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ABSTRACT
In this paper the alignment of noisy signals using dif-

ferent methods is studied. The methods studied in this pa-
per are the Maximum Position method, the Cross-correlation
method and the Zero Phase method. In order to evaluate the
performance of the alignment methods, a database of high
range resolution radar profiles containing patterns belonging
to six different targets has been used, and the classification
error using the k-Nearest Neighbor method is calculated. Re-
sults show the best performance of the Maximum Position
method, in terms of error rate.

1. INTRODUCTION

Most of the classification algorithms (k-Nearest Neighbor
(kNN), Multilayer Perceptrons, Radial Basis Function net-
works, Support Vector Machines, etc.) highly depend on
shifts over the input signal. So, the alignment of each signal
previously to any classification technique or preprocessing
stage is very important. In this paper we study the accuracy
of various methods for the alignment of High Range Res-
olution (HRR) radar signals, a kind of noisy signals used in
Automatic Target Recognition tasks, evaluating the error rate
using a kNN classifier.

Automatic classification of HRR radar targets is a diffi-
cult task. This kind of radar uses broad-band linear frequency
modulation or step frequency waveforms to measure range
profiles (signatures) of targets [1]. HRR radar profiles are es-
sentially one-dimensional images of radar targets, and their
values depends on the considered target and on the values of
azimuth and elevation. A range profile is defined as the ab-
solute magnitude of the coherent complex radar returns, and
all phase information is usually discarded. If a range profile
is measured with sufficient resolution, the parts of the aircraft
that strongly reflect the radar energy, are resolved. There-
fore, range profiles provide information about the geometry
and structure of the aircraft, and so they are suitable features
for automatic aircraft classification.

The inner characteristics of the HRR signals makes that
small variations in the distance to the target cause circular
shifts of the received signal. This fact makes very impor-
tant the design of the alignment stage, in order to implement
efficient classifiers.

The aligning algorithms are divided in terms of method-
ology in three groups:
• Absolute alignment methods. In these methods each pro-

file is aligned independently. So, a measure over each
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profile must be obtained in order to estimate the shift
for aligning the signal. One of these methods uses the
position of the maximum of the signal (Maximum Po-
sition method). Another alternative consists in using
the position of the maximum of the cross-correlation of
the profile with a pattern signal (Naive Cross-correlation
method). Another possibility consists in using the shift
property of the Fourier transform to align the pattern
(Zero Phase method).

• Relative alignment methods. They try to align the data set
using the existing relationships among the patterns. An
example of this kind of methods is the Complete Cross-
Correlation method, which uses the cross-correlation of
all patterns in the data set to obtain the shifts. Due to
the need for a priori knowledge of the relationships (they
are only valid for aligning data sets), the implementation
of this kind of methods in classifications problems is not
easy.

• Integrated alignment methods. The last group of align-
ment methods are not alignment methods themselves.
They are included in the classification process. They are
based on the design of translation invariant classifiers.
The main example of this group of methods is known
as Sliding Euclidean Distance, which consists in select-
ing the nearest pattern taking into account any possible
slide of the signal. These classifiers use to have associ-
ated a very high computational cost, which make them
unpractical in actual implementations.
The alignment of signals has been studied many times in

the literature. In [2] methods based on the centroid and the
cross-correlation are reviewed. Centroid methods are very
sensitive to noise, and obtain worse results than the cross-
correlation based methods. In [3] and [4] cross-correlation
methods applied to ultrasonic signals are studied, trying to
find theoretical expressions for the shift estimation error over
simple signals. The method for aligning the signals described
in [5] is a variant of the cross-correlation method applied to
HRR radar profiles alignment. In [6] a new HRR aligning
method is proposed mixing the relative cross-correlation and
the zero phase method. At last, in [7] the maximum posi-
tion method, the cross-correlation method and the zero phase
method are studied, taking into account the mean error on the
estimation of the shift of the methods, using a HRR database.
The paper demonstrates the superior performance of the Zero
Phase method, in terms of average error on the estimation of
the shift.

This paper deals with the study of the classification error
with patterns aligned with the zero phase method, with cross
correlation based methods and with the maximum position
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Figure 1: Radar profiles of the database. Each column of the
image represents each one of the 4349 profiles. The black
color is the higher value, and the white color is the lower
value

method. In order to evaluate the classification error, the kNN
method is used as classifier. In the literature, this method
represents a standard in classification, due to the simplicity
of its implementation, and, therefore, it is used to evaluate
the performance of the alignment methods.

2. MATERIALS AND METHODS

In this section a short description of the database used in the
experiments is included. A short review of the kNN method
is also included.

2.1 Database Characteristics

In order to evaluate the performance of the different methods
for aligning HRR profiles, a database containing HRR radar
profiles of six types of aircrafts has been used. The assumed
target position is head-on with an azimuth range of 25o and
elevations of −20o to 0o. The database contains 4349 pro-
files, and the length of each profile is 128.

Figure 1 represents the available signals. It is clearly vis-
ible that the significant information is concentrated in the
middle of each time segment, whereas towards the limit of
the radar profiles we encounter nondiscriminatory values.

Each profile of the database has been randomly shifted,
in order to study the capabilities of the alignment methods.
Therefore, the original data has been shifted using an uni-
form random integer variable from 0 to 127, which represents
a complete misalignment of the profiles.

For each experiment, three subsets are used: a training
set, composed of M profiles (M/6 per class), randomly se-
lected from the original data set (the poses could be different
for different targets), a validation set composed of other Mval
profiles (Mval/6 per class) and a test set, composed of Mtest
profiles (Mtest/6 per class). To study the influence the size
of the training set has on the performance of the developed
classifiers, we used training sets of different sizes. Table 1
resumes the sizes of the sets considered in the experiments.
The validation set is used to select the necessary classifiers’

Table 1: Sizes of the different sets considered in the paper

Mtrain 1920 960 480 240 120 60
Mval 240 180 138 102 78 60
Mtest 1710 1710 1710 1710 1710 1710

parameters. The test set is used to assess the classifier’s qual-
ity after training. The test set remains unaltered for all the
experiments described in this paper.

The performance of the kNN classifier can be specified as
the probability of correct classification (Pcc), the probability
of misclassification (Pmc) or the error rate. The probability
of correct classification is the probability of a given target
being classified correctly. The probability of misclassifica-
tion is the probability that a given target is wrongly classified
(Pmc = 1−Pcc). Finally, the error rate expresses the percent-
age of overall classification errors, and these probabilities are
estimated using the Monte Carlo simulation [8].

The Signal to Noise Ratio (SNR) has been a parameter
of the study. Due to the temporal localization of the signal,
the SNR has been defined using the peak energy of the signal
(1). In this paper, the SNR varies from 5 dB to 50 dB in steps
of 5 dB.

SNR = 10log
(max{x[n]}2

σ2
n

)
dB (1)

2.2 k-nearest neighbor classifier

The k-Nearest Neighbor method is frequently used in ATR.
As early as 1975, a target identification scheme based on
multi-frequency measurements of the Radar Cross Section
(RCS), using this technique for classification, was proposed
[9].

This technique assumes that the data sets contain Ni
points of class Ci and N points in total, so that ∑i Ni = N.
Then a hypersphere around the observation point x is taken,
which encompasses k points irrespective of their class label.
Suppose this sphere, of volume V , contains ki points of class
Ci, then applying Bayes’ theorem, we obtain (2) [10].

P(Ci | x)' p(x |Ci)P(Ci)
p(x)

=
ki

k
(2)

Thus, to minimize the probability of misclassifying a
vector x, it should be assigned to the class Ci for which the
ratio ki/k is highest.

The value of k must be previously selected, in order to
implement the method. In this paper its value has been se-
lected using the validation set. So, for each SNR and each
size of the training set, the validation classification error has
been measured, and best value of k has been selected.

3. RESULTS

This section describes the results obtained with the kNN
method over the HRR data, using the different methods stud-
ied in this paper: the Maximum Position method, the Zero
Phase method, and Cross-correlation based methods.
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Table 2: Classification error (%) using the kNN method with
patterns aligned using the Maximum Position method for dif-
ferent SNR values

Mtrain 1920 960 480 240 120 60
5 dB 83.51 84.09 82.46 83.80 84.27 81.99

10 dB 80.53 80.41 79.47 78.83 80.29 82.69
15 dB 47.13 44.62 54.15 55.32 59.36 66.78
20 dB 18.25 20.53 25.61 32.81 38.83 45.44
25 dB 9.53 12.69 16.73 21.40 26.78 32.81
30 dB 8.19 10.53 14.33 19.18 25.67 30.99
35 dB 6.55 8.25 11.52 17.66 23.80 28.95
40 dB 7.19 8.13 12.81 17.37 24.44 28.01
45 dB 5.61 7.72 11.52 15.32 21.52 26.37
50 dB 5.03 7.43 11.05 15.26 21.81 28.95

3.1 Aligning signals using the Maximum position
method
The Maximum Position method proposes to align the signals
using the position of the maximum value. So, this method is
only useful when the signals show a clear global maximum
value. This is the simplest method, both in terms of perfor-
mance and computational cost. Therefore, it has been used
many times in the literature.

In HRR radar signal alignment, this method is based on
the modeling of the signal with scatterers. In [11] a pre-
processing method based on the extraction of the position
of the main scatterer is proposed. Using the position of the
main scatterer as reference, a new set of aligned profiles is
obtained. The main disadvantage of this method is the high
sensibility of the performance to the presence of noise.

Table 2 shows the classification error obtained by the
kNN method, aligning the HRR signals using the position of
the maximum value. This table shows the relationship of the
classification error measured with the test set, and the SNR,
for different training set sizes. Parameter k of the method has
been selected using the validation set.

3.2 Aligning signals using the Zero Phase method
The Zero Phase method has been previously used for align-
ment of panoramic images [12]. The basis of this method is
the shift property of the Fourier transform. For any function
x(t) with Fourier transform X(ω), the Fourier transform of
x(t−4t) is given by (3):

F{x(t−4t)}= X(ω)e− jω4t (3)

In the discrete time case, where we are dealing with sam-
pled functions x[n] (n = 0, ...,N−1), a similar property holds
for circularly shifted versions of x[n]:

DFT{x[((n−m))N ]}= X(n)e− j2πnm/N (4)

So, for a discrete shift m, the phase φ of the n-th compo-
nent of the Discrete Fourier Transform (DFT) (n = 0, ...,N−
1) will be shifted by −2πnm/N. These phase shifts can be
used to obtain an estimation of the discrete shift m.

A phase shift φ + 2nπ generates uncertainty, because it
is taken like a phase shift φ . This fact makes the mea-
sure of differences between two consecutive phase shifts
necessary. So, if the phase shift for the component n0 is

Table 3: Classification error (%) using the kNN method with
patterns aligned using the Zero Phase method for different
SNR values

Mtrain 1920 960 480 240 120 60
5 dB 82.05 83.74 83.98 83.16 83.74 83.68
10 dB 83.86 82.46 83.45 82.98 83.22 83.45
15 dB 58.60 64.50 69.82 74.50 75.85 77.66
20 dB 25.03 32.22 38.65 45.61 60.99 62.11
25 dB 13.16 19.65 24.33 29.82 37.31 50.53
30 dB 10.35 12.81 18.42 26.73 34.39 40.29
35 dB 8.19 11.99 18.07 23.39 30.94 39.42
40 dB 8.42 14.91 23.86 22.11 33.98 48.89
45 dB 8.71 12.92 16.37 23.57 36.78 44.97
50 dB 9.12 11.64 17.02 22.16 33.39 47.19

φ(X(n0)) = −2πn0m/N and the phase shift for the compo-
nent n0 +1 is φ(X(n0 +1)) =−2π(n0 +1)m/N, then the dif-
ference between both phases is given by (5), and this value is
annotated between 0 and 2π , solving the uncertainty.

φ(X(n0))−φ(X(n0 +1)) =
2πm

N
(5)

It is usual the use of n0 = 0. In order to study the shift
of the signal, it is necessary to study the differences in phase
of two consecutive DFT samples. Using n0 = 0, it is only
necessary to study one phase, because the phase of the DC
component (n = 0) is always zero. So, using this value of n0,
the value of the shift m can be obtained with expression (6).

m =− N
2π

(φ(X(1))) (6)

Finally, classification errors of the kNN method with pat-
terns aligned using the Zero Phase method are also included
in table 3. The value of parameter k has been selected using
the validation set.

3.3 Aligning signals using cross correlation based meth-
ods
The Cross-correlation method is rather more complex than
the first one. It is based on the value of the cross-correlation
of the profiles. If the true signal x[n] were known, the relative
shifts of a set of Mtrain signals can be determined by an op-
timal matched filtering. In this approach, cross-correlation
analysis of each signal with respect to a template signal
(equal to x[n]) would yield shift estimates. Since x[n] is un-
known, an optimal matched filtering approach is not feasible.
However, relative shifts can be estimated by a suboptimal
matched filtering [13, 14], in which the true signal is approx-
imated by the other signals of the available database.

In a first approach, it is necessary to calculate the circular
cross-correlation of the signal with a template. The position
of the maximum value of the cross-correlation of the signal
with the template indicates the shift necessary to align the
pattern. The Naive Cross-Correlation method uses the j-th
signal of the database as template, and each signal is aligned
with respect to this profile. So, in order to align a profile, it is
necessary to calculate the cross-correlation of the profile only
with the first signal. So, the computational cost is relatively
low and independent of the database size.
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Table 4: Classification error (%) using the kNN method with
patterns aligned using the naive cross-correlation method for
differen SNR values

Mtrain 1920 960 480 240 120 60
5 dB 80.99 82.34 84.44 82.34 82.63 82.57

10 dB 80.23 81.64 82.81 83.51 81.99 81.87
15 dB 49.01 53.86 60.18 62.16 66.78 71.93
20 dB 20.47 23.33 26.78 31.99 38.30 45.15
25 dB 10.47 14.04 18.13 23.10 29.36 35.32
30 dB 7.78 10.47 15.38 19.65 26.02 31.87
35 dB 7.43 9.82 13.16 17.89 24.09 31.17
40 dB 7.49 9.42 13.74 18.30 24.09 29.36
45 dB 8.01 9.18 12.98 17.43 22.51 28.89
50 dB 7.84 9.06 12.69 17.72 22.98 28.60

Table 4 shows the results obtained using the kNN
method with the patterns aligned using the complete cross-
correlation method.

More complex approaches use the cross-correlation of
the signal with all the patterns in the available database.
Considering 4mn the position of the maximum of the cross-
correlation of signal m with n, the objective is to find the
shifts dk of each signal k that minimice the next expression.

C(d1,d2, ...,dM) = min{
M

∑
i=1

M

∑
j=1

(4i j +di−d j)2} (7)

Equaling to zero all partial derivatives of equation (7),
and fixing the position of the j-th, the estimated shift dk of
signal k is given by (8)[2].

dk =

{
0 i f k = j
∑M

i=14ik−4i j i f k 6= j (8)

This implementation is called the Complete Cross-
correlation method, and the associated computational cost
depends on the data set size (the number of cross-correlations
needed are (Mtrain + 1)Mtrain/2, being necessaries 2N2 sim-
ple operations to calculate a circular cross-correlation of two
signals of length N). This fact makes this strategy unpractical
in real-time applications.

Equation (8) can be simplified by adding a term ∑M
i=14i j.

This new term does not increment the cost function (7), and
therefore the obtained solution is a valid minimization of the
cost function

dk =
M

∑
i=1
4ik (9)

The cost function to minimize does not take into account
the circular characteristic of the data, so in practical imple-
mentations it is important to previously align the patterns in
the middle of the vector using an absolute method, so any
value of 4i j is lower than N/4, where N is the length of the
pattern.

On the other hand, the complete correlation method is a
relative alignment method that can be used to align the train-
ing set, but it is realistic the use of the method to align the
patterns of the test set. Test patterns must be aligned indepen-
dently with an absolute alignment method, because in real

Table 5: Classification error (%) using the kNN method with
patterns aligned using the complete cross-correlation method
for different SNR values

Mtrain 1920 960 480 240 120 60
5 dB 82.51 81.23 84.21 83.33 84.04 83.63
10 dB 81.46 82.87 82.92 84.27 82.63 82.22
15 dB 50.58 55.73 64.09 67.66 71.93 75.85
20 dB 23.10 27.89 31.40 37.25 46.26 53.57
25 dB 13.10 17.19 21.93 25.79 35.56 44.68
30 dB 11.05 14.33 17.84 23.04 32.11 43.68
35 dB 8.77 12.11 17.43 23.80 29.47 42.63
40 dB 7.54 10.99 16.14 21.35 29.82 39.82
45 dB 7.02 11.05 16.02 23.22 31.75 39.65
50 dB 7.25 12.51 15.73 20.64 30.47 39.47

implementations you mus decide without knowledge about
the others test patterns. The validation set must be aligned in
the same way as the test set, in order to establish a reliable
estimation of the performance of the classifier.

So, in order to align the validation set and the test set,
the values of the shifts must be calculated using only the
cross correlations of each pattern t with the k-th pattern of
the training set. Defining 4̂tk as the position of the maxi-
mum value of the cross-correlation of test pattern t and each
pre-aligned training pattern k, the shift dt necessary to align
the test pattern t must be calculated by minimizing the next
cost function.

C(dt) =
M

∑
k=1

(4̂kt −dt)2 (10)

Calculation the derivatives with respect to dt and equal-
ing to zero, the value of dt is obtained.

dt =
1
N

M

∑
k=1
4̂kt (11)

So, circularly shifting dt vector t, a new vector is ob-
tained, which is aligned with respect to the training set.

The main disadvantage of this approach is the high com-
putational cost associated to the calculus of all needed cross-
correlation, being necessaries Mtrain cross correlations in or-
der to shift each signal. This fact makes this method to be
not suitable in many real time implementations.

Table 5 shows the results obtained using the kNN
method with the patterns aligned using the complete cross-
correlation method.

4. CONCLUSIONS

In this paper we study the performance of different meth-
ods to align noisy one-dimensional signals shifted in time.
The methods studied in this paper are the Maximum Position
method, two Cross-correlation based methods and the Zero
Phase method. To study the performance, the classification
error using the kNN method is measured for different val-
ues of SNR. Results show the best performance of the Max-
imum Position method, independently of the SNR, followed
by the naive cross-correlation method. Previous works had
demonstrated that, taking only into account the sensitivity of
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the alignment methods with the SNR, the Maximum Posi-
tion obtained the worst results. So, the improvement of the
classification error using this method may be explained by
taking into account the posterior classification of the signals,
and the alignment of the signals using the mean peak.

Results presented in this paper demonstrates that, in order
to implement a classifier, the alignment of the main peaks of
the signals is more important than the sensitivity of the align-
ment methods to the noise. In future works, the development
lines of alignment algorithms for automatic target recogni-
tion using HRR radars must be oriented to increase the ro-
bustness of the Maximum Position method with respect to
the SNR, by combining it with other less sensible methods,
like the Zero Phase method or cross-correlation based meth-
ods.
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