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ABSTRACT fined “interest point” representation; they are entities that are
This paper introduces a new method to recognize objects gistributed widely throughout space. Therefore, we will rep-
any rotation using clusters that represent edge profiles. Theggsent edges with 2-dimensional entities in this paper. By do-
clusters are calculated from the Interlevel Product (ILP) ofnd so, we also distinguish our descriptors from other point-
complex wavelets whose phases represent the level of “eddpased edge descriptors whose locations are more important
ness” vs “ridginess” of a feature, a quantity that is invariant tdhan their identities, such as those used in [4] or [10].
basic affine transformations. These clusters represent areas Our new method is motivated by observations in the co-
where ILP coefficients are large and of similar phase; thesefficients of the ILP (InterLevel Product), a measure based
are two properties which indicate that a stable, coarse-levéipon the Dual-Tree Complex Wavelet Transform [5]. In [1],
feature with a consistent edge profile exists at the indicatewe introduced the ILP as a domain in which one can template
locations. We calculate these clusters for a small target imMatch desired objects based on their coarse edge features; in
age, and then seek these clusters within a larger search imadeis paper, we first aggregate these features into the rotation-
regardless of their rotation angle. We compare our methotfivariant entities described above. We summarize the prop-
against SIFT for the task of rotation-invariant matching inerties of the ILP in further detail in section 2, along with
the presence of heavy Gaussian noise, where our methodtke ICP (InterCoefficient Product), introduced in [2], which
shown to be more noise-robust. This improvement is a direds also used to identify the specific orientations of these fea-
result of our new edge-profile clusters’ broad spatial supportures.

and stable relationship to coarse-level image content. Once the abilities of the ILP and ICP functions are ex-
plained, we proceed in section 3 to cluster the ILP and ICP
1. INTRODUCTION information into sets of entities that sparsely represents the

. . _ ajor edge components of a target image. In section 4, we
This paper describes a novel method of detecting and searcfiapy gutline the search algorithm to find these target entities

ing for specific edge structures in images, regardless of thejp the |Lp domain of the search data. We briefly compare
orientation. Our “edge-profile clusters” allow us to detecty,r method against SIFT for a test target in section 5, and

and represent edges and ridges by their basic spatial propeisnciude in section 6 with a discussion of the results and the
ties (direction, but not detailed contour data) as well as theifay; steps for our research.

profile. The profile of a feature indicates whether it is a ridge
or an edge, positive or negative. To our knowledge, no such

attribute has been exploited in the literature for object recog- 2. THE DT CWT TRANSFORM, AND ILP/ICP
nition. FUNCTIONS

In general, most recent successful object recognition alm this section, we summarize the ILP and ICP functions,
gorithms involve a) identifying features of an object that areyhich transform both target and search images into the do-
invariant to transformation, and b) seeking near-matches Ghain in which we will perform matching. We start with an

these features in potential candidate images. Such search®grview of the the DT CWT upon which the ILP and ICP

may be performed by reducing objectimages to a sittef-  functions are based.

est points using Lowe’s Difference of Gaussian (DoG) de-

tector [7] or the Harris corner detector [3]. Local featureSy 1 The DT CWT Transform

are then calculated at these points with a variety of methods

(several of which are compared in [9]), and correspondencekhe Dual-Tree Complex Wavelet Transform (DT CWT)

between these feature sets are sought between all points cBRnsforms amN x M image into a pyramid df levels, where

culated in the target image and a candidate search image. @ach levell = 1...L contains™>M x 6 complex interlevel

nally, methods such as the generalized Hough Transform aoefficients. The magnitude of a coefficient represents the

RANSAC are used to calculate the affine transformation bestrength of activity in the vicinity of its spatial locatigr, y),

tween the target and a candidate. scalel, and orientatiord, whered = 1...6 represents direc-
These techniques are appropriate and efficient for the cotional subbands approximately equally spaced betviéggn

ners and blobs detected by Harris and DoG methods, arehd165°. The phase of DT CWT coefficients change lin-

have been applied to edge features as well, for detectingarly with the offset of a feature from the coefficient location.

“wiry” objects [8]. We wish to adopt an approach that ac-Note that the behaviour of DT CWT coefficients are simi-

knowledges that edge features do not possess a clearly dar to steerable pyramid coefficients [11]; however, the DT
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Figure 1: Relationship between the complex phase of an ILP
coefficient in thel5° subband and the nature ofal5’® fea-
ture in the vicinity.

CWT can be implemented with linearly separable wavelet

filter banks, providing improved computation speeds. Howgigyre 2: Complex ILP coefficientg, at Level 2, subband

ever, this acceleration comes at the expense of losing “steefs> representing an aerial image of a building at two differ-

ability”; the number and directions of the subbands are fixedant angles. Note the distinctive, coherent phase profiles as-
Compared to Discrete Wavelet Transform, the DT CWTsgciated with the top and bottom edges of the building, and

has two desirable properties suitable for object recognitionghat these phase profiles are relatively invariant to rotations
approximate shift invariance and better directional selectivyithin the subband.

ity. However, while the magnitudes of complex wavelet coef-

ficients provide valuable information for object recognition,

the phases in their raw state are less helpful. If the image .

is shifted slightly, relative to the decimation reference, phas€-3 The InterCoefficient Product: Feature Angles

changes will be introduced that make matching difficult. 1tTo determine the orientation of a feature (and, thus, the sub-
would be helpful, instead, if the phases of the coefficientgand to find it in), we use a different phase-based function,
were more directly dependent upon image content only. Imamed the ICP (InterCoefficient Product). While the ILP
the next section, we will see how the ICP and ILP functionscalculates conjugate products (and hence phase differences)

create these dependencies. across scales in the same location, the ICP calculates con-
jugate products across space; specifically, betweenativo
2.2 The InterLevel Product: Feature Types jacent coefficients at the same scale and orientation. Any

Tdominant feature that spans the support regions of both DT
CWT coefficients will cause these coefficients to have phases
whose difference is proportional to the orientation of the fea-
% re by a fixed constant. Thus, by dividing by this constant,
e can cause the complex argument of the ICP coefficients

By looking at the difference in phase between a DT CW
coefficientW(x,y,l,d) and a phase-doubled version of its
coarser-scaled pared{(x,y,| + 1,d), one can see that the
linear phase-offset relationships cancel to produce a pha
difference that is relatively constant, regardless of spatial fea; : : o
ture offset. As a result, this phase difference is related onl to equal the angle of the underlying feature. This relation

to the nature of the multiscale feature present at the giveﬁglﬁsﬁpabdé:\?v(g;rr]'gaO?eOaTuertél(;rr%S:lig;;f?cei e?]r,:a:ﬁ/g?s ?jterrre]I(?n-
location; this relationship is shown in Figure 1. An ILP co- strated explicitly in [2] '
eﬁ|_(:|ent,x(x,y,l,d), creates this phase difference by multi- We now have two .shift-invariant sources of phase infor-
plying the child coefficient with the conjugate of the palrent;mation that we can use to characterize edge features of an
more details of this process can be found in [1]. Specificallyob. ect

the ILP phase represents the typepbfise congruencbke- ject.

tween even and odd Fourier components an octave apart. A§ BUILDING A ROTATION INVARIANT TARGET

an example, a positive real 2-D ILR¥ = 0°) ! corresponds ‘ MODEL

to the congruence of the positive sine (odd) Fourier coeffi-

cients, which form a positive step edge at this scale paifWe start by transforming the target imagewith the ILP
similarly, a negative imaginary ILP/f = 270°) indicates  and ICP functions to produce the pyramid)df) and /(T

congruence of negative cosine (even) Fourier coefficients. Igoefficients respectively, and isolating the regions where we
[6], Kovesi describes the relationship between Fourier combelieve the coefficient phases will be stable.
ponents and complex wavelet coefficients in further detail
(usin_g complex log-Gabor wavelets). 3.1 ILP Phase Coherence and Stability
Figure 2a shows an example df5® subband ILP co- Empirical observations of ILP coefficients indicate that edge

efficients highlighting the unique edge profiles of the near- 400 ohiects of interest occur where ILP coefficients,
horizontal edges of an aerial building picture at level 2. Not

that, as well as being shift-invariant. the ILP phase is mo %_Mthm the same subband, possess the following qualities:

erately rotation invariant; features oriented with&® of the - Large magnitude, indicating that activity is present; and
central orientation of a given subband produce similar phasé- Spatial adjacency of a number of coefficients with ap-
results. We demonstrate this in Figure 2b by rotating Figure ~Proximately the same complex phase (“coherent” ILP co-

2a 30 degrees and Observing that the phases dfshd P efflC|entS), Implylng that the same, dominant feature is
coefficients remain relatively unaffected in the vicinity of the  influencing all coefficients.
main edge features. Under these circumstances the relationship between ILP

phase and image contentstable that is, it is invariant to
Lin this paper, we uséx to denotearg(x). relatively small affine transformations of the content, such as
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may occur with rotation or translation. To enforce the lat-
ter criteria, and hence effectively separate edges from tex-
tures, we first create a new set of coefficieR{g,y,|,d) at
each subband and level that demands phase similarity be-
tween neighbouring coefficients, as dictated by requirement
2 above:

Rsum(x,y,!,d) . |Rsum(X,y,1,d)| > B
R(x,y,1,d) = 2 Sk o Mixray bl d)
0, otherwise.
1)

whereRsum(x,Y,1,d) = 52,0 XM (x+a,y+b,l,d) and
B is a threshold that controls the strictness with which one
can enforce phase coherence; we use a vale-00.8. The
resultingR coefficients are either an average of four neigh-
bouring ILP coefficients, if they possess similar phase. Re-
gions where R is zero (i.e. with inconsistent ILP coefficients)
correspond to smooth or textured image regions. Figure 3
shows the new coefficients.

3.2 Clustering Coherent ILP Coefficients Figure 3: An example of thR coefficients corresponding to

] o _ _ the level 215° subband ILP coefficients of Figure 2a. These
After thresholding out coefficients of inconsistent phase, weefficients are clustered according to section 3.2, and ICP
look to a clustering algorithm to sparsely represent the largegfrientations are assigned. Grey arrows indicate the ILP phase
of the remaining non-zero coefficientsRywhich we expect  of each cluster; black arrows indicate their ICP orientations,
to be stable features. In this paper, we use a region grovand the number indicates the normalizegweight of the
ing algorithm to seed and grow clusters within each direcglyster. The cluster with the highesg across all subbands
tional subband until no neighbouring ILP coefficients can bgthe “primary cluster”) is present in this subband and is indi-
found that are non-zero and within a phase threshold (sagated with a white cluster boundary.
+30°) of the seeded coefficient. The weighted locations of
the resultant labelled coefficients are then used to calculate
the cluster parameters; K. represents the coefficients Bf
that are in clustec, then the meamp; and covarianc&; are  search for possible instances of a dominant edge/ridge fea-
calculated from the locations of these coefficients, with clusture of the target, regardless of its orientation, and then at-
ter weightac = |3 R¢| and overall cluster ILP phase profile tempt to “build” the rest of the object around it.

We also require an orientation for each cluster to a) iden4.1  Primary Cluster Selection

tify the correct subband in which to search for transformed . I .
instances of the cluster, and b) calculate the oriented Ig" this paper, we will simply assume that the dominant fea-

cation of subsequent clusters appropriately. Thus, we afﬁlre of a target image is represented by the cluster with the
ICP orientations to each cluster. For clustewe calculate ighesta. across all subbands, whose value reflects both the

T = arg(s i), whereys are all of the ICP coefficients co- Magnitude and spatial extent ofits ILP coefficients. We name
located withR. members of cluste. this cluster thegprimary cluster Cp, with ass_ouated parame-
terspp, Zp, ap, 6y, andPp. In Figure 3, this cluster is indi-
cated by the white cluster boundary. The remaining clusters
we namesecondary clustersvhose presences we detect in
We now have clusters corresponding to the visually saliensection 4.3 after finding candidates for each primary cluster.
and consistent edge/ridge features in a target image. More |n the next section we search the ILP coefficients of the
precisely, we define an “Edge-Profile Clusterto be a clus-  search imagey(®, for rotated instances of the primary clus-
ter of coherent ILP coefficients which efficiently representser.
an edge or a ridge with five parameters: its cenjay),(
?:ze(/gr;apexc), orientation (i), weight (@), and edge pro- 4 2 Building a List of Primary Cluster Candidates
e (Gc). . . .
An example of edge-profile clusters for a target objectF'fSta we transform the search imagénto the ILP and ICP
is shown in Figure 3 for tha5® ILP coefficients of Figure pyramids,x® andy® respectively.
2b; the other five subbands of Level 2 will possess similar In a search image, potential candidates for our primary
clusters around the detected features at different orientationguster will have the same ILP phase; we ignore the ICP ori-
We now introduce a method to detect rotated instances ¢fntations and search across all subbands, as we are looking

3.3 Summary of Edge-Profile Clusters

this constellation of clusters. for instances that occur at any angle. For each subband, we
construct an ellipse of ILP coefficients in the shape of the
4. THE ILP CLUSTER MATCHING ALGORITHM primary cluster, oriented at an appropriately rotated angle. If

we define this new rotated cluster ellipse Byq, we then
In a matching scenario, we have the target imaigeand a template match it against the decimated ILP coefficients in
larger search imag8 that also contains the target. We first each subband. The result of this matofx, y,1,d), is a value
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between -1 and 1 that represents the correlation between the
primary cluster and the indicated locationy)), scalel, and e yizg L xyT
general orientatiod of the search image. T, = Z — U
We retain locations at which the match-scoris above Xyeth, 27 2c|2
7. The threshold controls the proportion of candidates re- ; ; ; ;
prop We now use this anglgi, as a canonical orientation for

:ﬁ:’r;i?](z?é further processing; we use= 0.2, a fairly liberal the primary Qluster that is precise enough to calcul_ate the ex-
’ pected locations of the secondary clusters, relativel

the mean of the candidate primary cluster. This calculation

is a straight-forward rotation of the secondary target clusters’

offsets, relative to the primary target cluster. If we define the

rotation matrixRx as

SinAyk COSAYK

whereA = Py, — Pp, then the parameters of each can-
didate secondary cluster are calculated as follows:

{ COsAWy,  — SinAYK
R =

Hke = Hkp + R (He — Up) 2 = RKZCR)(—

Pre = Pc+AYx Oy, =0c @)
Figure 4: In a), a search image is shown in which we will 0. — B, WY <
seek the target object of Figure 3. In b), we show the loca- "¢ = —6F, (g >

tions of the means for the set” of candidates (at any angle) ) )

for the primary cluster indicated in Figure 3. Note that the ~ \We also usefj to determine the subbamtl, =1...61in

correct primary cluster match (and thus, the correct targethich the target ILP is compared &..

match) is located at the right middle of the search image. We now have the location, shape, and expected ILP phase
of each secondary clusteffor candidatex. To compare the
expected ILP to the actual ILP for each secondary cluster,

The results of our primary cluster candidate search is ¥ once again perform a template correlation between the
set# of candidates, where each individual candidate.  Predicted cluster ellipse and the actual image content at the
is a potential location around which we may find the target€xpected location, producingy,, a value between -1 and 1
For the primary cluster shown in Figure 3, we highlight all that measures the correlation between the expected ILP phase
of its candidates in a search image in Figure 4. If the primarpf the secondary cluster and the observed ILP phase at the
cluster is a positive ridge, we expect all the candidates t§andidate image location. .
be positive ridges, and no step edges or negative ridges. In FOr agiven candidate, we now haves’ clusters that will
our illustrated example, our primary cluster possesses an [Lfvote” for the likelihood thatk is the best candidate. How-
profile part way between an edge and a positive ridge; ougVer the votes are not equal; some of_our clusters_are larger
candidate list will contain features with an equivalent profile 2nd more stable than others. Accordingly, we weight each

Having selected and ranked our areas to search for tfeandidate cluster (including the primary candidate cluster)
desired object, we use the secondary clusters to create aRY¥ Ok, and sum:
test hypotheses that the object exists at the location and ori-
entation specified by each primary cluster candidate. My = ZJ Oc My

ces
4.3 Ranking and Selecting the Best Candidate And, finally, we select the most appropriate match by tak-

Because of our liberal threshold for the primary cluster9 the candidate with the maximum valuendf

search, we are likely to have potentially several thousand pri-

mary cluster candidates. For each candidgteve wish to Best Match= arg[g‘;}m“ 3
check if the ILP phases of the secondary clusters agree with
the ILP phases in the corresponding locations in the search 5. TESTING AND RESULTS

image. e demonstrate our matching algorithm by matching the
Our method of searching all directional subbands for th%ﬁx 64 object of Figure 3 in the384x 384 search image

desired edge profile is broadly accommodating of the featur f Figure 4 under increasing additive Gaussian noise, at level

angle within the subband. For example, any matching edg e L2 .
between0® and 30° will be identified in thel5 subband. %(a decimation oft x 4). For our tests of rotation invari- -
nce, we use quadratic interpolation to rotate the target in

However, to fit the secondary clusters in the proper Spatl£° increments from0® to 18C° before clustering: we then

orientation, we need a more specific orientation to assign Iv the Gaussian noise to the search image. brior to ap-
the primary cluster. Thus, for each primary cluster candidat&°PY. : 9¢, p p
plication of the ILP function. We use the same setup to

(which we namexp) we calculate the cluster ICP by weight- Lo
ing the ICP coefficients co-located with the ILP cluster can{€St the SIFT methdd and compare the two methods' abili-

didate (we name this set of ICP coefficients,) from their ties to successfully match the target at each noise level. We

distance to the center of the Gaussian cluster and taking the 2we use the Matlab SIFT code available from D. Lowe at
argument of the sum: http:/Avww.cs.ubc.ca/ lowe/keypoints )
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also demonstrate our matching method’s invariance to illu-
mination changes, by performing our tests under a non-lineal
gamma distortion: if the pixel valuesof the search imag8
are normalized to a range from 0 to 1, we apply the distor-
tions, = r¥ before transform, foy = 0.5, 1. A correct match
for our method occurs when the best match of equation 3 is
the k candidate at the correct location and orientation, and a
correct SIFT match occurs when at least three interest point
have been correctly located in the search image. In Figure 5

one can see the superior ability of the ILP clustering method ™%
to cope with heavy noise. It also possesses a more gradua:;

decrease in performance, when compared to the swift declin
in performance of the SIFT features at 20% Gaussian noise
In Figure 6, we see an example correct match.

100%

100%

60%

40%

20%

Percent Correct Matches Across Rotation
Percent Correct Matches across Rotation

\
\
\
0%10 1‘5 2‘0 25 30 0%10 1‘5 Q(J)AQS 30
Additive Gaussian Noise Additive Gaussian Noise
y=1 y=0.5
(@) (b)

Figure 6: An example match of the target at 17.5% Gaussian
noise, rotateds°. We display the correct match along with
the associated candidates for & clusters from Figure 3,
including the primary cluster.

wavelet phases. Imternational Conference on Image
Analysis and Recognition (ICIAR}eptember 2005.

[3] C. Harris and M. Stephens. A combined corner and

edge detector. IAlvey Vision Conferen¢d 988.

Figure 5: A comparison of the proposed Edge-Profile Cluster[4] D. Huttenlocher, D. Klanderman, and A. Rucklige.

(EPC) method and SIFT for rotation-invariant object match-
ing, for the target and search image shown in Figure 4a. At
each level of noise (x-axis), we attempt to determine object

Comparing images using the Hausdorff distari&&E
Transactions on Pattern Analysis and Machine Intelli-
gence 15(9):850-863, September 1993.

matches for 36 different rotations of the target, and record[s5] N.G. Kingsbury. Complex wavelets for shift invariant

the proportion of correct matches. Results are shown for an
undistorted search image in a) and wjth- 0.5 distortion in
b).

6. CONCLUSIONS

[6] P. Kovesi.

analysis and filtering of signaldournal of Applied and
Computational Harmonic Analysi§3):234—-253, 2001.

Image features from phase congruency.
Videre: Journal of Computer Vision Researdt{3):1—
26, 1999.

nition based upon edge-profile clusters in the ILP transform
domain whose ILP phases are invariant to rotation, and de-

invariant keypoints.Int. J. Comput. Vision60(2):91—
110, 2004.

pendent only upon the edge profiles that they represent. Wg8] K. Mikolajczyk, A. Zisserman, and C. Schmid. Shape

feel that edges have a natural advantage in robustness when
compared to interest points and we illustrate this advantage

recognition with edge-based features. Aroceedings
of the British Machine Vision Conferencz003.

by showing our matching algorithm’s superiority in match- 9] Krystian Mikolajczyk and Cordelia Schmid. A perfor-

ing in heavy noise. In the future, we plan to show its ability
to match in a scale- and affine-invariant manner as well. We
will also investigate the extent to which interest points and
our clustered edge profiles are complementary.
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