
ADAPTIVE INTERPOLATION ALGORITHM FOR FAST AND EFFICIENT VIDEO
ENCODING IN H.264

Gianluca Bailo, Massimo Bariani, Andrea Chiappori, Riccardo Stagnaro

Department of Biophysical and Electronic Engineering, University of Genova
Via Opera Pia 11 A, 16146 Genova, ITALY

phone: +390103532037, fax: +390103532036, emails: {bailo,bariani,chiappori,stagnaro}@dibe.unige.it

ABSTRACT
H.264/MPEG-4 AVC is the latest video-coding standard
jointly developed by VCEG (Video Coding Experts Group of
ITU-T and MPEG (Moving Picture Experts Group) of
ISO/IEC. It uses state of the art video signals algorithms
providing enhanced efficiency if compared with previous
standards.
A ¼ pel displacement resolution is used in order to reduce
the bitrate of the video signal in H.264.
In this paper, we propose an algorithm for the reduction of
the interpolation computational time. The goal is to adapt
the H.264 ¼ pel interpolation to the complexity of the video
stream to encode, on the basis of our motion detection
algorithm.
The proposed solution allows decreasing the overall
encoder complexity both in low and high complex
sequences. This paper illustrates the integration of our
motion detection algorithm in the H.264 encoder. The
obtained results are compared with the jm86 standard
interpolation using different quantization values.

1. INTRODUCTION

The video coding standard H.264 [1] introduces many new
features in all the aspects of the video encoding process. The
compression efficiency has been highly improved
maintaining the same video quality. Anyway, the complexity
of the encoder has been increased of more than one order of
magnitude (while the decoder is increased by a factor of 2)
[3], if compared with previous standards such as H.263 [2].
The high compression rate together with the good quality
obtained by the H.264 standard make it suitable for a large
variety of applications. The H.264 encoding application area
requires high power efficiency in order to work on
embedded systems and mobile terminals. This requirement
implies the need to reduce the complexity of the H.264
video encoder. The most time-consuming modules of the
encoder are the motion estimation (ME) and the ¼ pel
interpolation. The complexity of the ME is due to the great
number of SAD operations; while the major part of
interpolation calculations are due to the use of a 6-tap
Wiener interpolation filter (with coefficients similar to the

Figure 1 - Integer samples (shaded box with upper-case letters) and

fractional samples (un-shaded box with lower-case letters) for ¼
pixel Interpolation [1].

proposal of Werner [9]) and the averaging samples at full
and half sample position.
The interpolation process is depicted in figure 1 and it can
be divided into two steps. First, the horizontal or vertical
Wiener filter is applied to calculate the half-pel positions,
then, a bilinear filtering is applied to both the already
calculated half-pel positions and the existing full-pel
samples in order to compute residual quarter-pel positions.
This sequence of calculation is very heavy, and it represents
the 18% of entire compression process. In the following, we
will introduce the Local Dynamic Interpolation (LDI)
approach tending to minimize calculation, based on our
Motion Detection (MD) algorithm. The main idea is to
utilize the complete ¼ pixel bilinear interpolation just in
those areas where the MD module indicates the presence of
motion. Otherwise, only the first part of the full
interpolation (the Wiener filtering), together with a very
simple ¼ interpolation, will be used.
The reference JVT software version is jm86 [6] and
comparative tests are performed with standard fast motion
estimation built in. The quality/compression ratio results
very close to the standard full interpolation. Section 2 shows
how our MD works. Section 3 shows how MD interacts

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

with the H.264 interpolation module. LDI algorithm results
are also compared with standard one, as shows in Section 4.

2. MOTION DETECTION ALGORITHM

The new approach to MD algorithm can be subdivided into
the following steps:

• Binary image difference evaluation
• Blob coloring with minimum object size threshold of

entire difference image, with single pixel precision
• Merging overlapped blobs

Image difference is performed calculating the difference
between two subsequent frames (unlike the work presented
in [7] this approach avoid background estimation). The input
of MD is the luminance image and the output is a set of
information about motion area, like position and size.

2.1 Binary image difference evaluation

The inputs of this block are the current image and the
background; the output is a binary image with motion pixels.
The image difference D(n) is calculated by the difference
between the current image I(n) and previously stored image
I(n-1). Then a threshold value (detection value) is applied to
D(n) in order to obtain Dth(n), the binary image that
represents motion pixels into the image.
The formula for frame n is:

D(n) = I(n) – I(n-1)
Dth(n)=0 if D(n) < detection value.

Dth(n)=1 if D(n) >= detection value.

2.2 Blob coloring with minimum blob size threshold

Blob coloring is a computer vision technique to obtain
region growing and region separation for images.
The input of this block is the difference image and the
output is a set of moving object. We use this technique on
the entire difference image, instead of using a subsampled
8x8 difference image as in [7], to separate motion regions
and growing it. Blob coloring can be performed with the
algorithm described in [5]. The regions coordinates are the

output of this step. After the blob coloring, the resulting
object set is filtered through a threshold that permits to
delete the smallest moving regions, in order to avoid the
errors due to image noise.

2.3 Merging overlapped blobs

At this point, there are a lot of blobs that may be overlapped.
If we would obtain region growing, there is the need to
check for overlapped regions and then fuse them together
into a single region. The algorithm analyzes region
coordinates for finding overlapping in the following way: if
there are two or more overlapped regions, a new region
having size growing to max dimension of overlapped blobs
is created; otherwise the regions are maintained as original
sets. This operation reduces object count and permit moving
region separation. The input is a set of moving objects and
the output is a reduced set of the same objects having
enlarged size.

3. LOCAL DYNAMIC INTERPOLATION

The proposed algorithm is based on the idea that exhaustive
interpolation is useful only when a video sequence contains
large motions and not in low motion conditions, that is the
usual situation for real video-surveillance sequences. The
H.264 interpolation can be applied just when the motion
detection algorithm identifies motion and, specifically, in the
region where the motion is detected. In particular, the 6-tap
Wiener filtering is always calculated, whereas the residual
quarter-pel position, obtained by applying the bilinear
filtering to half-pel and full-pel positions, is only computed
in the motion regions (blobs) identified by the MD module.
The motion detection evaluates where and when to apply the
bilinear-filtering; otherwise a very simple interpolation is
carried out (figure 2 shows LDI in the encoder scheme).
The information obtained by the MD algorithm, is utilized to
define a Motion Image (MI). This is an approximation of the
MD output result because we need as little as possible

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Wiener

Motion Detection

Bilinear

Smart

+

-

DCT Quantization Entropy
Coding Encoded

Stream

Inverse
Quantization

IDCT

+

Loop Filter

Local Dynamic Interpolation

Decoded
Picture
Buffer

Motion
Estimation

Motion
Compensation

Intra
Prediction

+

Current
Picture

Intra/Inter

Figure 2 - the MD module controls the output of Wiener filter for choosing between smart or bilinear filtering, (input is the original size

image, output is the ¼ pel interpolated image)

 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Figure 3 - MD interface; the motion image scanned for searching
motion areas.

complexity in the motion detection algorithm. This virtual
image is the interface between motion detection and H.264
interpolation.
During the video coding, the MI (Figure 3) is scanned in
order to decide the area where bilinear interpolation is
applied. Alternatively, a smart interpolation will be applied.
The smart interpolation uses the pixels evaluated by Wiener
filtering, replicating them to the near blank positions without
other calculation.

4. RESULTS

The proposed algorithm has been validated on the reference
JVT software version jm86 [6] implementing the H.264
video encoder, which include a fast ME (we used this
option). The reported tests have been performed using
standard sequences in QCIF format. Hall, Salesman, Silent,
Highway, and News have been utilized in order to test the
proposed algorithm with both simple and complex
sequences (Highway). In the following tests, we encoded
200 frames of every test sequence at 30fps. The selected
block configurations are 16x16, 16x8, and 8x16; the
CAVLC entropy coder is used for all the tests; Hadamard
transform is not used. The RD optimization option in the

reference encoder is turned off for all the experiments. The
reported tests show the algorithm performance for different
quantization values (Q inter) selected from 8 to 28. The
results show that our approach can simplify the encoder
complexity, maintaining high compression rate and good
video quality. The proposed algorithm is strongly influenced
by the detection value threshold: using a very high value not
all of the motions can be detected; otherwise, a very low
value can cause the detection of background noise as
relevant motion. In the following tests we have set the
detection value to 15; this value is based on previous studies
reported in [7] on the Search Window Estimation (SWE).
For every sequence, two tests are performed in order to
compare the following implementations: the jm86 Standard
Fast with original interpolation algorithm (STDI), and the
jm86 Standard Fast with LDI algorithm (LDI) [6]. Tests are
performed on standard pc class workstation Pentium 4 3.0
Ghz equipped with 1024 MB main memory.
Table 1 shows the differences between the standard
algorithm and the proposed approach for a given
quantization value. The video quality is compared using the
PSNR. The compression and the interpolation time entries
represent the percentage increase (positive) or decrease
(negative) of the LDI approach.
The reported interpolation time is the computational time of
the interpolation module (summed with the MD module
time in case of LDI test).
The proposed algorithm (LDI) obtains a consistent reduction
in interpolation time for all the sequences: LDI is about 3
times faster than the reference software STDI. Noticeable
fact is that there is little loss of bitrate/compression values.
In particular graph 1 and graph 2 focus on the behavior of
the Hall sequence (video surveillance – low complexity
case). The difference in

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Q Inter 20 Psnry (dB) Compression
(%)

Interpolation
Time (%)

Hall -0.01 -0.740 -76.4
Salesman -0.03 -4.900 -72.8

Silent -0.05 -5.217 -70.6
Highway -0.09 -4.272 -74.0

News -0.05 -5.174 -77.3

Table 1 - Comparative test for quantization value of 20

Graph 1 - Differential percentage bit rate for hall sequence

Graph 2 - Differential percentage time for hall sequence

bitrate and interpolation time between STDI and LDI is
shown for several quantization values (8-28). Graph 1
shows the decrement in compression efficiency of the LDI,
anyway the differences ranges from 0.5% to 2%, increasing
with inter quantization (QP). The speed-up is the same in all
the selected quantization range (see graph 2).

5. CONCLUSION

This paper presents an adaptive interpolation module for the
video coding standard H.264. The proposed solution allows
decreasing the overall encoder complexity both in low and
high complex sequences, having small side effects either in
image quality or in compression efficiency.
The integration of our Motion Detection module in the
H.264 encoder is described and tested using the JVT
reference software jm86 [6]. The reduction of the

interpolation computational time has been measured using
standard QCIF sequences.
The main idea of the Local Dynamic Interpolation (LDI)
algorithm is to reduce the interpolation complexity using a
partial bilinear interpolation in motion areas, and a simple
interpolation in background areas.
Future developments will focus on a further reduction of the
H.264 overall complexity by using the MD to drive the LDI
together with the SWE. Since both the algorithms use the
same MD module’s output, the system efficiency will be
even improved.

6. REFERENCES

[1] ISO/IEC 14496-10, ITU-T Rec.H.264, Joint Video
Specification, Oct. 2002.
[2] ITU-T Recommendation H.263, “Video coding for low
bitrate communication”, Feb. 1998
[3] S. Saponara, C. Blanch, K. Denolf, and J. Bormans,
“The JVT Advanced Video Coding Standard: Complexity
and Performance Analysis on a Tool-By-Tool Basis”, Packet
Video 2003, Nantes, France, April 2003
[4] Y.L. Lai, Y.Y. Tseng, C.W. Lin, Z. Zhou, and M.T. Sun,
"H.264 Encoder Speed-Up via Joint Algorithm/Code-Level
Optimization," VCIP 2005, Visual Communications and
Image Processing, Beijing, China, July 12-15, 2005.
[5] D. H. Ballard and C. Brown, Computer Vision, New
Jersey, Prentice Hall, pp 149 - 157, 1982
[6] JVT version jm86, Bs.hhi.de/~suehring/tml/download/
[7] G. Bailo, M. Bariani, I. Barbieri, M. Raggio, “Dynamic
Motion Estimation Search Window Size Calculation In
H.264 Standard Video Coder”, The Tenth International
Conference on Distributed Multimedia Systems – DMS04,
San Francisco, USA, Sept. 8-10, 2004
[8] Gianluca Bailo, Massimo Bariani, Ivano Barbieri, Marco
Raggio. “Search window estimation Algorithm for Fast and
Efficient H.264 Video Coding With Variable Size Block
Configuration” - EUSIPCO2005 (Eurasip) Antalya, Turkey,
Sept. 4-8, 2005.
[9] O. Werner, “Drift analysis and drift reduction for
multiresolution hybrid video coding”, Signal Processing:
Image Commun., vol. 8, no. 5, July 1996.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

