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ABSTRACT multi-hop transmission policy. It is therefore intuitive that

We consider the combined problem of performance opth€ overall multihop performance of the mesh/ ad-hoc net-
timization and interference control in wireless mesh andVOrk iS improved if some appropriate performance objective

ad-hoc networks. Relying on the specific construction of" each cluster is optimized, while the intercluster interfer-
the generalized Lagrangian function we propose a simpl@ncet's.ke(';’t att sonk1e approp{;]at?!y fsmalll Itevel._ In Enefgy'
primal-dual unconstrained iteration providing convergencé:OPS ralnfeth n? wor stwe can thin (i abc us_e.rwl|sedo Jeb(.: 'V?
to a (local) optimum under arbitrary performance objectives'n orm of the transmit sum-energy, o bé minimized subjec

We present a decentralized implementation of such routinf Certain data-rate constraints per link. Similarly, under elas-
in linear networks tic traffic the objective is likely to be some weighted sum of

per-link QoS parameters [2], [3], [4], [5], to be optimized in
each cluster. Due to the above there is some interest in the de-
1. INTRODUCTION velopment of efficient algorithms optimizing the clusterwise

Over the last decade we have observed a lively evolutioRerformance and controling the intercluster interference. El-
of wireless ad-hoc networking, established within the IEEEEMentary requirements on candidate algorithms are clearly a
802.11, 802.15 and 802.16 standards. A related networf@st convergence rate, low computational complexity (in par-
form, regarded sometimes as a special case of an ad-hoc né€ular, an unconstrained character with no need for paying
work and sometimes as its generalization, evolved recentf§ttention to constraints may be of advantage) and a decen-
and is referred to as a mesh(ed) network [1]. Wireless meskalized implementation, consisting in decoupled actions of
networks may soon turn out to be a disruptive technology fopodes in the cluster. o
home/ neighborhood and enterprise networking. The poten- In this work we present a performance optimization and
tial of mesh networks already pushed forward the activitiednterference control algorithm satisfying those requirements
in reinvention and enhancement of existing MAC and rout{Section 4.1). The iteration relies on a specific construc-
ing concepts for ad-hoc networks, aiming especially at théion of the Lagrangian function (Section 3), which ensures
improvement of scalability achieved in mesh networks. ApPositive definiteness on certain stationary points. The pro-
wireless mesh network consists of a mesh of wireless ad2osed algorithm corresponds to an unconstrained search of a
cess areas ofnesh clients connected (in general) by the saddle-point of such Lagrangian in the primal-dual domain.
mixed wired-wireless backbone ofesh routersind having ~ Without the special Lagrangian construction no iteration of
a backhaul access to some wired network. In the case g@mparable simplicity and convergence rate could be de-
so calledinfrastructureor backbone meshingnesh clients  signed. We prove linear convergence of the algorithm (Sec-
access the mesh routers, e.g. for backhaul internet acce§§n 4.2) and propose a decentralized implementation scheme
or communicate peer-to-peer across different wireless accef¥ networks with linear receivers (Section 5).
areas through the mesh routers as in the multihop ad-hoc net-
work. In the case of so-callelaybrid meshingadditionally 2. PROBLEM STATEMENT AND MOTIVATION
a direct. peer-to-peer communication within one access aréf; parformance in mesh and ad-hoc networks
is possible. In this way, mesh networks allow for the inte-
gration and inter-communication between different wirelesVe consider a cluster of a multihop ad-hoc network (as
standards, e.g. WLANS, cellular standards, sensor networksxplained in the introduction) or an access area to a sin-
etc. gle mesh router in the infrastructure or hybrid mesh net-
A well-known key problem in ad-hoc and mesh networkswork. In what follows we refer to both structures as clus-
is interference of links activated concurrently in different,ters. We assume the set to be the set of concurrently
spatially separated areas (clusters). In mesh networks sudt@nsmitting nodes in the cluster, ilec </ are concurrently
clusters correspond naturally to different wireless access atransmitting (peer-to-peer) nodes in the ad-hoc network, or
eas, e.g. concurrently activated WLAN and sensor networRodes concurrently accessing the mesh router in the mesh
for building surveillance. In a multihop ad-hoc network suchnetwork. The transmit powers are grouped in the (column)
cluster structure is determined implicitly by link scheduling. vectorp = (pa,..., p.z|). The vector of maximal allowed
l.e., the clusters can be identified with spatially separateger-node transmit powers is denoted foy= (P1,. .., Py|)-
link ensembles, which are activated concurrently within aThe signal-to-interference-and-noise-ratio (SINR) o#alinkis
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the decisive parameter in terms of per-link quality-of-serviceallows for a bijective transformation of the optimization do-
(QoS) or performance. For instance, the data-rate or bitmain of the formx = log(p) (it is assumed throughout that
error-rate as the QoS parameters of common use are monleg(a) = (logay,...loga,,|) andexpla) = (ef,... e,
tone functions of the corresponding link-SINR. We denoj[e by, ¢ RIl). This allows for the simplification of (1) by drop-
(p), ke < the SINRs at the receivers of peer-to-peer links ,ing the nonnegativity constraint, which results in the equiv-
or at the mesh router. We denote Bywith p — F(p), the  zjent formulation of (1) in the form

real-valued function expressing the efficiency of concurrent

transmission of nodds < o/. Throughout the work we as- ] exp(x)—p <0

sumeF to be twice Frechet-differentiable. We put no further ~ minF (exp(x)), S-t-{ (exp(x)) — Gk < O,k € B (2)
assumptions ofr, so thatF is allowed to have an arbitrary G 9= 5, '

number of stationary points. For instance, with real-valueqyotice, that the first constraint is convex. Hence, convexity
function ¢, y — ¢(y), as the SINR-dependent QoS/ perfor- ot the problem, or at least the existence of only global min-

mance function, we can think here of the ratio of sSUm-QoSyjzers, is determined purely by the propertiesFofindgy,
to transmit energ¥ (p) = ke PK(P))/Skeer KT (T BS k.

time of operation) as an appropriate objective for clusters

with sensor nodes. Further, the wei_ghted sum of link-Qo$ 3 Requirements on the algorithmic solution

functionsF (p) = ke Ok@(W(p)), with traffic-dependent . . . .
weightsay > 0, is an established objective mirroring the effi- It IS €asy to agree on three essential requirements ensuring
ciency of wireless and wired communication under so-calledfiCient implementation of a candidate algorithmic solution
elastic or best-effort traffic, see e.g. [2], [3], [4], [5]. With in- 1© (2) in mesh and ad-hoc networks.

creasingpandyf™ s the minimum acceptable QoS vaue o ). [ eaton should extbit fast oca corvergerice to
k-th link we can also think of the smallest ratio of perceived plexity.

and required Q0S, i.€ (p) = MiN./ (P(M((p))/(ﬂ(min, as the Clearly, ifF andg, k € 2 imply the existence of only global

biective suitable for clusters with minimum service traffic minimizers, the convergence is to the global minimizer. A
objective surta USIETS with minimum Servic linear or superlinear quotient convergence (see Section 4.1)
like e.g. delay-constrained multimedia streams (here we dg -
not have Frechet-differentiability) hpears to us to be sufficient. ; ;

: 2.) The iteration should be of unconstrained nature. This
means that, while the obtained minimizer is obviouigg-
sible (satisfies all constraints in (2)), no attention needs to
We denote byZ > k the set of certain nodes located near thebe payed for feasibility of consecutive iterates. This brings
boundary of the cluster and referred tq(imserference-) crit-  complexity advantages and prevents the deterioration of the
ical nodes. Due to their location, the strength of all link sig-convergence speed due to projecting of infeasible iterates
nals measured at such nodes allows for the prediction of thento the optimization domain, e.g. by the gradient projec-
interference caused by the cluster signals within the neighbaion [8]. Furthermore, unconstrained iteration is in general a
clusters. By setting suitable local constraigison certain  necessary condition for decentralized implementation, since
real-valued functiongl, p — gk(p), k € %, expressing the in general ensuring feasibility of the iterates requires global
signal power measured at critical nodes, the interference tikinowledge at each iterating node.
neighbor clusters can be kept at an acceptable level. In pa8:) A decentralized implementation, requiring local actions
ticular, under the use of linear receivers the suitable functioat certain nodes based on their local knowledge, should be
Ok at nodek € 4 is the directly received signal power, i.e. possible. The provision of necessary local knowledge by
k(P) = Y je VikPj + Nk, With ne as the background noise means of peer-to-peer feedback at each link is maintainable.
variance an/jx as the squared magnitude of the channel coThe algorithm proposed in Section 4.1 satisfies all three re-
efficient to thej-th transmitter (itk € & N %2 we setVik=1  quirements.
since the transmission and measurement locations coincide).

Summarizing the above, the joint problem of performance 3. GENERALIZED LAGRANGIAN

optimization and inter-cluster interference control in mesh/ . . .
ad-hoc network can be formulated for each cluster as The fulfillment of the above requirements needs a specific
construction of a generalized Lagrangian as a basis for the

] ] —p<0, p—-p<o0 proposed iteration. We begin with some basic notions from
minF(p), subjectt N e - (1)  optimization theory. For notational simplicity in this and the
P %(p) — Gk < 0.ke %, : : : :
next section we use a uniform formulation of all constraints
in (2) ashg(x) <0, ke ., with set.# such that|.7’| =
&7 | +[4|.

2.2 Interference control and problem formulation

where we assumed that the global minimuniafepresents
the optimum performance. In the remainder we restrict th
\(/:Jﬁiscshocf :nb{)egtr'gfegr r‘ég%ﬂg?jﬂy by concentrating on those, 3.1 Some optimization-theoretic notions

It is well-known that the common (i.e. linear) form of the
Definition 1 Assumingp to be a minimizer in problem (1), Lagrangian function of the studied problem is now
we refer toF as to a fair objective ifp > 0.
Clearly, fairness oF is in particular implied by the property Lox,A) = F(x) +kez)/\khk(x)’ @)
limp_.oo F (p™) = o0, with limy_. p™ = p, such that there
existsk € o7, such thatfx = 0. In particular, from [3] is With A = (pia,..., ) > 0 as the vector of dual variables.
known that a weighted sum of data-rates and a weighted sulive let.7 (x) := {k € . : hy(x) = 0} be the set of tight (i.e.
of bit-error-rates are fair objectives. Fairness of the objectiveatisfied with equality) constraints at
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Definition 2 Strict complementarity is said to hold @,A)  Proposition 1 LetA = (A1,...,A ) > 0, and for anyu €
iff A # 0, ke 7 (x). R 1 let v(u) == v = (v1,...,v ) be any of the vectors
Strict complementarity at can be interpreted as tlaetual  satisfyingvk = =k and Ax = ¢/ (c)p(vk), k € 2. Point

tightness of the constraints, in the sense that loosening of arf, A ), with x feasible, satisfies the KKT conditions of prob-
constraint ak implies the existence of some feasilesuch  lem (2) if and only if each pointx, v) is a stationary point

thatF (x) < F(x). of Lagrangian (4).
Definition 3 Constraint qualification is said to hold atiff ~ Sketch of the proofAssume first(x,A) satisfies the KKT
Oh(x), k € .7 (x) are linearly independent. conditions. Then, due to complementary slackness condi-

In all statements of the paper it is implicitly assumed that théions andxLo(x,A) = O we have

constraint qualification holds.

OxF(x) + z AOxhg(x) =0. (5)
Definition 4 The second order sufficiency conditions ke T (x)
(SOSC) are said to be satisfied at the stationary p@ina )
of the Lagrangian (3) of problem (2) iff With the assumptions and Conditions 1, 2 follows further
i) (x,A) satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions, Ak =0iff u=0iff o(uk) =0 6
ii.) x"02Lg(x,A)x > 0for x # 0, satisfyingd" he(x)x =0 Ak > Oiff =+ e # O1iff (1) > 0. ©

for k € .7 (x) with A, > 0 and satisfying1" hy(x)x < O for
ke 7 (x) with Ay =0. The assumptions with respect doand v, complementary

SOSC are of immense importance in the development anﬂackness conditions, (5) and (6) yield now together
analysis of locally convergent algorithms for nonconvex op- o / o
timization problems, since they distinguish the local mini- D"L(X’V’Q*D"F(X)t ; P(vi) @' (€)Oxhi(x) =0.
mizers of the problem from other stationary points of the La- €7(x)
grangian. Note that under strict complementakity .7 (x)

implies A = 0. For any (x,u) we have further [O,L(x,u,C)lx =

@' (o(p)h(x) + €)@ ()hk(x), k € . We get
[OuL(x,v,c)]k = 0 for k € 7(x) immediately due to
i ) o constraint tightness and the same fot 7 (x) due to
One of the aims of our Lagrangian construction is the propcomplementary slackness and (6). Convershlyx) < 0
erty of positive deflnlte.n_ess at points satisfying SOSC. Thigg|ds already by assumption aAd> 0 by assumptions and
is the necessary condition for convergence of the proposedonditions 1, 2. Starting now withL (x, v, c) = 0, implies
unconstrained iteration and is not guaranteed by the common
Lagrangian (3) in the very most cases. The first Lagrangian 0_F(x) + .., 0(vi) @' (@(vi)he(x) + ¢)Oih -0
construction with such property, applicable to equality con-{ o ((’C))hz(;e)di‘g(plfz‘lf’)(r?((xk))_k(ox) ke)Ji/ k()
strained problems, has been proposed by Hestenes [10] (see ¥ (#Vk)k KTk = ' .
also [11]). In [12] and [13] related sophisticated construc- h | t lack diti e (x. A (_)
tions have been presented. We propose a Lagrangian diffel:'¢ col;np emenbary S 39 nehss c_on_l itions &hdlo(x, B)— b
ent from the ones in [12], [13]. can be now obtained in the similar manner as above by
’ applying to (7) Conditions 1 and 2, (6) and the assumptions
Definition 5 We define the Lagrangian with respect toA andv.
It can be observed that due to evennesp afingle KKT
Leopue) =FGo+ 5 w(e(mih(x) +c),  (4) point of problem (2) corresponds 2% | stationary points of
ket . . . : X
L(z,c), which are equivalent in terms of the objective value.

3.2 Lagrangian Construction

with some constart > 0, twice differentiable functiony :  In terms of iteration convergence it is therefore not of inter-
R —1,1 CR, satisfying est which of such points is the point of attraction of the it-
Conditions 1: eration. The next statement concerns the announced positive
i.) ¢/(y) >0,y € R (increasingness), semidefiniteness df(z,c) at any SOSC point.

ii.) ¢’ (y) >0,y e R (strict convexity), " o ) )

iii.) " (y) is nondecreasing, Proposition 2 If the pointz = (X, [1) is a stationary point

and functionp : R — R satisfying of L(z,c), such that(x,A) related toz as in Proposition 1
Conditions 2; satisfies SOSC and strict complementarity conditions, then
i.) (y) = ¢(—Y),y € R (evenness), for all ¢ > co, with some finitey holds[02L(%,c) > O.

ii.) @(y) >0,y e R (nonnegativity), ! .
ii.) (¢(y) = Oiff y=0) and @ (y) = Oiff y=0) and¢(0) > Sketch of the proofiWe have in general
0 (unique minimum with valu@ at 0). D,Z(L(z,c) _ DiF(x)Jr

Numerous functions satisfy Conditions 1 and 2. Prominent "
examples arey(y) = & and g(y) = y*", ne N,. For the z (0% (ki)W (@( i) () + ©) Dchie () O by (x) + (8)
arguments in (4) we should sometimes write shogtly= keA
(x, ). @K W' (@(Hi)h(x) + ©) D5 hy ().

The following Proposition characterizes a one-to-one
connection between points satisfying the KKT conditionslf .7 (X) = & then fi = 0 due to 0L(Z,c) = 0 (see (7)).
and stationary points df(z,c). Hence, by Conditions 1 and 2 and SOSC folldw{d (%, c) =
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[2F (%) = 0, i.e. X is a local isolated minimum df (x). If ~ Proposition 3 Assume thak is a (local) minimizer of (2),
7 (%) # @, then again by Proposition 1 and Conditions 1 andsuch that strict complementarity condition holds(&t A ).
2 [ix=0,k¢ 7(x). Hence, taking: = Z in (8) we get with  Then, under the step-size choice
the assumptions ah from Proposition 1
, , . s min 2Re0y(diag(—X)), 1 » ) O%L(Z,C))
~ _ ~ | ~ )
OxL(2,0) = DiLo(®,A)+ rskslor| 1| [0(diag (=7, T, )PLZ, )P

Y (Y () Oxhi(%) 01 he(%). S _ o (1)
ke T (k) with gi(-) as the eigenvalue; is a point of attraction of
) ) . . iteration (10) forc > ¢ with some finites.
From strict complementarity, Proposition 1 and Conditions
1, 2 follows @?(fi) @ (c) > 0, k € .7 (X). Due to SOSC ii.) Sketch of the proof:By Proposition 2, ifx minimizes
we can now apply to (9) Debreu’s Theorem [9] and concludé(x) locally, thenz is a stationary point ot (z,c), with
that there exists some finit® := ¢?(fi)y" (co), such that L(Z,c) = O for somec > co. Since (10) is a gradient-based
for all b= b(c) := @?(fi) " (c), b> by holdsD2L(z,c) = 0.  method, any stationary point df(z,c) is an equilibrium
Finally, with nondecreasingness ¢f’, for eachb > by we  Point of mappingG(z) := z + s diag(—1}.|, I »|)OL(z,C)
can find a corresponding>co. [14], with gradient]G(z) = I+SD(27>L(z,c), D({)L(z,c) =

With our Lagrangian (_jeflnltlon it is now a matter of ele- dz‘ag(—IM,IW‘)DZL(Z,C). Takingz = %, we have

mentary calculations to yield the following property.

Lemma 1 If Z is a stationary point of (z,c), with X feasi- 2 L(5.c) = —-D2L(z,c) —0Z%,L(zc) (12)
ble, thenJZL(Z, c) is diagonal with[J4L (z, )] = Ofork € OFEH T D2L(Z,c)  Dil(zc) |°

% 2| (7.0) ik = W' (C)@" (0)hy (% %).
7 (%) and[OyL (2 Ol = ¢ (©)¢" (Ohe(X) for k ¢ 7 (%) with 02L(z,c) given by (9),0%L(z,c) given by Lemma 1

An important corollary arises now from Proposition 2 andandDiLL(Z,c) _ Df,xL(i,c). For thek-th row ofDﬁxL(Z,c)
Lemma 1. we yield from a simple calculation

Corollary 1 At any stationary poing of L(z,c), such that S ) T .

(%,A) related toZ as in Proposition 1 satisfies SOSC, { (DL (2,0l = ¢'() ¢ (Fi) Dxhw(%), k € 7 (%) (13)
we haveD?%L(%,c) < 0 and there exists finite such that [O7xL(Z,0)lk =0,k ¢ T (%).

2 ~ ~ s . .
PxLéz’@ ~ 0. Hﬁnce,z is a saddle POP']rt‘)t Or!‘(zg) ISO° From Ostrowski's Theorem is known thét is a point
ated overx, I.e. t;re exists some neighbor o8 ~) X, of attraction of (10) if the spectral radius dfiG(%)
such that fo € R, x € S(%) holdsL (%, 4,¢) <L(%,¢) < satisfies p(0G(Z)) < 1. By an elementary calcula-
L(x,{1,c). tion one can show that fos > 0 this holds if and

Notice again that such saddle point property does not hold f@y i Ma% << ||+ Reok(0F |L(Z,c)) < O and

the Lagrangian (3). In fact, a stationary pointlef{z) may  (11) hold. By block-skew-symmetry oﬂ]?f)L(z,c)
satisfymax, ~oming s, (2) L(x,A) (i.e. is @ max-min point), ~ _ L HE2) (3

but it is in general not a saddle-point. we have Reak(DHL(Z’C)) = Re(—vi D"L(Z’C)Vk.Jr

wilZL(z,c)wk), 1 < k < |&| + [#], with

4. ALGORITHM CONSTRUCTION ug = (v, Wk) € RI“IH#1 as  the k-th eigenvec-

4.1 Optimization principle and iteration form tor of U7 L(z.c). By Corollary 1 follows now that

2 ~ .
From the last section follows that the problem of perfor-M&%4<k<|«|+.#| Bedk(O7_ L(Z,¢)) < 0. To show strict

mance optimization and interference control (2) correspondiequality assume by contradictioﬁeak(D(z_> (z,c))=0
to finding of a saddle point of the generalized Lagrangia PR 2 1 /a _

(4). If problem (2) has only global minimizers, then any sadr-}Or somek, Wh.'Ch |2mpl~|es Re(D(—)L(Z’C)uk) =0. By
dle point from Corollary 1 corresponds to the same objecLemma 1 and sincel, L(z,c) > O for somec > co, we must
tive value and we can speak of an efficiently solvable probthen havev, = 0 and 7 (X) # @. Sinceu # 0, by (13) it
lem. Our algorithm corresponds precisely to the primal-duafollows then thatyic 7 () alxhi(X) = 0, with at least one
search of a saddle point &{z,c), based on the simple gra- 5, :— y/(c)¢/(fi)w(’ > 0. But this contradicts constraint
dient method. With step-size> 0 then-th iteration step can  qyajifications.

be formulated as
4.2 Convergence behavior

z(n+ 1) :z(n)+s diag(—IWhI‘f|)DL(z(n),C) (10) ; ) )
o ) ) ) S ) For the iteration (10), written shortlg(n+ 1) = G(z(n)),
(Inis identity matrix of sizen). This implies that primal steps  consider first briefly the convergence in absolute errors. Such

(over the logarithmic transmit powex$ and dual steps (over gne is expressible by theot convergence factor (dfst or-
the vector of dual variableg) are conducted concurrently. der)defined as

By the Lagrangian construction there are no constraints on

the dual variableg:. Moreover, iteration (10) provides lo- R(.Z,%)= sup limsup|z(n) —iﬂ% (14)

cal convergence to a local minimum of (2) without requir- ’ (z(N)}nes N—w ’

ing feasibility ofx(n+ 1) after each iteration € N. This is

shown in the next Proposition and implies that the algorithnwith .# as the set of all sequences of iterates (10) convergent
requires no steps or actions in addition to (10) at all. to a point of attractiorg. It is an immediate consequence
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from Ostrowski’s Theorem [14] and the proof of Propositionby the traffic-type priority on linkk € <. An appropri-

3, that for the presented algorithm holds ate signal measurement function at critical nottes %
. . is simply the received power, i.egk(exp(x)) := gk(x) =
R(“,Z) = p(G(Z)) <1, (15)  3ic. ViK€ +n. Due to receiver linearity we have also for

. . . the SINR of linkk € &/
which is referred to as linear root convergence. More inter-

esting is the convergence of consecutive error ratios and the y(exp(x)) = w(x) = ek
[j(eelﬁtsi vl?lue of theguotient convergence factor (pfth or- ' Yico  j2k ViK€ + g’

Let now ng, k € # be the dual variables in (4) associated

~ . lz(n+1) —Z|| with interference constraingi(x) — gk < 0 and L, k € &
el S2) = nsup ]I'ng |z(n) —2z||P ’ (18)  be the duals associated with (pczwer constra@its- P < 0.
{=(Mne. In the above setting the decentralized implementation of
: ; 5 i iteration (10) is possible mainly due to the concept of
defined ifz(n) 7 2 for all but finitely manyn & . adjoint network feedbackroposed in [6]. Such feedback
Lemma 2 For any € > O there exists a nornl| - || on transmission corresponds to a specific scheme of concurrent
R!“H1#1  such that for the iteration (10) hold3;(.#,%) <  Pper-link feedbacks (from receivers corresponding ©.«7),
p(G(2))+€. which was shown to deliver the knowledge[BfF (x)]k to

each transmittek € o7. Fortunately, by the same feedback
Sketch of the proofWith {z(n)}, € .#, for any neighbor-  principle from node% € 4 it is possible to make the terms
hoodS(z) there existsy € N, such thatz(n) € S(z), n > no. [Ox Sker W(@(Nk) (9k(x) — k) +¢)]k and consequently the
Frechet-differentiability a& implies for anye > O the exis-  terms|,L(z, c)]x available at nodek € .«7. Due to observ-
tence of some neighborho&#) with the correspondingo,  ability of termse* — fy at nodesk € o7 and gx(x) — gk at
such that for any1 > np and any norm|G(z(n)) — G(Z) —  nodesk € %, the gradient iterations over, are computable
0G(z)(z(n) —2)|| < §||z(n) — Z]| [8]. Further we know that |ocally at transmitter noddse .7 and the iterations oveyy
for anye > Othere exists a norm satisfyifg\ || < p(A)+%  at the critical nodek € #. The resulting implementation
[8]. With Z = G(%) (Proposition 3) these arguments yield for scheme can be written as follows (assumed is the knowledge
z(n) € §z) of @, Y, c ands at all nodes). Due to space constraints,

we must refer here to [6] for details on the adjoint network

lz(n+1) —Z| = ||G(z(n)) — G(z) — 0G(Z )( (n)—2) feedback concept.

+0G(2)(2(n) —2)|| < [|G(z(n)) — G(z) — 0G(2)(z(n) —2)|| Implementation ofr-th iteration

+[|0G(2)|/[|z(n) —z|| < (p(G(z)) + €)||z(n) —z]|. 1. Concurrent transmission with powee&(™ by nodes
ke o

HenceQ1(#,%) < p(G(2z)) + ¢ follows immediately. .
Hence, similarly to the root convergence, due tg = knowledge ofgy(x(n)), %(x(n)) and computability

p(0G(2)) < 1we have a linear quotient convergence of (10)]  of [UpL(z(n))]x at nodesk € 2.

With Proposition 3, result (15) and Lemma 2 we arrive atthe 2 a.) Per-link feedback of(x(n)) by nodesk € .«7.

following key result, verified in simulation in Section 6. b.) Adjoint network feedbackith signals
Proposition 4 Under any choice of satisfying (11), the S = Ak (W(x(n))) Y (x(n)) /&%
convergence of iteration (10) to a local minimum of (2) is| Py nodesk € &/
linear in roots and quotients. = computability of[J,F (x(n))]x at nodes € 7.
5. DECENTRALIZED IMPLEMENTATION 3. a.) Per-link feedback ap'(¢(nk(n))(gk(x(n)) — Gc) +

c) by nodek € &# N %

Distributed implementation of an algorithm for mesh/ ad-ho¢  b.) Adjoint network feedbackith signals
networks is of central importance for its practical usefulness.  re=¢/(@(nk(n))(gk(x(n)) — k) + )

By distributed implementation we understand the lack of pror by nodes €

vision of global knowledge of optimization parameters to

all nodes, e.g. by means of the flooding protocol. Merely =computability of{CL (z(n), )] at nodes € /.

the use of local per-link feedback from link-destinations to| 4. X(n+ 1) = x(n) —s[0xL(z(n),c)]x at nodek € <7,
corresponding link-sources appears to be maintainable. We pi(n+1) = p(n) +s[0,L(z(n),c)]k at nodek € o7,
are fortunate that routine (10) allows for decentralized ims  nk(n+1) = nk(n) + s L(z( ),C)]k at nodek € .
plementation for certain optimization approaches. As a rep-

resentative approach we take the performance optimization 6. SIMULATION RESULTS

with interference control for best-effort traffic under the use

of linear single-user receivers. With no intercluster inter-We analyzed the convergence properties of the proposed al-
ference control such approach has been studied widely igorithm in simulation for a mesh/ ad-hoc cluster wjith| =

the framework of wired and wireless networks [2], [3], [4], 10 transmitting nodes and the s&t of 4 critical nodes. As

[5] and is especially applicable to networks carrying datathe optimization problem statement we took the performance
traffic with no strict minimum-service requirements, like e.g.optimization under best-effort traffic and linear receivers, as

high-rate file exchange. As announced in Section 2, in suctlescribed in Section 5. As the QoS function of interest we

case the most common objective for (2) R§exp(x)) =  nominated the data rate in high power regime, i.e. we set
S ker OkP(W(eXp(x))), with each weighti, > 0 determined  @(y) = —log(y). For such functiorp it is known from [3]
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— &2, axlog(w(x(n)))

~ lterationn
-2 10 20 3

Figure 1: Convergence of the algorithm (10) k= 10and

the optimization problem statement from Section 5.

that the problem has only global minimizers. In Figure 1

[7]is unconstrained and distributedly implementable as well,
while its convergence is quadratic.

(1]
(2]

(3]

(4]

(5]

the convergence of the algorithm for different starting points

z(0) and different settings of parameterg, ax, Nk, Gk is

(6]

illustrated. For the Lagrangian (4) we chose the functions

Y(y) =& andg(y) = yg

In our setting, the constaitin

the order of 10 turned out to be sufficiently large to ensure

positive definiteness and hence local convergence.

The observable slight oscillation results directly from the

[7]

unconstrained nature of iteration (10), since this allows the
converging iterate sequence to be temporary in the infeasible

region of variables.

7. CONCLUDING REMARKS

(8]

We were concerned with the problem of performance opti-
mization with interference control in wireless mesh and ad- [9]
hoc networks. The studied problem consisted in clusterwise
optimization of some arbitrary QoS/ performance measure{10] M. R. Hestenes, “Multiplier and Gradient Methods,”
subject to power constraints on transmitter nodes and inter-
ference constraints on the cluster boundary, in order to con-

trol the intercluster interference. We constructed a specifi
nonlinear Lagrangian function with certain needed proper

q11]

ties (positive definiteness on some stationary points), which

allowed for the design of a simple iteration optimizing the

problem of interest and requiring no feasibility of consecu-
tive iterates. Linear root and quotient convergence of the proi12]
posed iteration was shown. Finally, we showed that a slightly
extended implementation scheme from [6] allows for decen-
tralized implementation of the proposed routine in linear net-

works under best-effort traffic.

[13]

The generalized Lagrangian framework allows for more
efficient iteration designs. For instance, under combination
of a different generalized Lagrangian construction with a
specific approach of variable splitting, a different iteration [14]

for the optimization of weighted sum of QoS functions is

proposed in [7]. The conditional Newton algorithm in
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