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ABSTRACT time and frequency domains [18].

We describe a method to extract the haemodynamic response func- P1or to the HRF extraction, low-frequency trends are re-
tion (HRF) from functional magnetic resonance imaging (fMRI) Moved from the time signals using a standard wavelet-based tech-
time series based on Fourier-wavelet regularised deconvolutiofidue [13]. The input of the extraction routine is an fMRI time
(ForwaRD), and introduce a simple model for the HRF. The HRFSETes and a file containing the stimulus times, and the output is
extraction algorithm extends the ForwaRD algorithm by introduc-g"’er; ?S a time series of wgage Vﬁlumes containing the HEFdat eﬁCh
ing a more efficient computation in the case of very long Waveleflox?] gcat'on- Corrpfare to other HRF ﬁxtra_ctw? methods, the
filters. We compute shift-invariant discrete wavelet transforms (SI{n€thod requires only few assumptions. The stimulus-response re-
DWT) in the frequency domain, and apply ForwaRD using orthog-!at'on is assumed to be linear and time invariant (LTI), and the signal
onal spline wavelets. Extraction and modelling of subject-specifidS @SSumed to be separable from noise in the Fourier and/or wavelet
HRFs is demonstrated, as well as the use of these HRFs in a sufgPresentation. Our ForwaRD algorithm uses a novel frequency-
sequent brain activation analysis. Temporal responses are predictiomain implementation of the shift-invariant discrete wavelet trans-
by using the extracted HRF coefficients. The resulting activatioo™m (SI-DWT) that we have recently developed [23]. Itis efficient

maps show the effectiveness of the proposed method. to compute the wavelet transform in the frequency d_omain if the
basis functions do not have compact support [21]. This is the case
1. INTRODUCTION for orthogonal spline wavelets, which have exponential decay.

To obtain a precise temporal representation, we use a very sim-

Functional magnetic resonance imaging (fMRI) is a versatile toople model for the HRF, based on a damped oscillator. Sampling the
for functional neuroimaging. Regional brain activation inducesHRF only at the start of each scan yields a coarse temporal reso-
changes in blood oxygenation, generating a blood oxygenation levéltion, while a model function can be computed at arbitrary time
dependent (BOLD) contrast in MR images [16]. An important tool points. The HRF is found by fitting the model function to the ex-
for fMRI analysis is statistical hypothesis testing, where the fMRItracted HRF coefficients. The model is easily combined with a stan-
signal is predicted using the stimulus pattern and a response modeiard time series analysis and is more flexible than the canonical
The general linear model (GLM) assumes that the BOLD responseRF as used in the SPM program [6], which is the the difference of
to each stimulus is linear and time-invariant (LTI) and that the totaktwo specific gamma density functions.
response is the sum of all modelled responses. Statistical parametric
mapping [6] uses a model of the noise (Gaussian), and hypothesis 2. THEORETICAL BACKGROUND
tests are based on the parameters of the model. Within the GL% 1 SPM
framework and given the stimulus pattern, a response can be corfi-
puted with a fixed impulse response function, by convolving theStatistical parametric mapping (SPM) is the standard fMRI analy-
time pattern of stimuli with the impulse response. sis tool. It uses the general linear model (GLM): the response to a

This paper presents a method to extract the haemodynamic retimulus pattern is modelled as the output of a linear, time invari-
sponse function (HRF) from fMRI data. The method is based orant (LTI) system, see Fig. 1(a). It assumes the temporal noise to
Fourier-wavelet regularised deconvolution, ForWaRD [15], usingbe independent, identically distributed and Gaussian. SPM consists
orthogonal spline wavelets [19]. Extraction of the HRF is a diffi- of the following steps: ij estimate the parameters of the noisi, (
cult task. Most methods in use today are either based on selectiv@mpute a statistic at every voxel locatioiii,)(threshold the statis-
averaging, which requires long inter-stimulus times to prevent overtic values using the noise parameters and a multiple testing correc-
lapping responses [1, 3], or they combine HRF extraction and modion method. Assuming an LTI stimulus-response relation, an fMRI
elling, restricting the HRF to predefined functions [4, 9, 14]. Non-data set off time samples il voxels is modelled as:
linear stimulus-response relations have been found [7 28] for

varying stimulus durations and amplitudes. The experiments pre- Y run) = Xirsom Bmsn) + €rny- 1)
sented here have fixed stimulus durations and amplitudes, and the
GLM is assumed to be valid. Y represents the fMRI dat& is thedesign matrixof M explana-

The advantage of deconvolution in the frequency domain is thatory variables (modelled effectsf contains the weights of each
overlapping responses can be separated [10], which is not possibié¢ these variables in each voxel, aadontains the residualsg.,
with selective averaging. ForWwaRD combines frequency-domaitthe unmodelled part of the signals. Each columiXafontains the
deconvolution with regularisation in the frequency and wavelet domodelled response to the stimuli of one type. An LTI response to
mains, to reduce noise as much as possible without introducingne type of stimulus is given by a convolution of the time pattern of
large errors. An orthogonal spline wavelet basis is used; splinghe stimuli and the appropriate HRF. A good HRF model is critical
wavelets have many favourable properties, such as smoothness, ap-the success of the estimation based on (1), because an inaccurate
timal approximation properties, and good localisation in both themodel may lead to a non-Gaussian distribution of the values in
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Figure 2: ForWaRD HRF extraction scheme. Fourier shrinkage
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ate noise amplified during the inversion step. Subsequent wavelet
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the residual noise.

Figure 1: (a) Inputs and output of the GLM) the impulse response
function, (i) the stimulus pattern,ii{) the total response without

noise, {v) the noisy response. (b) Various stages of the ForWaRRyne transform with basis functiorigy, 1) to estimate the true sig-
algorithm: ) extracted HRF after frequency domain inversiah), (- | py thresholding detail coefficients, and another transform with
after frequency domain shrinkagéi X after subsequent wavelet do- pasis functiong g, (), whose detail coefficients are shrunk. For-
main Wiener filtering. WaRD uses the SI-DWT to ensure shift-invariance.

3. COMPUTING THE SI-DWT IN THE FREQUENCY
DOMAIN

2.2 Moddlingthe HRF . . . . .
) ) ) ForWaRD requires the SI-DWT, which was implemented in the time
A simple way to model a delayed response like the BOLD signaljomain [12]. Spline wavelets [19] can be computed most efficiently
(the delivery of extra oxygen follows the increased oxygen conin the frequency domain.
sumption) is by describing it as a damped oscillator. The function Starting from the definition of the SI-DWT of Shensa [17] (re-
sulting in thea trousalgorithm), we recently derived an efficient
f n_{ H sin(%) e%ﬂ, ift>L o implementation of the SI-DWT in the frequency domain [23]. Let
noec() =19 g, otherwise (@ handg define an orthogonal wavelet basis, withalfilters defined
ash(n) = h(—n) andg(n) = g(—n), with X denoting the complex
models a damped oscillator witH (eight), L(ag), P(eriod), and  conjugate ok. Then the forward SI-DWT in the Fourier domain is
D(ilation) parameters. Function (2) can be used to model the BOL@iven by: _ _ _ _
response by fitting it to the extracted HRF coefficients, and using the clt1=HQecl, DI*1=GRecC/, ®)
resulting function as the HRF. It is demonstrated in section 4 thatif . i
there are enough time points to model the complete undershoot &' 1 = 0:1,---L—1,Q =2}, whereL denotes the number of lev-
the HRF as well as the initial peak, a sum of two such functions ca®!S in the decomposition. Input is a vec®@?; output are vectors
also be used to describe the HRF, yielding a more accurate mod®t',D?,---,D-,C". Herexey denotes pointwise multiplication of

of the undershoot. vectorsx andy, andCl, DI, HQ? andGR denote the DFT vectors of
Cl, D!, 1o hand?q g, respectively. Herejq x denotes upsampling
2.3 ForWaRD vectorx with a factorQ, and the lengttN vectorsH® andG® con-

Using the LTI model described in section 2.1, an HRF can be extain the Fourier coefficients of the upsampled filters. In particular,

tracted from an fMRI time series by deconvolving the measuredf j = 0,i.e, Q=1,H" equals the DFT vectdt of h.
time signals with the stimulus pattern. In the frequency domain, It can be shown that [23],
deconvolution can be done via pointwise division; this is called
Fourier inversion. The great advantage of Fourier inversion is the
fact that it can separate overlapping responses. However, noise is HQ — (Lo H) (Lo H) -+~ (L2 H)]
amplified at frequencies where the signal is small, introducing in-
stablitity: small changes in the inputs induce large changes in thgg in jterationj of the decomposition, the DFT vectbi? is ob-
output. Regularisation suppresses the destabilising effects. If thgineq by downsampling the DFT vectsrby a factor ofQ = 2i
destabilising factor is the noise, regularisation is tantamount to des,q thenQ times repeating this reduced vector of lendi/Q to‘
noising. o . . again get a filter of lengtN. Alternatively, two copies of the even-
con\% ﬁﬁgmi‘;ns;]er?nuklﬁ:és?ﬁg?é%%g’:\'g;i;‘é;ﬁfé?gnﬁn;%/e‘rj?mz'r';igﬁ'numbered samples of the filter values in the previous itergtion

; . : oG Q/2 ; Q -
The signal of interest is usually smooth (low-frequency) and nms%ged’ug ) are concatenated to obtaiff?. The case 06 is anal
is usually erratic (high-frequency). Two familiar shrinkage meth- y I . Lo
ods are Wiener shrinkage and Tikhonov shrinkage [15]. Non- Reconstruction in the Fourier domain is given by
smooth parts of signals (such as steep edges) are not efficiently
represented in the frequency domain, because they contain much
high-frequency energy. As a result, noise at those frequencies is no Q Q . . ,
shrunk. Using more shrinkage to remove noise introduces artifactd,herefH andG arg obtained in the same way frdihandg’ as
such as ringing. escribed above fdi ™.

The ForwaRD deconvolution scheme performs noise regular: L
isation via scalar shrinkage in the Fourier and wavelet domainsg'l Computation times: spline wavelets
Fourier shrinkage exploits the economical representation of th&he algorithm for computing the SI-DWT in the frequency domain
noise in the Fourier domain, whereas wavelet shrinkage exploits more efficient than a time-domain computation when the wavelet
the fact that piecewise smooth signals and images with singularbasis functions have wide support. We compared the computation
ties, such as step edges, have a sparse representation in the waveiaes of the time and frequency-domain versions of the SI-DWT,
domain. The main steps of this approach are depicted in Fig. 2, sé®/ computing the three-level SI-DWT of signals varying in length,
also Fig. 1(b). Wiener shrinkage reduces the magnitude of waveletsing the symmetric orthogonal cubic spline wavelet basis [11]. For
coefficients at indices where the true signal is weak, and preservesach length, 100 signals were transformed and reconstructed, using
those coefficients where the true signal is strong. The true signahe time-domain implementation, a naive frequency-domain imple-
is unknown, so ForWaRD uses two wavelet transforms of a signaimentation, and our fast implementation of therous algorithm.

Q times

Cl71=HReCl +GReD/, 4
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Figure 3 shows the results: the naive frequency-domain version 4. EVENT-RELATED FMRI EXPERIMENTS
is faster than the time-domain version for signals of more than 6 h . . dinth vsis of
points. The optimised frequency-domain version is always fastest.ne¢ HRF extraction routine was used in the analysis of two event-

Therefore, the frequency-domain SI-DWT is preferred for long fil- F€lated LMRl experILments ofkone fsubject, measured on giﬁefe“tl
ters (like orthogonal spline wavelets), and is used in this paper. 9ayS. The subject had to make a fist upon presentation of a visual
stimulus, and then immediately relax. Stimuli were presented on a

white screen inside the MRI scanner. A white disc was shown as the
default, a red disc was the cue to make a fist. One experiment was

1.5]

° performed with a fixed inter-stimulus interval (1SI) and one with a
1 randomised ISI. Realignment, normalisation, and statistical analy-
x sis were done with the SPM program. Denoising was done with a

time (s)

wavelet-based technique [22]. We computed HRFs for the whole
brain and in a region of interest, respectively, which were then used
in covariance analyses to test for activation.

0.5
o

g ! .

of @@ @
16 32 64 128 256 512 4.1 Fixed-l1S| Experiment

signal length

The fixed-IS| data set consisted of 156 volumes of 64x 46 vox-
Figure 3: Computation times of the time-domain SI-DWT and Si-els with size 3 x 3.5 x 3.5 mn?. Cues were given every 24 s
IDWT and the frequency-domain SI-DWT and SI-IDWT, respec- (8 scansx 3 s) starting at scan 2. HRFs were extracted by our
tively, with symmetric orthogonal cubic spline wavelet basis func-method, and also by selective averaging [5], a simple and robust ex-
tions. Time domainy: SI-DWT, +: SI-IDWT. Frequency domain traction method that works for long ISIs. A first statistical analysis
(naive) x: SI-DWT, o: SI-IDWT, (fast)J: SI-DWT, . SI-IDWT. was done to detect activation synchronous to the stimuli. We used
a design matrix with a set of 6 Fourier basis functions, modulated
by a Hanning window, in the time interval of 8 scans after each
stimulus, so as not to impose shape assumptions on the HRF. An
3.2 ForWaRD using spline wavelets SPM{F} res(ulting; from a}r[F]-teshwas corfnputecli, LIISi;’]lg falﬁe dis-
. . - . covery rate (FDR) control [8] witlgq = 0.05 for multiple hypothesis
g\l;\;_l'jg‘r’]v dvserﬁlr?gv?;v':eolcre\gﬁaljs Yjvétg deiﬁ'?;]inbfg{?:qgft?ggg%m%n rSaI- testing. With both ForwaRD (using 128 of the 156 scans) and selec-
We use ortﬁonormal splines to preserve the signals’ enerp (gallurinlve averaging, we computed a whole-volume HRF and a regional
the transform. Unser e‘t) al havepproposed fract?onal splinegv)\//aveleﬁ RF in a 77 x 7-voxel region with high activity (see the region
because ofthéirfavourablé roperties [2, 19]. Their implementatio fidicated by a £ in Fig. 5a). The post-stimulus volumes were
prop [2,19]. p I%ultiplied by theF-values in the map, after thresholding with an

gz‘):lrsac(t:lforllaill Sg“r}ﬁir\,’i\?s;sgd \}voe %ir;%rifutsg? ;’V%\ﬁzgtv\ﬁﬁs'jefurg‘ﬁ'DR-parameteq = 0.0001, and averaged over the volume/region.
a— 4 fdr (g. : ) and z?nt‘i)cahsal splines with dg rge— 3 for 9 E|gures 6a.-b.show the HRFs. Selective averaging almost returns to
- R P gree= baseline within the ISI, whereas ForwaRD remains below baseline.
(2,42). This may be because the real HRF does not return to baseline within
the measured interval, so in the LTI model the response decreases at
every next stimulus. This results in an HRF with a lower baseline.
— Selective averaging forces each response to begin at baseline, even
= v - when the response does not return to baseline within the sampled
Iy / § w/\ {\W time interval. In general, ForwaRD-based methods are expected to
¥=0 Vi 70 Vo e 5 work better with a varying 1S, because a fixed ISI leads to a badly
conditioned Fourier inversion. The next experiment therefore used

ST

5z-=x

Gz-=x
5z
§2-=x

(a) (b) (c) a randomised ISI.
Figure 4: Orthonormal quarticx=4) spline wavelet basis func- = 3 e T 7 o o
tions: (a) causal, (b) anticausal, (c) symmetric. Top: scaling funct f o st d
tion ¢, bottom: waveletp. : s F L £
3.3 HRF extraction based on ForWaRD .,: 1
The total routine for extracting an HRF from an fMRI time se- - ‘ : Pt
ries, using only the stimulus times, consists of the following| \ ;i 49 .. Nl B L
steps: e B R

1: load the time serieg and the stimulus patterf () (b)

2: subtract the time series mean;

3: remove low-frequency trends; o _ Figure 5: SPM{F} of the fixed-ISI experiment (a), SPNF} of
this is done with a wavelet-based method described in the litefthe random-ISI experiment (b), thresholded using FDR correction
ature [13]; with g=0.05

4: apply ForwaRD tqgg, estimate the HRR to the stimuli with
patternf.

Time signals at different voxel locations can be processed indepen-

dently, so that it is possible to process multiple time signals at once, .

The number of time signals processed simultaneously can be aélz Random-1Sl Experiment

justed according to the amount of available computer memory.  In a second fMRI experiment, stimulus times for this experiment
This routine was implemented in MatLab (The Mathworks, were random and the length of the random-ISI data set was 256

USA) and was used in combination with the SPM program [6] toscans. The other parameters were unchanged. The stimulus sig-

analyse fMRI data. nal was created by thresholding a vector of uniformly distributed
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random numbers. The number of stimuli was 39, so the averr ,{
age ISI was between 6 and 7 scans. Post-stimulus image va|
umes were produced by ForWaRD. Thanks to the spreading of thi |
stimulus, the HRF could be sampled on a much larger time intert -
val. Due to the response overlap, neither selective averaging n
the Fourier basis set could be used. The design matrixas
made by convolving the stimulus signal with the ‘canonical’ HRF
from the SPM"99 program [6] and its time and dilation derivatives.| |
HRFs were made from the SR} (see Fig. 5b) and the post- | {
stimulus volumes, see Fig. 6¢. The regional HRF corresponds mog y’i
to the previously extracted HRFs. Both HRFs return to baseling : V(a)
within the post-stimulus interval. This does indicate that with ran- :
dom inter-stimulus times, where selective averaging cannot be use
ForWaRD-based HRF extraction perforrostter than with fixed
inter-stimulus times.
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Figure 6: HRFs extracted from the fixed-ISI data set by selectivemigure 8: SPMT }s of the activation found by using the modelled

averaging (a) and by ForwaRD (b), and from the random-ISI timeHRFs: (a) fixed-ISI data, random-ISI whole-volume HRF, (b) fixed

series by ForwaRD (c)x: whole-volumep, region-specific. ISI data, random-ISI regional HRF, (c) random-ISI data, fix8t-I
whole-volume HRF, (d) random-ISI data, fixed-1SI regional HRF.

4.3 Usingtheextracted HRFsin activation tests

A covariance test was done on the random-ISI data using the fixe
ISI HRF coefficients in the model, andce versa HRFs extracted

from one data set cannot be used for covariance tests on that sa
data set: a model must be specifagriori, and inferences cannot

be made from models that are determined by the data. We mo
elled the fixed-1SI HRFs by fitting one model function (2) to the
HRFs extracted from the fixed-ISI data. Two such functions (on

hat ForWaRD works as well on the random-IS| dataset as it does on
he fixed-I1SI data set. Its performance is similar to that of averaging
on the fixed-1SI dataset. The modelled HRFs, acquired with For-
RD as well as with selective averaging, outperform the canon-
(ilc_al HRF in terms of explained variance. The modelled region-
pecific HRFs generally perform better than whole-volume HRFs.
The maps of detected activation indicate that the modelled HRFs do
ot only detect activation in the region from which they were ex-
tracted, but that they are general enough also to detect activation in
other areas.

Table 1: A comparison of maximum variance ratio values. The
activation test for the fixed-1S| experiment used the HRFs computed
from the random-1S| data, andce versa

o 1 e R erstimus tme & ForWaRD |selective averaging
g (a) (b) volume regionvolume  region |HRFspm
fixed-ISI| 120 163| -— — 117
random-IS| 103 101 | 102 104 74

Figure 7: The modelled HRFS for the covariance test, with the coef-
ficients from the fixed-IS| experiment (a) and the random-I1SI exper
iment (b). Solid lines: regionally determined HRFs, dashed lines:
whole-volume HRFs.

5. CONCLUSION

to model the peak and one to model the undershoot) were used f¥e have presented an HRF extraction method for fMRI time series
the HRFs from the random-ISI data. The fixed-1SI signals did notbased on ForWaRD (Fourier-wavelet regularised deconvolution).
have enough coefficients to accurately model the undershoot. ThEhe extraction method removes the time series mean, removes low-
fitted functions were then used to build the design matrices for sulpass trends with a wavelet-based method, and applies ForwaRD to
sequent covariance tests. The maps in Fig. 8 resulting frotest  the resulting signal to extract the HRF. The output of is given as a
show very similar shapes as those in Fig. 5, but here the detectemst-stimulus time series of image volumes, representing the HRF
activations are stronger. This indicates that the model used hefr every voxel.
captures all variance captured by those methods. The difference be- The existing ForwaRD method has been extended by intro-
tween this analysis and the previous is that only one basis functioducing a novel frequency-domain implementation of the SI-DWT.
is used here, enabling a covariance test with stronger responses. Timings show that for signals longer than 64 points, the speed
Table 1 shows the maximum variance ratio values found in thgyain of the frequency-domain transform is considerable. This en-
tests with the modelled HRFs. A high variance ratio indicates thaabled us to efficiently use orthogonal spline wavelets. We also pre-
much of the variance in the signal is explained by the model, andented a model for the HRF that can be used in combination with
that the residual noise in the GLM (see Eq. (1)) is small. It showghe extracted coefficients to predict event-related fMRI responses.
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In combination with HRF data extracted from fMRI time series, [11]
this model yielded an accurate an temporal description of subject-
specific or group-specific BOLD responses.

In the event-related fMRI experiments, the ForwaRD-based[12]
method was able to extract the HRF from both fixed-ISI fMRI time
series and random-ISI fMRI time series. The HRF extracted from[13]
the fixed-1S| data by ForwWaRD looked more noisy than the HRF
extracted by selective averaging, which is most likely due to the re-
sponse not completely returning to baseline within 24 seconds, a4
well as to the badly conditioned inversion (deconvolution) problem
with a fixed ISI. The ForWaRD-based method worked particularly
well in the latter case. This suggests that additional long-1SI studiejlsl
for HRF extraction are not necessary: they may just be extracte
from other studies (with the same stimuli) of the same subject. De-
spite the fact that the average inter-stimulus distance was smaller irie]
the random-ISI study, the HRF could be sampled in a much IongetI
interval. In the fixed-1SI case, the size of the sampling interval was
bounded by the ISl itself. This is another good reason to use rany; 7
dom ISlIs and deconvolution methods to extract the HRF, rather than
fixed I1SIs and selective averaging. [18

The modelled HRFs, using the model function and extracted
coefficients, have shown to capture the same amount of variance ifg
one basis function as traditional methods that require multiple basis
functions. The SPMF} maps of the traditional models and the [20]
SPM{T} maps show the same regions. The SPM maps result-
ing from the ‘canonical’ HRF show much smaller detected regions [21]
and the amount of detected activity (indicated by the maximum val-
ues for the variance ratio) is much smaller. This suggests that the
performance of standard HRF functions may be significantly im- [22]
proved by re-evaluating them for each subject. The generality of
the results need not depend on the parameters of the model func-
tion, but only on the acceptance of the HRF model. [23]
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