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ABSTRACT

We consider the combined problem of performance op-
timization and interference control in wireless mesh and
ad-hoc networks. Relying on the specific construction of
the generalized Lagrangian function we propose a simple
primal-dual unconstrained iteration providing convergence
to a (local) optimum under arbitrary performance objectives.
We present a decentralized implementation of such routine
in linear networks.

1. INTRODUCTION

Over the last decade we have observed a lively evolution
of wireless ad-hoc networking, established within the IEEE
802.11, 802.15 and 802.16 standards. A related network
form, regarded sometimes as a special case of an ad-hoc net-
work and sometimes as its generalization, evolved recently
and is referred to as a mesh(ed) network [1]. Wireless mesh
networks may soon turn out to be a disruptive technology for
home/ neighborhood and enterprise networking. The poten-
tial of mesh networks already pushed forward the activities
in reinvention and enhancement of existing MAC and rout-
ing concepts for ad-hoc networks, aiming especially at the
improvement of scalability achieved in mesh networks. A
wireless mesh network consists of a mesh of wireless ac-
cess areas ofmesh clients, connected (in general) by the
mixed wired-wireless backbone ofmesh routersand having
a backhaul access to some wired network. In the case of
so calledinfrastructureor backbone meshing, mesh clients
access the mesh routers, e.g. for backhaul internet access,
or communicate peer-to-peer across different wireless access
areas through the mesh routers as in the multihop ad-hoc net-
work. In the case of so-calledhybrid meshingadditionally
a direct peer-to-peer communication within one access area
is possible. In this way, mesh networks allow for the inte-
gration and inter-communication between different wireless
standards, e.g. WLANs, cellular standards, sensor networks,
etc.

A well-known key problem in ad-hoc and mesh networks
is interference of links activated concurrently in different,
spatially separated areas (clusters). In mesh networks such
clusters correspond naturally to different wireless access ar-
eas, e.g. concurrently activated WLAN and sensor network
for building surveillance. In a multihop ad-hoc network such
cluster structure is determined implicitly by link scheduling.
I.e., the clusters can be identified with spatially separated
link ensembles, which are activated concurrently within a

multi-hop transmission policy. It is therefore intuitive that
the overall multihop performance of the mesh/ ad-hoc net-
work is improved if some appropriate performance objective
in each cluster is optimized, while the intercluster interfer-
ence is kept at some appropriately small level. In energy-
constrained networks we can think of a clusterwise objective
in form of the transmit sum-energy, to be minimized subject
to certain data-rate constraints per link. Similarly, under elas-
tic traffic the objective is likely to be some weighted sum of
per-link QoS parameters [2], [3], [4], [5], to be optimized in
each cluster. Due to the above there is some interest in the de-
velopment of efficient algorithms optimizing the clusterwise
performance and controling the intercluster interference. El-
ementary requirements on candidate algorithms are clearly a
fast convergence rate, low computational complexity (in par-
ticular, an unconstrained character with no need for paying
attention to constraints may be of advantage) and a decen-
tralized implementation, consisting in decoupled actions of
nodes in the cluster.

In this work we present a performance optimization and
interference control algorithm satisfying those requirements
(Section 4.1). The iteration relies on a specific construc-
tion of the Lagrangian function (Section 3), which ensures
positive definiteness on certain stationary points. The pro-
posed algorithm corresponds to an unconstrained search of a
saddle-point of such Lagrangian in the primal-dual domain.
Without the special Lagrangian construction no iteration of
comparable simplicity and convergence rate could be de-
signed. We prove linear convergence of the algorithm (Sec-
tion 4.2) and propose a decentralized implementation scheme
for networks with linear receivers (Section 5).

2. PROBLEM STATEMENT AND MOTIVATION

2.1 Performance in mesh and ad-hoc networks

We consider a cluster of a multihop ad-hoc network (as
explained in the introduction) or an access area to a sin-
gle mesh router in the infrastructure or hybrid mesh net-
work. In what follows we refer to both structures as clus-
ters. We assume the setA to be the set of concurrently
transmitting nodes in the cluster, i.e.k∈A are concurrently
transmitting (peer-to-peer) nodes in the ad-hoc network, or
nodes concurrently accessing the mesh router in the mesh
network. The transmit powers are grouped in the (column)
vectorp = (p1, . . . , p|A |). The vector of maximal allowed
per-node transmit powers is denoted byp̂ = (p̂1, . . . , p̂|A |).
The signal-to-interference-and-noise-ratio (SINR) of a link is
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the decisive parameter in terms of per-link quality-of-service
(QoS) or performance. For instance, the data-rate or bit-
error-rate as the QoS parameters of common use are mono-
tone functions of the corresponding link-SINR. We denote by
γk(p), k∈A the SINRs at the receivers of peer-to-peer links,
or at the mesh router. We denote byF , with p 7→ F(p), the
real-valued function expressing the efficiency of concurrent
transmission of nodesk ∈ A . Throughout the work we as-
sumeF to be twice Frechet-differentiable. We put no further
assumptions onF , so thatF is allowed to have an arbitrary
number of stationary points. For instance, with real-valued
function φ , γ 7→ φ(γ), as the SINR-dependent QoS/ perfor-
mance function, we can think here of the ratio of sum-QoS
to transmit energyF(p) = ∑k∈A φ(γk(p))/∑k∈A pkT (T as
time of operation) as an appropriate objective for clusters
with sensor nodes. Further, the weighted sum of link-QoS
functionsF(p) = ∑k∈A αkφ(γk(p)), with traffic-dependent
weightsαk≥ 0, is an established objective mirroring the effi-
ciency of wireless and wired communication under so-called
elastic or best-effort traffic, see e.g. [2], [3], [4], [5]. With in-
creasingφ andφmin

k as the minimum acceptable QoS value of
k-th link we can also think of the smallest ratio of perceived
and required QoS, i.e.F(p) = mink∈A φ(γk(p))/φmin

k , as the
objective suitable for clusters with minimum service traffic,
like e.g. delay-constrained multimedia streams (here we do
not have Frechet-differentiability).

2.2 Interference control and problem formulation

We denote byB 3 k the set of certain nodes located near the
boundary of the cluster and referred to as(interference-) crit-
ical nodes. Due to their location, the strength of all link sig-
nals measured at such nodes allows for the prediction of the
interference caused by the cluster signals within the neighbor
clusters. By setting suitable local constraintsĝk on certain
real-valued functionsgk, p 7→ gk(p), k ∈B, expressing the
signal power measured at critical nodes, the interference to
neighbor clusters can be kept at an acceptable level. In par-
ticular, under the use of linear receivers the suitable function
gk at nodek ∈ B is the directly received signal power, i.e.
gk(p) = ∑ j∈A Vjk p j + nk, with nk as the background noise
variance andVjk as the squared magnitude of the channel co-
efficient to thej-th transmitter (ifk∈A ∩B we setVkk = 1
since the transmission and measurement locations coincide).
Summarizing the above, the joint problem of performance
optimization and inter-cluster interference control in mesh/
ad-hoc network can be formulated for each cluster as

min
p

F(p), subject to

{ −p≤ 0, p− p̂≤ 0
gk(p)− ĝk ≤ 0,k∈B,

(1)

where we assumed that the global minimum ofF represents
the optimum performance. In the remainder we restrict the
class of objectivesF very slightly by concentrating on those,
which can be referred to asfair.

Definition 1 Assumingp̃ to be a minimizer in problem (1),
we refer toF as to a fair objective iff̃p > 0.

Clearly, fairness ofF is in particular implied by the property
limn→∞ F(p(n)) = ∞, with limn→∞ p(n) = p̃, such that there
existsk ∈ A , such thatp̃k = 0. In particular, from [3] is
known that a weighted sum of data-rates and a weighted sum
of bit-error-rates are fair objectives. Fairness of the objective

allows for a bijective transformation of the optimization do-
main of the formx = log(p) (it is assumed throughout that
log(a) = (loga1, . . . loga|A |) and exp(a) = (ea1, . . . ,ea|A |),
a ∈ R|A |). This allows for the simplification of (1) by drop-
ping the nonnegativity constraint, which results in the equiv-
alent formulation of (1) in the form

min
x

F(exp(x)), s.t.

{
exp(x)− p̂≤ 0
gk(exp(x))− ĝk ≤ 0,k∈B.

(2)

Notice, that the first constraint is convex. Hence, convexity
of the problem, or at least the existence of only global min-
imizers, is determined purely by the properties ofF andgk,
k∈B.

2.3 Requirements on the algorithmic solution

It is easy to agree on three essential requirements ensuring
efficient implementation of a candidate algorithmic solution
to (2) in mesh and ad-hoc networks.
1.) The iteration should exhibit fast local convergence to
the (local) minimizer of (2) under a maintainable complexity.
Clearly, ifF andgk, k∈B imply the existence of only global
minimizers, the convergence is to the global minimizer. A
linear or superlinear quotient convergence (see Section 4.1)
appears to us to be sufficient.
2.) The iteration should be of unconstrained nature. This
means that, while the obtained minimizer is obviouslyfea-
sible (satisfies all constraints in (2)), no attention needs to
be payed for feasibility of consecutive iterates. This brings
complexity advantages and prevents the deterioration of the
convergence speed due to projecting of infeasible iterates
onto the optimization domain, e.g. by the gradient projec-
tion [8]. Furthermore, unconstrained iteration is in general a
necessary condition for decentralized implementation, since
in general ensuring feasibility of the iterates requires global
knowledge at each iterating node.
3.) A decentralized implementation, requiring local actions
at certain nodes based on their local knowledge, should be
possible. The provision of necessary local knowledge by
means of peer-to-peer feedback at each link is maintainable.
The algorithm proposed in Section 4.1 satisfies all three re-
quirements.

3. GENERALIZED LAGRANGIAN

The fulfillment of the above requirements needs a specific
construction of a generalized Lagrangian as a basis for the
proposed iteration. We begin with some basic notions from
optimization theory. For notational simplicity in this and the
next section we use a uniform formulation of all constraints
in (2) ashk(x) ≤ 0, k ∈ K , with setK such that|K | =
|A |+ |B|.
3.1 Some optimization-theoretic notions

It is well-known that the common (i.e. linear) form of the
Lagrangian function of the studied problem is now

L0(x,λ ) = F(x)+ ∑
k∈K

λkhk(x), (3)

with λ = (µ1, . . . ,µ|K |) ≥ 0 as the vector of dual variables.
We letT (x) := {k∈K : hk(x) = 0} be the set of tight (i.e.
satisfied with equality) constraints atx.
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Definition 2 Strict complementarity is said to hold at(x,λ )
iff λk 6= 0, k∈T (x).

Strict complementarity atx can be interpreted as theactual
tightness of the constraints, in the sense that loosening of any
constraint atx implies the existence of some feasiblex̃, such
thatF(x̃) < F(x).

Definition 3 Constraint qualification is said to hold atx iff
∇hk(x), k∈T (x) are linearly independent.

In all statements of the paper it is implicitly assumed that the
constraint qualification holds.

Definition 4 The second order sufficiency conditions
(SOSC) are said to be satisfied at the stationary point(x,λ )
of the Lagrangian (3) of problem (2) iff
i.) (x,λ ) satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions,
ii.) xT∇2

xL0(x,λ )x > 0 for x 6= 0, satisfying∇Thk(x)x = 0
for k ∈ T (x) with λk > 0 and satisfying∇Thk(x)x ≤ 0 for
k∈T (x) with λk = 0.

SOSC are of immense importance in the development and
analysis of locally convergent algorithms for nonconvex op-
timization problems, since they distinguish the local mini-
mizers of the problem from other stationary points of the La-
grangian. Note that under strict complementarityk ∈ T (x)
impliesλk 6= 0.

3.2 Lagrangian Construction

One of the aims of our Lagrangian construction is the prop-
erty of positive definiteness at points satisfying SOSC. This
is the necessary condition for convergence of the proposed
unconstrained iteration and is not guaranteed by the common
Lagrangian (3) in the very most cases. The first Lagrangian
construction with such property, applicable to equality con-
strained problems, has been proposed by Hestenes [10] (see
also [11]). In [12] and [13] related sophisticated construc-
tions have been presented. We propose a Lagrangian differ-
ent from the ones in [12], [13].

Definition 5 We define the Lagrangian

L(x,µ,c) = F(x)+ ∑
k∈K

ψ(φ(µk)hk(x)+c), (4)

with some constantc≥ 0, twice differentiable functionψ :
R→ I , I ⊆ R, satisfying
Conditions 1:
i.) ψ ′(y) > 0, y∈ R (increasingness),
ii.) ψ ′′(y) > 0, y∈ R (strict convexity),
iii.) ψ ′′(y) is nondecreasing,
and functionφ : R→ R+ satisfying
Conditions 2:
i.) φ(y) = φ(−y), y∈ R (evenness),
ii.) φ(y)≥ 0, y∈ R (nonnegativity),
iii.) ( φ(y) = 0 iff y= 0) and (φ ′(y) = 0 iff y= 0) andφ ′′(0) >
0 (unique minimum with value0 at 0).

Numerous functions satisfy Conditions 1 and 2. Prominent
examples areψ(y) = ey and φ(y) = y2n, n ∈ N+. For the
arguments in (4) we should sometimes write shortlyz :=
(x,µ).

The following Proposition characterizes a one-to-one
connection between points satisfying the KKT conditions
and stationary points ofL(z,c).

Proposition 1 Let λ = (λ1, . . . ,λ|K |) ≥ 0, and for anyµ ∈
R|K | let ν(µ) := ν = (ν1, . . . ,ν|K |) be any of the vectors
satisfyingνk = ±µk and λk = ψ ′(c)φ(νk), k ∈ K . Point
(x,λ ), with x feasible, satisfies the KKT conditions of prob-
lem (2) if and only if each point(x,ν) is a stationary point
of Lagrangian (4).

Sketch of the proof:Assume first(x,λ ) satisfies the KKT
conditions. Then, due to complementary slackness condi-
tions and∇xL0(x,λ ) = 0 we have

∇xF(x)+ ∑
k∈T (x)

λk∇xhk(x) = 0. (5)

With the assumptions and Conditions 1, 2 follows further

{
λk = 0 iff µk = 0 iff φ(µk) = 0
λk > 0 iff ±µk 6= 0 iff φ(±µk) > 0.

(6)

The assumptions with respect toλ and ν , complementary
slackness conditions, (5) and (6) yield now together

∇xL(x,ν ,c)=∇xF(x)+ ∑
k∈T (x)

φ(νk)ψ ′(c)∇xhk(x)=0.

For any (x,µ) we have further [∇µL(x,µ,c)]k =
ψ ′(φ(µk)hk(x) + c)φ ′(µk)hk(x), k ∈ K . We get
[∇µL(x,ν ,c)]k = 0 for k ∈ T (x) immediately due to
constraint tightness and the same fork /∈ T (x) due to
complementary slackness and (6). Conversely,hk(x) ≤ 0
holds already by assumption andλ ≥ 0 by assumptions and
Conditions 1, 2. Starting now with∇L(x,ν ,c) = 0, implies

{
∇xF(x)+∑k∈K φ(νk)ψ ′(φ(νk)hk(x)+c)∇xhk(x) = 0
ψ ′(φ(νk)hk(x)+c)φ ′(νk)hk(x) = 0 k∈K .

(7)
The complementary slackness conditions and∇xL0(x,λ ) =
0 can be now obtained in the similar manner as above by
applying to (7) Conditions 1 and 2, (6) and the assumptions
with respect toλ andν .

It can be observed that due to evenness ofφ a single KKT
point of problem (2) corresponds to2|K | stationary points of
L(z,c), which are equivalent in terms of the objective value.
In terms of iteration convergence it is therefore not of inter-
est which of such points is the point of attraction of the it-
eration. The next statement concerns the announced positive
semidefiniteness ofL(z,c) at any SOSC point.

Proposition 2 If the point z̃ = (x̃, µ̃) is a stationary point
of L(z,c), such that(x̃, λ̃ ) related toz̃ as in Proposition 1
satisfies SOSC and strict complementarity conditions, then
for all c≥ c0, with some finitec0 holds∇2

xL(z̃,c)Â 0.

Sketch of the proof:We have in general

∇2
xL(z,c) = ∇2

xF(x)+

∑
k∈K

(φ2(µk)ψ ′′(φ(µk)hk(x)+c)∇xhk(x)∇T
xhk(x)+

φ(µk)ψ ′(φ(µk)hk(x)+c)∇2
xhk(x)).

(8)

If T (x̃) = ø then µ̃ = 0 due to ∇L(z̃,c) = 0 (see (7)).
Hence, by Conditions 1 and 2 and SOSC follows∇2

xL(z̃,c) =
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∇2
xF(x̃) Â 0, i.e. x̃ is a local isolated minimum ofF(x). If

T (x̃) 6= ø, then again by Proposition 1 and Conditions 1 and
2 µ̃k = 0, k /∈ T (x̃). Hence, takingz = z̃ in (8) we get with
the assumptions oñλ from Proposition 1

∇2
xL(z̃,c) = ∇2

xL0(x̃, λ̃ )+

∑
k∈T (x̃)

φ2(µ̃k)ψ ′′(c)∇xhk(x̃)∇T
xhk(x̃). (9)

From strict complementarity, Proposition 1 and Conditions
1, 2 followsφ2(µ̃k)ψ ′′(c) > 0, k∈ T (x̃). Due to SOSC ii.)
we can now apply to (9) Debreu’s Theorem [9] and conclude
that there exists some finiteb0 := φ2(µ̃k)ψ ′′(c0), such that
for all b= b(c) := φ2(µ̃k)ψ ′′(c), b≥ b0 holds∇2

xL(z̃,c)Â 0.
Finally, with nondecreasingness ofψ ′′, for eachb≥ b0 we
can find a correspondingc≥ c0.

With our Lagrangian definition it is now a matter of ele-
mentary calculations to yield the following property.

Lemma 1 If z̃ is a stationary point ofL(z,c), with x̃ feasi-
ble, then∇2

µL(z̃,c) is diagonal with[∇2
µL(z̃,c)]kk = 0 for k∈

T (x̃) and[∇2
µL(z̃,c)]kk = ψ ′(c)φ ′′(0)hk(x̃) for k /∈T (x̃).

An important corollary arises now from Proposition 2 and
Lemma 1.

Corollary 1 At any stationary point̃z of L(z,c), such that
(x̃, λ̃ ) related to z̃ as in Proposition 1 satisfies SOSC,
we have∇2

µL(z̃,c) ¹ 0 and there exists finitec such that
∇2

xL(z̃,c) Â 0. Hence,z̃ is a saddle point ofL(z,c) iso-
lated overx, i.e. there exists some neighborhoodS(x̃) 3 x̃,
such that forµ ∈R|K |, x∈S(x̃) holdsL(x̃,µ,c)≤ L(z̃,c) <
L(x, µ̃,c).

Notice again that such saddle point property does not hold for
the Lagrangian (3). In fact, a stationary point ofL0(z) may
satisfymaxλ≥0minx s. t.(2) L(x,λ ) (i.e. is a max-min point),
but it is in general not a saddle-point.

4. ALGORITHM CONSTRUCTION

4.1 Optimization principle and iteration form

From the last section follows that the problem of perfor-
mance optimization and interference control (2) corresponds
to finding of a saddle point of the generalized Lagrangian
(4). If problem (2) has only global minimizers, then any sad-
dle point from Corollary 1 corresponds to the same objec-
tive value and we can speak of an efficiently solvable prob-
lem. Our algorithm corresponds precisely to the primal-dual
search of a saddle point ofL(z,c), based on the simple gra-
dient method. With step-sizes> 0 then-th iteration step can
be formulated as

z(n+1) = z(n)+sdiag(−I|A |,I|K |)∇L(z(n),c) (10)

(In is identity matrix of sizen). This implies that primal steps
(over the logarithmic transmit powersx) and dual steps (over
the vector of dual variablesµ) are conducted concurrently.
By the Lagrangian construction there are no constraints on
the dual variablesµ. Moreover, iteration (10) provides lo-
cal convergence to a local minimum of (2) without requir-
ing feasibility ofx(n+1) after each iterationn∈ N. This is
shown in the next Proposition and implies that the algorithm
requires no steps or actions in addition to (10) at all.

Proposition 3 Assume that̃x is a (local) minimizer of (2),
such that strict complementarity condition holds at(x̃, λ̃ ).
Then, under the step-size choice

s< min
1≤k≤|A |+|K |

2Reσk(diag(−I|A |,I|K |)∇2L(z̃,c))
|σk(diag(−I|A |,I|K |)∇2L(z̃,c))|2 ,

(11)
with σk(·) as the eigenvalues,̃z is a point of attraction of
iteration (10) forc≥ c0 with some finitec0.

Sketch of the proof: By Proposition 2, if x̃ minimizes
F(x) locally, then z̃ is a stationary point ofL(z,c), with
L(z̃,c) Â 0 for somec≥ c0. Since (10) is a gradient-based
method, any stationary point ofL(z,c) is an equilibrium
point of mappingG(z) := z + sdiag(−I|A |,I|K |)∇L(z,c)
[14], with gradient∇G(z) = I+s∇2

(−)L(z,c), ∇2
(−)L(z,c) :=

diag(−I|A |,I|K |)∇2L(z,c). Takingz = z̃, we have

∇2
(−)L(z̃,c) =

[ −∇2
xL(z̃,c) −∇2

xµL(z̃,c)
∇2T

xµL(z̃,c) ∇2
µL(z̃,c)

]
, (12)

with ∇2
xL(z̃,c) given by (9),∇2

µL(z̃,c) given by Lemma 1
and∇2T

xµL(z̃,c) = ∇2
µxL(z̃,c). For thek-th row of∇2

µxL(z̃,c)
we yield from a simple calculation
{

[∇2
µxL(z̃,c)]k· = ψ ′(c)φ ′(µ̃k)∇T

xhk(x̃),k∈T (x̃)
[∇2

µxL(z̃,c)]k· = 0,k /∈T (x̃).
(13)

From Ostrowski’s Theorem is known thatz̃ is a point
of attraction of (10) if the spectral radius of∇G(z̃)
satisfies ρ(∇G(z̃)) < 1. By an elementary calcula-
tion one can show that fors > 0 this holds if and
only if max1≤k≤|A |+|K |Reσk(∇2

(−)L(z̃,c)) < 0 and

(11) hold. By block-skew-symmetry of∇2
(−)L(z,c)

we have Reσk(∇2
(−)L(z̃,c)) = Re(−vH

k ∇2
xL(z̃,c)vk +

wH
k ∇2

µL(z̃,c)wk), 1 ≤ k ≤ |A | + |K |, with

uk := (vk,wk) ∈ R|A |+|K | as the k-th eigenvec-
tor of ∇2

(−)L(z̃,c). By Corollary 1 follows now that

max1≤k≤|A |+|K |Reσk(∇2
(−)L(z̃,c)) ≤ 0. To show strict

inequality assume by contradictionReσk(∇2
(−)L(z̃,c)) = 0

for some k, which implies Re(∇2
(−)L(z̃,c)uk) = 0. By

Lemma 1 and since∇2
xL(z̃,c)Â 0 for somec≥ c0, we must

then havevk = 0 andT (x̃) 6= ø. Sinceuk 6= 0, by (13) it
follows then that∑i∈T (x̃) ai∇xhi(x̃) = 0, with at least one

ai := ψ ′(c)φ ′(µ̃k)w
(i)
k > 0. But this contradicts constraint

qualifications.

4.2 Convergence behavior

For the iteration (10), written shortlyz(n+ 1) = G(z(n)),
consider first briefly the convergence in absolute errors. Such
one is expressible by theroot convergence factor (of1-st or-
der)defined as

R(I , z̃) = sup
{z(n)}n∈I

limsup
n→∞

‖z(n)− z̃‖ 1
n , (14)

with I as the set of all sequences of iterates (10) convergent
to a point of attractioñz. It is an immediate consequence
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from Ostrowski’s Theorem [14] and the proof of Proposition
3, that for the presented algorithm holds

R(I , z̃) = ρ(G(z̃)) < 1, (15)

which is referred to as linear root convergence. More inter-
esting is the convergence of consecutive error ratios and the
related value of thequotient convergence factor (ofp-th or-
der, p≥ 1)

Qp(I , z̃) = sup
{z(n)}n∈I

limsup
n→∞

‖z(n+1)− z̃‖
‖z(n)− z̃‖p , (16)

defined ifz(n) 6= z̃ for all but finitely manyn∈ N.

Lemma 2 For any ε > 0 there exists a norm‖ · ‖ on
R|A |+|K |, such that for the iteration (10) holdsQ1(I , z̃) ≤
ρ(G(z̃))+ ε.

Sketch of the proof:With {z(n)}n ∈ I , for any neighbor-
hoodS(z̃) there existsn0 ∈ N, such thatz(n) ∈ S(z̃), n≥ n0.
Frechet-differentiability at̃z implies for anyε > 0 the exis-
tence of some neighborhoodS(z̃) with the correspondingn0,
such that for anyn≥ n0 and any norm‖G(z(n))−G(z̃)−
∇G(z̃)(z(n)− z̃)‖ ≤ ε

2‖z(n)− z̃‖ [8]. Further we know that
for anyε > 0 there exists a norm satisfying‖A‖ ≤ ρ(A)+ ε

2
[8]. With z̃ = G(z̃) (Proposition 3) these arguments yield for
z(n) ∈ S(z̃)

‖z(n+1)− z̃‖= ‖G(z(n))−G(z̃)−∇G(z̃)(z(n)− z̃)
+∇G(z̃)(z(n)− z̃)‖ ≤ ‖G(z(n))−G(z̃)−∇G(z̃)(z(n)− z̃)‖
+‖∇G(z)‖‖z(n)−z‖ ≤ (ρ(G(z))+ ε)‖z(n)−z‖.
Hence,Q1(I , z̃)≤ ρ(G(z̃))+ ε follows immediately.

Hence, similarly to the root convergence, due to
ρ(∇G(z̃)) < 1 we have a linear quotient convergence of (10).
With Proposition 3, result (15) and Lemma 2 we arrive at the
following key result, verified in simulation in Section 6.

Proposition 4 Under any choice ofs satisfying (11), the
convergence of iteration (10) to a local minimum of (2) is
linear in roots and quotients.

5. DECENTRALIZED IMPLEMENTATION

Distributed implementation of an algorithm for mesh/ ad-hoc
networks is of central importance for its practical usefulness.
By distributed implementation we understand the lack of pro-
vision of global knowledge of optimization parameters to
all nodes, e.g. by means of the flooding protocol. Merely
the use of local per-link feedback from link-destinations to
corresponding link-sources appears to be maintainable. We
are fortunate that routine (10) allows for decentralized im-
plementation for certain optimization approaches. As a rep-
resentative approach we take the performance optimization
with interference control for best-effort traffic under the use
of linear single-user receivers. With no intercluster inter-
ference control such approach has been studied widely in
the framework of wired and wireless networks [2], [3], [4],
[5] and is especially applicable to networks carrying data-
traffic with no strict minimum-service requirements, like e.g.
high-rate file exchange. As announced in Section 2, in such
case the most common objective for (2) isF(exp(x)) =
∑k∈A αkφ(γk(exp(x))), with each weightαk≥ 0 determined

by the traffic-type priority on linkk ∈ A . An appropri-
ate signal measurement function at critical nodesk ∈ B
is simply the received power, i.e.gk(exp(x)) := gk(x) =
∑ j∈A Vjkex j +nk. Due to receiver linearity we have also for
the SINR of linkk∈A

γk(exp(x)) := γk(x) =
exk

∑ j∈A , j 6=kVjkex j +nk
.

Let now ηk, k ∈ B be the dual variables in (4) associated
with interference constraintsgk(x)− ĝk ≤ 0 andµk, k ∈ A
be the duals associated with power constraintsexk − p̂k ≤ 0.
In the above setting the decentralized implementation of
iteration (10) is possible mainly due to the concept of
adjoint network feedbackproposed in [6]. Such feedback
transmission corresponds to a specific scheme of concurrent
per-link feedbacks (from receivers corresponding tok∈A ),
which was shown to deliver the knowledge of[∇xF(x)]k to
each transmitterk ∈ A . Fortunately, by the same feedback
principle from nodesk ∈B it is possible to make the terms
[∇x ∑k∈A ψ(φ(ηk)(gk(x)− ĝk)+ c)]k and consequently the
terms[∇xL(z,c)]k available at nodesk∈A . Due to observ-
ability of termsexk − p̂k at nodesk ∈ A andgk(x)− ĝk at
nodesk∈B, the gradient iterations overµk are computable
locally at transmitter nodesk∈A and the iterations overηk
at the critical nodesk ∈ B. The resulting implementation
scheme can be written as follows (assumed is the knowledge
of φ , ψ, c and s at all nodes). Due to space constraints,
we must refer here to [6] for details on the adjoint network
feedback concept.

Implementation ofn-th iteration

1. Concurrent transmission with powersexk(n) by nodes
k∈A

⇒ knowledge ofgk(x(n)),γk(x(n)) and computability
of [∇ηL(z(n))]k at nodesk∈B.

2. a.) Per-link feedback ofγk(x(n)) by nodesk∈A .
b.) Adjoint network feedbackwith signals
sk = αkφ ′(γk(x(n)))γ2

k (x(n))/exk(n)

by nodesk∈A

⇒ computability of[∇xF(x(n))]k at nodesk∈A .

3. a.) Per-link feedback ofψ ′(φ(ηk(n))(gk(x(n))− ĝk)+
c) by nodesk∈A ∩B.
b.) Adjoint network feedbackwith signals
rk=ψ ′(φ(ηk(n))(gk(x(n))− ĝk)+c)
by nodesk∈B

⇒computability of[∇xL(z(n),c)]k at nodesk∈A .

4. xk(n+1) = xk(n)−s[∇xL(z(n),c)]k at nodesk∈A ,
µk(n+1) = µk(n)+s[∇µL(z(n),c)]k at nodesk∈A ,
ηk(n+1) = ηk(n)+s[∇ηL(z(n),c)]k at nodesk∈B.

6. SIMULATION RESULTS

We analyzed the convergence properties of the proposed al-
gorithm in simulation for a mesh/ ad-hoc cluster with|A |=
10 transmitting nodes and the setB of 4 critical nodes. As
the optimization problem statement we took the performance
optimization under best-effort traffic and linear receivers, as
described in Section 5. As the QoS function of interest we
nominated the data rate in high power regime, i.e. we set
φ(γ) = − log(γ). For such functionφ it is known from [3]
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Figure 1: Convergence of the algorithm (10) forK = 10 and
the optimization problem statement from Section 5.

that the problem has only global minimizers. In Figure 1
the convergence of the algorithm for different starting points
z(0) and different settings of parametersVjk, αk, nk, ĝk is
illustrated. For the Lagrangian (4) we chose the functions
ψ(y) = ey andφ(y) = y2. In our setting, the constantc in
the order of 10 turned out to be sufficiently large to ensure
positive definiteness and hence local convergence.

The observable slight oscillation results directly from the
unconstrained nature of iteration (10), since this allows the
converging iterate sequence to be temporary in the infeasible
region of variablesx.

7. CONCLUDING REMARKS

We were concerned with the problem of performance opti-
mization with interference control in wireless mesh and ad-
hoc networks. The studied problem consisted in clusterwise
optimization of some arbitrary QoS/ performance measure,
subject to power constraints on transmitter nodes and inter-
ference constraints on the cluster boundary, in order to con-
trol the intercluster interference. We constructed a specific
nonlinear Lagrangian function with certain needed proper-
ties (positive definiteness on some stationary points), which
allowed for the design of a simple iteration optimizing the
problem of interest and requiring no feasibility of consecu-
tive iterates. Linear root and quotient convergence of the pro-
posed iteration was shown. Finally, we showed that a slightly
extended implementation scheme from [6] allows for decen-
tralized implementation of the proposed routine in linear net-
works under best-effort traffic.

The generalized Lagrangian framework allows for more
efficient iteration designs. For instance, under combination
of a different generalized Lagrangian construction with a
specific approach of variable splitting, a different iteration
for the optimization of weighted sum of QoS functions is
proposed in [7]. The conditional Newton algorithm in

[7] is unconstrained and distributedly implementable as well,
while its convergence is quadratic.
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