the receiver output 

iz  and T
Miii gg ],,[G 1 K=  is the i-th column vector of G.  

We can use equivalently the imaginary part of iz  thanks to 
the symmetry of the QAM Constellation. Throughout this 
paper, we consider only the real part, since the analysis is 
the same for the imaginary part. 
The constraint in (3) prevents the extraction of the same 
signal at many outputs, it comes from the condition 

0][ * =ji zzE , that cancels the cross correlation between 
equalizer outputs. The constant R is fixed by assuming a 
perfect equalization, and is defined as: 
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Where )(naR  is the real part of the source signal )(na . 

4. CONVERGENCE ANALYSIS 

In order to study the stationary points, the cost function (3) 
is formulated in the following way [6]: 
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(5) is equivalent to (3). There are M constrained 
optimization criteria that are implemented in parallel, i.e. 
simultaneously, and the constraint must be satisfied for 
each 1 ..., 1, −= il . For simplicity reasons, the analysis is 
restricted to noise free case, i.e.: 
                           )(A)(Z nn TG=                                       (6) 
We can now use (5) in order to study the stationary points 
in G domain. From (5), we first notice that the adaptation of 
each Gi depends only on 11 G,,G −iK . Then, we can begin by 
the first output, because 1G  is optimized independently 
from all the other vectors MG,,G2 K . Hence we have: 

                     ][ 22
1,1 )()G(

1G
RzEJMin R −=                       (7) 

By developing (7), we get: 
                    22
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1,1 ][2][)G( RzERzEJ RR +−=                 (8) 
After a straightforward development of the terms in (8) (see 
Appendix ), equation (8) can be written as: 

)9(2

||||1||])G(

24

1

2
1,

2
1,

1

4
1

2

1

2
1

2

1

2
1

4
1

][

[

RaEgg

gggaEJ

R

M

k
kIkR

M

k
k

M

k
k

M

k
kR

+−⋅+









−






+






 −=

∑

∑∑∑

=

===

β

β
     

Where:  

1,1,1 kIkRk gjgg +=  

03 ][][ 422 >−=−=
RaRR aEaE κβ ,because:

][][ 224 3 RRa aEaE
R

−=κ represents the kurtosis of the real 
parts of the symbols, it is always negative. 
On the other hand, the minimum of  J is given by: 

22422 ][][][ 2)( RaERaERaEJ RRRMin +−=−=  

From (4)  we have: ][][ 42 |||| RR aEaER = , then: 

 24 ][ RaEJ RMin +−=                       (10) 
Comparing (9) and (10), we can write:                           
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Since 0>β  and it is known that: ∑∑
==

≥





 M

k
k

M

k
k gg

1

4
1

2

1

2
1 ||||                   

Then: 0||||
1

4
1

2

1

2
1 ≥−





 ∑∑

==

M

k
k

M

k
k gg  , thus :  

                      0||||
1

4
1

2

1

2
1 ≥








−






 ∑∑

==

M

i
k

M

k
k ggβ                    (12)  

According to (12) , )G( 1J  is composed only of positive 
terms. Thus, minimizing )G( 1J  is equivalent to finding  

1G  that minimizes all terms at the same time. One way to 
find the minimum of (11) is  by looking for a solution that 
cancels the gradients of each term separately. From (10) 

MinJ  is a constant ( 0/ *
1 =∂∂ lgJ Min ), then we only deal with 

the reminder terms.  For that, let: 
)G()G()G()G( 1312111 JJJJJ Min +++=  

Where: 
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Computing the derivatives of )G( 11J , )G( 12J and 

)G( 13J with respect to *
1lg : 
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Then: 
01, =lRg  or 01, =lIg  or 01,1, == ll IR gg         (15) 

(13) implies that only one entry, 1lg , of 1G  is nonzero and 
the others are zeros. Equation (14), indicates that the 
modulus of  this entry must be equal to one )1||( 2

1 =lg .  
Finally, from (15) either the real part or the imaginary must 
be equal to zero. Based on (14), the non zero part has one  
as modulus, i.e. either 12

1, =lRg and 02
1, =lIg  or 

02
1, =lRg and 12

1, =lIg . Therefore the solution 1lg is a pure-
real or a pure imaginary with a modulus one, which 
corresponds to:  

                         2
1

1
πjn

eg =l ,     n1: is an integer.              (16) 
This solution shows that the minimization of )G( 1J  forces 
the equalizer output to form a constellation that corresponds 
to the source constellation with a modulo 2/π  phase 
rotation.  
From (13), (14), (15) and (16), We can conclude that the 
only stable minima for 1G  are of the form 

Tjn
e ]0000[G 2

1
1

KK
π

= , i.e. only one entry is nonzero, 
pure-real or pure-imaginary with modulus equal to one, and 
all the others are zeros. This solution corresponds to the 
recovery of only one source signal and cancels the others.  

2G is updated exactly as 1G , with a constraint in order to 
ensure orthogonality between 2G  and  1G :         
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We examine the convergence of 2G  after 1G  has 
converged to one signal, because the adaptation of  1G  is 
realized independently from the other iG . For simplicity, 
and  without loss of generality, we consider that 1G  has 

converged to the first signal. Then, Tjn
e ]00[G 2

1
1

K
π

= . 

Hence the orthogonal constraint, 0GG 12 =H , results in 

012 =g . Then, TT ]G|0[G 22 = . Then equation (17) can be 
written as:  
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2
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Where: AGAG 222
TTz == , because 012 =g . 

Equation (18) has the same form as equation (7). Then the  
analysis is exactly the same as described previously. 
Consequently, the stationary points of (18) will be of the 

form  Tjn
e ]0000|0[G 2

2
2

KK
π

= . Hence 2G  will recover 
perfectly a different signal than that recovered by 1G . 
By application of the same analysis to each iG , we can see 
that each iG  converges to a setting that has zeros at the 

positions of the already recovered signals. Its remaining 
entries, as in (18), contain only one nonzero element, which 
correspond to recovering a different signal. And so on until 
the recovery of all signals.        
Based on this analysis, we can conclude that the 
minimization of the proposed cost function ensures perfect 
recovery of all source signals and that the recovered signals 
correspond to the source signals with a modulo 2/π  phase 
rotation.   

5. IMPLEMENTATION 

Now, we present an adaptive implementation of the cost 
function (3) via the classical stochastic gradient algorithm 
(SGA). The SGA is given by: 

                  )(2
1)()1( Jkk WWW ∇−=+ µ                    

In order to use the Gram-Schmidt orthogonalization 
procedure, we assume that the received signal is 
prewhitened or the channel matrix is unitary. Hence the 
constraint in (3) can be written as:  
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Where )( 22
1 Mdiag σσ K is a diagonal matrix with 22

1 Mσσ K  
as its diagonal entries and Mii ,,1,2 K=σ , is the variance 
of the i-th output of the receiver. 
Computing the gradient of  J with respect to W , we obtain: 
       )]()([)(Y)()1( 1
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Where:                    
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2
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And in order to satisfy the constraint (19) we combine, at 
each iteration, the Gram-Schmidt orthogonalization with 
SGA (20) [6]. The orthogonalization is necessary because 
the result of SGA, W′ , is not necessarily orthogonal. The 
Gram-Schmidt orthogonalization on W′  is defined as:  
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After convergence, the algorithm must recover all source 
signals up to a possible permutation and up to modulo 2/π  
phase rotation.  
5.1   Complexity: 
In order to compare the computational complexity of the 
proposed algorithm with that of CMA [2], We consider 
only the SGA (20) because the  Gram Schmidt 
orthogonalization procedure is the same for both 
algorithms. We have: 

)]()([)(Y)()1( 1
* kkkkk M∆∆−=+′ KµWW  

Where for: 
• Our algorithm:      iRiR zRzki ,

2
, )()( −=∆  

• CMA:                    ( ) iCMAi zRzki −=∆ 2||)(  

• MMA:                   iIiIiRiR zRzjzRzki ,
2
,,

2
, )()()( −+−=∆  
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Algorithm Multiplications Additions 

Our algorithm 
CMA 
MMA 

(4N +3) × M 
2(4N +3) × M 
2(4N +3) × M 

4M×N 
8M×N 
8M×N 

Table 1. Comparison of complexity per weight update 
 
According to table 1, the complexity of the proposed 
algorithm is two times smaller compared to CMA and 
MMA. Note that the number of operations is per iteration. 

6. NUMERICAL RESULTS 

Some numerical results are now presented in order to 
confirm the theoretical analysis derived in the previously 
sections.  For that, we use signal to interference and noise 
ratio (SINR) defined as: 
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Where: )W( kiSINR  is the signal to interference and noise 
ratio of the i-th source signal at the k-th output.  

j
T
iijg WH= , where: jW  and iH  are the j-th and i-th 

column vector of matrices W and H respectively. 

N
H

B E IR 2
B]BB[ σ==  is the noise covariance matrix.  

We use the data model in (1): the system inputs are 
independent, uniformly distributed and drawn from 16 or 
64-QAM constellations. The unitary channel matrices are 
chosen randomly. The variance of noise is determined 
according to the desired signal to noise ratio (SNR). So that 
the comparison be significant, we consider the same 
implementation for all algorithms (See section 5). Hence 
the results are only influenced by the used criterion and not 
by the implementation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 

 

Figures 1 shows the constellations of the received signals 
and the receiver outputs (after convergence) using the 
proposed algorithm. We have considered 2,2 == NM , 16-

QAM, SNR=30 dB and 3102 −×=µ . It is clear that the 
algorithm recovers the source signals with a modulo 2/π  
phase rotation, which confirm the theoretical analysis.   
Figure 2 shows the SINR performance plots for the 
proposed approach, CMA and MMA. we have considered 

3,3 == NM , 64-QAM, SNR=20 dB and the step sizes 
were chosen to have sensibly the same steady state for all 
algorithms. We observe that our algorithm is between 
MMA and CMA with a low computational complexity, it 
gives a good compromise between performance and 
complexity. 

7. CONCLUSION 

In this paper, we have proposed a new globally convergent 
algorithm for the Multiple-input multiple-output (MIMO) 
adaptive blind separation of QAM signals. The criterion is 
based on the real (the imaginary) part of the receiver output 
and consists in penalizing the deviation of the real (the 
imaginary) part from a constant. The proposed approach 
was shown to be globally convergent to a setting that 
recovers perfectly (in the absence of noise) all the source 
signals. Our algorithm has shown a low computational 
complexity compared to CMA and MMA, which make it 
attractive for implementation. Simulation results have 
shown that the proposed algorithm has, despite its low 
complexity, a good performance. 

APPENDIX  

From equation (8): 
                   22

,
4

, ][2][)G( RzERzEJ iRiRi +−=                 (21) 
We have:  

)(AG)(z nn T
ii =  

Where:  
T

Miii gg ],,[G 1 K=  ,  kiIkiRki gjgg ,, +=  

                 T
Maa ],,[A 1 K= ,   kIkRk ajaa ,, +=  Figure 1. Left column: constellation of  the received signals.  

Right column: constellation of the receiver outputs 

 

 

 

 

Figure 2. Performance comparison of the proposed 
algorithm, CMA and MMA. 
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For i.i.d. and mutually independent source signals that 
drawn from QAM constellations, we have: 
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Using (23), (24), (25) and (26), we obtain: 
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Developing (28) and using (23), (24), (25) and (26), we 
have the following three cases: 
• For: :nmk === l  
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• For: nmk =≠= l  and the two other combinations: 
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• Otherwise: equation (28) equal to zero. 
From (29) and (30), equation (28) becomes: 
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Substituting (32) into (31): 
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Rearranging terms, we get: 
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Finally, we get (9). 
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