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ABSTRACT

This paper concerns the design of codes for multiple-input
multiple-output communication systems. The transmission
scheme utilizes imperfect channel state information (CSI) in
the design, assuming that maximum-likelihood detection is
employed at the receiver. It is argued that channel diago-
nalizing codes are not robust to imperfections in the CSI.
A robust non-diagonalizing code with good minimum dis-
tance separation between received codewords is proposed.
The design is very suitable for systems operating at high
data rates since the complexity scales nicely with the num-
ber of antennas. Numerical results show that the proposed
code outperforms a state-of-the-art diagonalizing precoder.

1. INTRODUCTION

From information theory it is known that the maxi-
mum achievable data rate of multiple-input multiple-output
(MIMO) communication systems can be increased if the
transmitter has access to channel state information (CSI) [1].
Transmitter-side channel state information (TX-CSI) may be
acquired from the receiver via feedback, or estimated from
the reverse link for time division duplex systems. By ex-
ploiting TX-CSI, the transmitted data can be adapted to
the spatial characteristics of the channel for improved sys-
tem performance.

Optimization of the mutual information using perfect
TX-CSI results in diagonalization of the channel and in-
dependent transmission over separate single-input single-
output (SISO) spatial channels. The power allocated to each
channel is given by the spatial water-filling solution [1], and
the codebooks are Gaussian. In most practical applications
symbols are however limited to finite sized constellation sets,
and capacity-optimal precoding is not necessarily optimal in
terms of maximum uncoded data rate or minimum uncoded
bit error rate (BER). Some recent work on these systems
employing linear transmitters and receivers has shown that
diagonalization is not always optimal in terms of minimum
BER [2, 3, 4].

Due to system limitations such as delay or capacity con-
straints in the feedback link, it is reasonable to assume that
the quality of the TX-CSI is worse than the CSI available at
the receiver. In the literature the TX-CSI imperfections are
typically modeled using a Bayesian channel model [5, 6, 7].
Another approach is to model the TX-CSI as one out of a
finite number of quantized channel states [8], which perhaps
is more realistic than the Bayesian model if the capacity
of the feedback link is the bottleneck. When the TX-CSI
is imperfect, it is no longer possible to completely separate
the spatial channels and crosstalk is inevitable. This makes
the problem of minimizing the error rate very hard and
the topic has recently received much attention. In [5], the
mean squared error (MSE) was minimized assuming a linear

minimum MSE (MMSE) receiver structure. For maximum-
likelihood (ML) decoding receivers, [6, 9] designed weighted
orthogonal space-time block codes (OSTBC) based on TX-
CSI. OSTBC have been proven very efficient in terms of re-
ducing the block error rate at low data rates. In practice
however, the error rate can usually be allowed to be quite
high due to efficient outer codes and packet-layer retrans-
missions. This motivates the use of linear dispersion codes
(LDC, see [10]) where multiple data streams are transmitted
in parallel, allowing high data rates at the cost of reduced
diversity gain.

In our earlier work [11, 12], the focus was on bit and
power loading (BPL) algorithms assuming the optimal (and
nonlinear) ML detector is employed at the receiver. The spa-
tial channels were decorrelated from the transmitter side (es-
sentially diagonalizing the channel), and the bit and power of
the data streams were adapted to minimize the union bound
on the symbol error rate. This approach works well for sys-
tems with relatively few data streams and low data rates,
but for large sized MIMO systems the complexity of optimiz-
ing the power for all bit load candidates becomes unfeasible.
Furthermore, as will be argued below, diagonalization of the
channel may cause problems when imperfections in the chan-
nel estimate are introduced. Fortunately blind transmission
(i.e. transmission disregarding the TX-CSI) has a perfor-
mance surprisingly close to BPL at high data rates, which
along with the results in [3, 4, 7], has inspired us to search
for non-diagonalizing codes.

In this paper, we identify a robustness-complication that
affects diagonalizing precoders when the TX-CSI is per-
turbed. A class of precoders that is less sensitive to imperfec-
tions in the channel estimate is proposed. Within this class,
it is shown that a precoder based on the discrete Fourier
transform (DFT) maximizes a certain upper bound on the
minimum distance. A lower bound on the minimum distance
is also derived and is utilized to show that the DFT based
precoder is the optimal robust precoder for certain channels
and outperforms the only robust diagonalizing precoder for
all channels. Numerical results show that for systems oper-
ating at high data rates the proposed LDC outperforms the
optimized BPL from [11, 12]. The complexity of the design
procedure is very low, which is clearly an advantage when
the number of data streams is large.

The paper is organized as follows. In Section 2, the
system model and channel state information model are de-
scribed. Section 3 specifies the union bound of the ML-
detection block error rate. Robustness against imperfections
in the TX-CSI is discussed in Section 4, a robust LDC is
proposed and motivated analytically. In Section 5, numer-
ical examples show that the proposed codes outperform a
state-of-the-art diagonalizing code. Conclusions are drawn
in Section 6.

The set of complex valued N by M matrices is denoted
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CN*M " and similarly for real valued matrices RV*M . The

set of integers is denoted Z. The Frobenius norm is denoted
|| |l7- Expectation with respect to H is denoted Ex, while E
is the expectation with respect to all random variables. The
vectorization operator on matrices is denoted vec(-), and ®
is the Kronecker product of matrices. The complex Gaussian
distribution is denoted CN (-, -).

2. SYSTEM MODEL

Consider a MIMO communication system with N transmit-
ting and M receiving antennas over a flat fading channel.
Similar to [10], it is assumed that the channel matrix is
constant during at least L channel uses. Using complex
notation, the transmltted 51 nal block is C € CV*E the
channel matrlx is H € CM*¥ and the additive noise block

is V.e CM*L, The noise is assumed to be zero mean, white,
complex Gaussian distributed with unit variance. The re-
ceived signal block Y € CM*% is then modeled as

Y =HC+ V. (1)

Without loss of generality the system is normalized so
that E [|[H||%] = MN. Given these normalizations, the sig-
nal to noise ratio (SNR) is defined as the average transmitted
power P =L 'E[||C|%].

2.1 Channel state information model

Partial or imperfect CSI implies some amount of uncertainty
about the channel matrix, H. Assume that H given the
CSI, ¢, is distributed as

vec(H|¢) ~ C’N(vec(I:I)7 SH), (2)

Su = Enye [vee(H — H) (vee(H — H)) "], (3)

where the CSI consists of H and Xu. As an example, the
transmitter may have an imperfect channel estimate ﬂ, that
is corrupted by some estimation error, H = H — H, which
is spatially correlated as E [vec(H)vec(H)"] = ¥n. For
simplicity, throughout this work the estimation error will be
assumed to be uncorrelated, i.e. Xy proportional to I.

3. PERFORMANCE BOUND

The expectation of the probability that a transmitted code-
word C; is detected as another codeword C; when perform-
ing ML-detection is denoted the block error rate, P.. In gen-
eral, the block error rate is difficult to evaluate analytically
and we chose to approximate it with the union bound

[Z Pr(Ci—C)] > P

The bound is fairly tight for high SNR. Assume codewords
are uniformly drawn from a finite sized codebook C so that
the probability mass function is constant, p(C;) = |C|™!
where | - | denotes the cardinality of a set. Introducing the
Q-function for the pairwise error probability [13] yields

e[S o MO
J#l

From (4) we see that the double sum essentially corresponds
to expectation over independent identically distributed ran-
dom variables C; and C; that are uniformly distributed in C.
The union bound depends on C;, C;, and H only through

1

Z(H) = §HH(C¢ - C))l%,

which will be referred as the separation profile. The case
i = j is not included in (4) so we define a function g(x) to
cancel out these terms

0, 2<0
g(@) = 1, z>0

Using the definition of the separation profile and g(z), the
union bound (4) is reformulated as

~ 1€l B | Bow [Q(/ZED) o(20)] | )

The performance bound is the base for the following discus-
sion on LDC design.

4. LINEAR DISPSERSION CODE DESIGN

Assume an LDC with quadrature amplitude modulated
(QAM) or pulse amplitude modulated (PAM) symbols
stacked in a vector x, where the codewords are written on
the following form

vec(C) = Fx.

The dispersion matrix F is a data-independent precoding
matrix, whereas the data is mapped on the vector x, assumed
to have discrete-random elements that are statistically inde-
pendent, zero mean and have variance one. The number of
data streams is typlcally an 1nteger multiple, K, of the block
length, L, hence F € CV L (where NL > KL) defines
how the symbols are spread in space (and time if L > 1).
Since the symbols are QAM or PAM, the difference between
two codewords is a vector on the complex integer lattice as
follows

1 1
—vec(C; — Cj) = —
\/§ ( ]) \/5
where z € Txr = {Z5F 4251\ {0%F} (the set of complex
integer vectors excluding the origin), and the diagonal matrix
3 scales z to ensure unit variance of x. From these assump-

tions the separation profile can be written on a quadratic
form

F(x; —x;) = FXz,

ZH) =z"SF'QuF Xz

where Qu = I ® H"H. The goal is to find the optimal bit
load (i.e. element constellations of z, with its corresponding
normalization matrix 3), and precoder F that maximizes
(5). Unfortunately this problem is very difficult. Instead, a
suboptimal scheme is proposed by first analyzing the prob-
lem assuming perfect TX-CSI resulting in a minimum dis-
tance performance measure. Then, introducing CSI imper-
fections, a constraint on the precoder is imposed to maintain
robustness. Finally, a precoder that is robust, while exhibit-
ing good minimum distance properties is proposed.

Due to the steep (logarithmic) decent of the Q(-) func-
tion, a good strategy is to maximize the separation profile
(minimum distance), which if Qg is deterministic can be
formulated as

max min z" TF'QuF Xz (6)
Tr{FHF}<PLzEIKL

This optimization must be repeated for all possible bit load
constellations (and implicitly X), with the maximizing bit
load then selected for transmission. Clearly, this is not a
convex problem and no analytical solution has been found
in the general case. Furthermore, if Qg is stochastic the
problem becomes ever harder. By imposing certain TX-CSI
dependent structures on F the problem can be simplified,
which allows us to draw some conclusions as shown in the
following subsections.
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4.1 Diagonalizing precoder

If the matrix Qu is perfectly known to the transmitter,
a common precoding strategy is to let F diagonalize the
channel so that the crosstalk is eliminated [1, 14]. As-
sume the singular value decomposition of Qg is UnAxUL.
Let Ag € CKEXEL 16 the diagonal matrix with the KL

strongest singular values, and let Un € CVEXEL be the cor-
responding eigenvectors from Ug. A diagonalizing precoder
must be on the form F = fJHA7 where A € CEEXKL g dj-
agonal and positive definite. Within this class of precoders,
problem (6) has an analytical solution (see Appendix A)

F=aUuAg/’s .

The scalar coefficient « ensures that the power constraint
on the system is fulfilled. By redistributing the bit load
on the spatial channels, 3 can be used to compensate and
improve the power efficiency for potentially ill-conditioned
channel matrices. Unfortunately, this diagonalizing precoder
can show weak performance when the CSI is imperfect. To
see this, introduce a small perturbation on the Qu matrix,
Qu = Qu + A, where A is hermitian but not necessar-
ily positive semi-definite (PSD). The perturbed separation
profile becomes

ZH) = o’ 2" 1+ Ag " UBAUuAL )z, (7)
The smallest eigenvalue of Ax will magnify the second term
and potentially destroy the minimum distance separation.
Thus, unless the channel eigenvalues are roughly equal, this
precoder structure is not robust to imperfections in the chan-
nel estimate.

4.2 Non-diagonalizing precoder

In order to define a precoder that is robust while still pro-
viding good minimum distance separation we propose to use
a precoder where FX is unitary, so that the second term in
(7) is not magnified by large eigenvalues. More specifically
the following structure is chosen

- -1 2 PL
F=pU0uUX" ", p ORIE
where U is a unitary matrix that should be selected to max-
imize the minimum distance, and the bit load should be as
evenly distributed as possible to maximize the power effi-
ciency. Ideally, for certain bit rates ¥ can be proportional
to the identity matrix, making the precoder completely uni-
tary. In [8], unitary precoders were proposed for peak-power
limited, quantized feedback precoders, and although the sce-
nario herein is somewhat different this further motivates us-
ing this precoder for perturbed channels.

The optimal U depends on the singular values Ag and
is difficult to derive in the general case. However, the fol-
lowing upper bound on the minimum distance (disregarding
the constant 3?)

[U AHU]“ > m%n iyt AHUz
z€

i= 1

is maximized if U is a DFT matrix, Uppr. This suggests a
DFT-based precoder will have good minimum distance prop-
erties. While the upper bound does not guarantee large min-
imum distance, for U = Uppr a lower bound can be derived
(see Appendix B),

. HpH X
min z° UpprAaUprrz >
z€T

6{1 KL} n2 Z k>

where Aj contains the diagonal elements of Ap sorted in
increasing order. Interestingly, the lower bound coincides
with the upper bound if the singular values are roughly equal,
making the DFT precoder optimal. In the other extreme
when the smallest singular value is significantly lower than
the others, the lower bound can be simplified to

N H H 1 . e
min z UpppAuUprrz > K min[Aulk k,
z€Tly k

which is a factor K times larger than what can be guaran-
teed with an arbitrary unitary matrix. In any case the DFT
matrix always outperforms U = I in terms of minimum dis-
tance.

To conclude, our proposed precoder is on the form

- PL
—1 2

F :ﬁUHUDFTZ ) ﬁ = Tr{2—2}7

and shares similarities with the precoder that was proposed
for linear receivers in [7], although our problem and the mo-
tivations are somewhat different due to the non-linear ML-
detection applied herein.

5. NUMERICAL EXAMPLES

This section presents simulation results that demonstrate the
gains attained by using the non-diagonalizing precoder as op-
posed to diagonalizing precoders. The channel is modeled as
a Rayleigh, MIMO block fading channel with no correlation
between the matrix elements, i.e. the a-priori distribution
of the channel matrix is vec(H) ~ CN(0,I). At all times,
the channel matrix is assumed to be perfectly known at the
receiver while the TX-CSI is imperfect. The distribution of
the channel given the TX-CSI, H|(, is
vec(H|¢) ~ CN (Vec(}AI)7 (1- 02)1),

where H is an imperfect channel estimate. It is reasonable
to assume that the estimation error is uncorrelated with the
estimate, making the a-priori distribution of the channel es-
timate

vec(H) ~ CN(0,0°T). (8)
The parameter o2 € [0, 1], is a measure of the quality of the
channel estimate, 02 = 0 implies no instant channel knowl-
edge (although the a-priori statistics are known), and 0% = 1
is equivalent to perfect channel knowledge.

Although the proposed LDC can be designed for ar-
bitrary block lengths, this example assumes block length
L = 1 for simplicity. The constellations used for the spa-
tial channels are rectangular QAM, and the receiver employs
ML detection implemented using the sphere-decoding tech-
nique [15].

5.1 The benchmarking schemes

The proposed robust precoding scheme from Section 4.2
will be compared with the diagonalizing precoder from Sec-
tion 4.1 as well as two benchmarking transmission schemes,
blind transmission and optimized BPL.

-Blind transmission: The first benchmarking scheme is
the well known V-BLAST scheme [16], where the bits are
evenly distributed among the spatial channels and no linear
precoding is performed. This scheme does not consider the
TX-CSI at all, and should intuitively perform the worst.

- Optimal diagonal BPL transmission: The second bench-
marking scheme was presented in [12], in which the linear
precoder has the following form

F = UgAX ™!,
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Figure 1: Monte Carlo simulated block error rate for a Rician
8 x 8 MIMO channel at different data rates. Four precoding
strategies are compared. The SNR is set to 16 dB and the
TX-CSI quality is o? = 0.8.

where Un contains the unitary eigenvectors of Egy)c [H"H],
A is a diagonal matrix that defines the power allocation to
the spatial channels, and ! is a diagonal matrix that scales
the symbols to the complex integer lattice (with an offset
70.540.5). The power load, A, and bit load are optimized
to minimize the union bound of the block error rate given
the TX-CSI. This optimization is complicated and not dis-
cussed in this paper, but this scheme is essentially optimal
given the constraints of the code structure and disregarding
some approximate steps in the design procedure [12]. It is
important to point out that this is not the suboptimal di-
agonalizing scheme from Section 4.1 which assumed perfect
CSI and only considered maximizing the minimum distance
(not minimizing the union bound).

5.2 Simulation procedure and results

In this numerical example, 15 channel estimates were drawn
independently according to (8). For each channel estimate
LDCs where designed as described above (and optimized for
the BPL code) at design data rates from 16 to 26 bits per
channel use. The block error rate of the codes where then
evaluated using Monte Carlo simulations of the joint ML-
detection. Finally the block error rates where averaged over
the channel estimates to approximate the long term error
rate at each uncoded bit rate level.

Figure 1 shows the average performance as a function of
the uncoded data rate. The MIMO system has eight trans-
mitting and eight receiving antennas, the SNR is set to 16
dB, and the quality of the TX-CSI is 0? = 0.8. From the
plot we can conclude that the robust precoder outperforms
both the precoder from Section 4.1 and the optimized BPL
precoder. This is a great improvement considering the design
complexity is significantly lower for the robust precoder (at
least in the latter case). No costly union bound evaluations
and no iterative optimization of the spatial bit and power
load are required what so ever.

6. CONCLUSIONS

Diagonalizing codes for MIMO systems using ML receivers
were observed to suffer from problems with robustness when
the TX-CSI is imperfect. A non-diagonalizing precoding
technique that has been proven effective for linear receivers,
was proposed to improve robustness. It was shown that the

code also has good minimum distance separation between
received codewords. The code is very suitable for systems
operating at high data rates due to its low design complex-
ity. Numerical results show that the precoder outperforms a
state-of-the-art diagonalizing precoder.

A. DIAGONALIZING PRECODER: MAXIMAL
MINIMUM DISTANCE

Assuming perfect TX-CSI, we derive the maximum
minimum-distance precoder for the class of diagonalizing
precoders. The singular value decomposition of Qg is
UuAnUL. Let Uy € CNIXEL be the columns of Uy that
corresponds to the KL strongest singular values. Assume
the precoder has the following form F = UgA'/2. Then the
optimization problem (6) is

. H 2 &

max min z X°AAgz= max t,
Tr{A}<PLzELK 1TA<PL
1t<AgS3A

where A is the vector of diagonal elements of the diagonal

matrix A, and 1 is the unit vector. Since 22AH is diagonal
and strictly positive, the second inequality is equivalent with

AaZ®) "1t <A = 1TAuZ?) ' <1"A<PL =

PL
t < e = tmax
1T (Auz?) 11

This bound is attained when A = tmax ([XH 22)_117 and con-
sequently the maximizing minimum distance precoder is

F = Vimar UnAg 21

It is important that this type of precoders use bit loading
(that indirectly affects ¥) to maximize tmax. In this case
this is quite a simple numerical task though.

B. MINIMUM DISTANCE BOUND FOR THE
NON-DIAGONALIZING CODE

Here, a lower bound on the maximum minimum distance is
derived for the non-diagonal DFT precoders. For simplic-
ity, the proof will be shown for block length L = 1. The
extension to general L > 1 is straight forward.

A unitary DFT matrix, Uppr € CEXE  satisfy
UgFTUDFT = I7 and |[UDFT]i,j|2 = % fOI“ all ’i,j fI“OHl 1
to K. Given a complex valued vector, z, we define the real
valued vector

d= diag{UDFTzzHUgFT}.
The following rules are easily established

d; = |[UDFTZ]i|2 >0,

1Td = Tr{UDFTzzHUgFT} =z"z,

where 1 is the unit vector of length K. Now restrict z to lie
in the complex integer lattice (minus the origin),

z € I = {Z" + 2"} \ {0*},

hence either |z;| = 0 or |z;| > 1 for all <. As a consequence
of this

K
Y |zl <z 9)
k=1
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Using the triangle inequality, (9), and the properties of the
DFT matrix we have

K
2
d; = |[UDFTZ]Z'|2 = ‘Z[UDFT]i,kzk‘

K .
< (kzzo|[UD1«“T]Z~,,C||ZIC|)2 < (z"z) o

Let A € Rf be vector ordered such that 0 < A3 < A2 < ... <

Ar. Since each dy, € [0, dmax] and they sum up to z"z we
know that
N dmax, 0,0, ..., 0]

,dmax,z z —

d = [dumax, dmax, .-

~~

n elements

where n = floor(K/2z"z) gives a lower bound to dTJ, i.e.

(zl;(Z)Q ((£ —n)Anis *Z"k)

This bound contains z which makes it a little tedious to work
with. It is however possible to remove this dependency by
lower bounding the lower bound as follows. Define

d™Ax>dTa =

r=K/z"z—ne|0,1).

If z%'z > K, then n = 0 and the lower bound becomes dTA >
Xi1z'z > X\ K. With a similar approach, we will now analyze
the bound for all possible n = 0,1, ..., K. Define a helping
function f(-) as

d'x 1

We wish to find a lower bound for all r € [0, 1], hence we
should minimize the function

T+«
f(r)= CESSER 0<a<n.
Differentiation tell us that f(r) has one optimum on r €
(—00,00) that is a maximum. Hence, the minimum in r €
[0,1] must occur on the boundaries. In fact, if » = 0 both
points will be considered when n ranges from 1 to K since
r = 0 implies 7 = 1 when n is one smaller. Assuming X\ is
the sorted diagonal elements of Ax, we have proven that the
minimum distance can be lower bounded as

K} n2 Z)\k

It may be hard to interpret the bound intuitively. However,
if the elements of A are roughly equal, then the minimizing
n = K, while the minimizing n equals 1 if the A; is much
smaller than the other Ax’s.

. HyqH X
min z UpprAuaUpprz > >
z€ET K
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