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ABSTRACT 
Frequency-response masking (FRM) approach is an efficient 
technique for significantly reducing the number of multipli-
ers and adders in implementing sharp linear-phase finite-
impulse-response (FIR) digital filters. It has been shown that 
further savings in arithmetic operations can be achieved by 
using the generalized FRM approach where the masking 
filters have a new structure. In both the original and the 
generalized synthesis techniques, the subfilters in the overall 
implementation are designed separately. The arithmetic 
complexity in the original one-stage FRM approach has 
been considerably reduced by using a two-step technique for 
simultaneously optimizing all the subfilters. Such an efficient 
algorithm was also proposed for synthesizing multistage 
FRM filters. In this paper, the two-step optimization algo-
rithm proposed for the multistage FRM approach is adapted 
to the generalized one-stage FRM filters. An example taken 
from the literature illustrates the efficiency of the proposed 
technique. 

1. INTRODUCTION 

One of the most efficient techniques for synthesizing sharp 
linear-phase finite-impulse-response (FIR) digital filters 
with a significantly reduced number of multipliers and ad-
ders compared to the conventional direct-form implementa-
tion is the frequency-response masking (FRM) approach [1-
3]. The price paid for these reductions is a slight increase in 
the overall filter order. The arithmetic complexity can be 
decreased by 20 percent or more compared with the original 
FRM approach by using the generalized FRM approach [4] 
where the two masking filters are interpolated and high-
frequency components are removed by a simple filter. How-
ever, it is best suited to synthesize narrowband sharp filters. 

A disadvantage of both the original and the generalized 
FRM synthesis techniques is that the subfilters have been 
designed separately. In [5], a two-step technique was pro-
posed for simultaneously optimizing all the subfilters in the 
original one-stage FRM approach. A similar technique [6] 
has also been developed for the original multistage FRM 
approach. This paper exploits how to adapt the two-step op-
timization algorithm proposed in [6] to the generalized one-
stage FRM filters. An example taken from the literature illus-
trates that both the number of multipliers and adders for the 
resulting filters are approximately 60 percent compared with 
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Figure 1 - Block diagram of the generalized one-stage FRM ap-

proach. 

those of the filters designed using the original one-stage 
FRM technique. 

2. GENERALIZED ONE-STAGE FRM APPROACH 

This section briefly reviews how to use the generalized one-
stage FRM approach for designing linear-phase FIR digital 
filters. 

2.1 Filter Structure and Frequency Response 

The basic structure of the generalized one-stage FRM ap-
proach is shown in Figure 1. In this approach, the transfer 
function of a linear-phase FIR digital filter is constructed as 
follows: 
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Here, hA(n), hMa(n), hMc(n), and hE(n) are the impulse re-
sponse coefficients exploiting an even symmetry. NA, NMa, 
NMc, and NE are the orders of the corresponding subfilters. NA  
is even, whereas both NMa and NMc are either even or odd. If 
NMa ≥ NMc, then MMa = 0 and MMc = (NMa – NMc) / 2; and if 
NMa < NMc, then MMa = (NMc – NMa) / 2 and MMc = 0. These 
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selections guarantee that the group delays of both ( )ML
MaH z  

and ( )ML
McH z  are equal. Furthermore, both NMaLM and 

NMcLM products must be even to avoid half sample delays [4]. 
The frequency response of the overall filter can be writ-

ten as 
( max{ , } ) / 2( ) ( ).A A Ma Mc M Ej N L N N L NjH e e Hωω ω− + +=  (2) 

Here, H(ω) denotes the zero-phase frequency response of 
H(z) and can be expressed as follows: 

[ ]( ) ( ) ( ) ( ) ( ) ( ),A A Ma M C A Mc M EH H L H L H L H L Hω ω ω ω ω ω= + (3a) 

where 
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for K = A, Ma, Mc, E. Here, K is a subscript which denotes 
the subfilter name, i.e. HA, HMa, HMc, or HE. In addition, 
HA(ω), HMa(ω), HMc(ω), and HE(ω) are the zero-phase fre-
quency responses of the subfilters HA(z), HMa(z), HMc(z), and 
HE(z), respectively. 

( )AL
AH z  is created by replacing each delay of a linear-

phase model filter, HA(z), by LA delays. ( )AL
CH z  is the com-

plement of ( )AL
AH z . The complementary pair, ( )AL

AH z  and 
( ),AL

CH z with their zero-phase frequency responses HA(LAω) 
and HC(LAω) = 1 – HA(LAω), respectively, is shown in Figure 
2(a). The zero-phase frequency responses for the two mask-
ing filters, HMa(z) and HMc(z), are depicted in Figure 2(b). In 
the original approach, the transitions of the frequency mask-
ing filters are governed by ( )AL

AH z . The interpolation factor 
for the model filter, namely LA, can be quite large while de-
signing narrow transition-band filters. In this case, the transi-
tion of the two masking filters is also very narrow, leading to 
high-order masking filters. To overcome this problem, in the 
generalized FRM approach, masking filters are synthesized 
with lower orders and are interpolated by a factor of LM re-
sulting in ( )ML

MaH z  and ( )ML
McH z  whose zero-phase fre-

quency responses are shown in Figure 2(c) [2(f)]. As seen from 
the figure with LM = 2, HMa(LMω) and HMc(LMω) have also 
unwanted high-frequency components. These components can 
be easily removed by using a simple lowpass filter, HE(z), de-
picted in Figure 2(d) [2(g)]. The zero-phase frequency re-
sponse of the overall filter is shown in Figure 2(e) [2(h)]. 

2.2 Determination of Design Parameters 

Let the passband edge, stopband edge, and transition-band 
width of the subfilter HK be θK, φK, and ,K K Kφ θΔ = − respec- 
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Figure 2 - Illustration of the generalized FRM approach for LM = 2. 

tively, for K = A, Ma, Mc, E. These three parameters for the 
overall filter H(z) are ωp, ωs, and Δ = ωs – ωp, respectively. 

When designing the overall filter, there are two cases, 
namely Case A and Case B, depending on the passband 
widths of the masking filters. If θMa > θMc, the filter is a Case 
A design for which the parameters can be expressed as fol-
lows according to Fig. 2(c) and 2(e):1 
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1 ⎣ ⎦x  denotes the largest integer less than or equal to x. 
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for some positive integer m. Similarly, if θMa < θMc, the filter is 
a Case B design whose parameters can be written as follows 
according to Fig. 2(f) and 2(h):2 
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2.3 Choices of LM and LA 

In the generalized FRM approach, the complexity of the 
overall filter is defined by the sum of the orders of four sub-
filters. Since the transition-band width of an FIR filter is in-
versely proportional to the filter length [7], the complexity 
measure, C, can be expressed in terms of the transition-band 
widths of the subfilters as follows: 

1 1 1 1

A Ma Mc E

C = + + +
Δ Δ Δ Δ

  (6) 

LM and LA are chosen to minimize C. The possible intervals 
given below can be useful for a good selection. 
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3. ADAPTING THE TWO-STEP OPTIMIZATION 
ALGORITHM TO THE GENERALIZED ONE-

STAGE FRM FILTERS 

In this section, it is described how to simultaneously opti-
mize all the subfilters using in the generalized one-stage 
FRM approach. 

3.1 Finding an Initial Solution 

Given the specifications of H(z), i.e. ωp, ωs, δp, and δs.3 First, 
band edges of the subfilters and the interpolation factors (LM 
and LA) are determined by the equations (4) – (7). The orders 
of the subfilters can be estimated by the formula given in [7]. 
Second, the initial coefficients for the subfilters are found 
using the Remez algorithm.4 The passband and stopband 
weights are 1 / δp and 1 / δs, respectively. 

                                                           
2 ⎡ ⎤x  denotes the smallest integer larger than or equal to x. 
3 δp and δs are the passband and stopband ripples, respectively. 
4 In MATLAB, remez.m function can be used for this purpose. 

3.2 Improving the Initial Solution 

The optimization problem given by Eq. (8a) is to find the 
adjustable parameter vector Φ which minimizes the maxi-
mum value of the absolute error function |E(Φ,ω)|, such that 
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Here, H(Φ,ω) is the zero-phase frequency response of the 
overall transfer function H(z), being a function of Φ and ω. 
D(ω) and W(ω) are the desired and weighting functions, re-
spectively. 

The continuous optimization problem in Eq. (8a) can be 
changed to a discrete minimax problem as given by Eq. (9) 
by decomposing of the passband and stopband regions into 
the frequency points ωj∈[0,ωp] for j = 1, 2, . . . , Jp and 
ωj∈[ωs,π] for j = Jp+1, Jp+2, . . . , Jp+Js. 

{ }1
min max ( , ) 1

p s
jj J J

Eε ω
Φ ≤ ≤ +

= Φ ≤   (9) 

Hence, this problem can be solved by using an efficient un-
constrained nonlinear optimization algorithm.5 

In order to reach the best solution, i.e. the solution meet-
ing the given criteria with the minimum number of multipli-
ers, the above algorithms are performed for various order 
combinations near to the estimated orders. 

3.3 Practical Filter Design 

The number of frequency points, I = Jp + Js, in the discrete 
minimax problem should be large enough to obtain good 
results after optimization. Otherwise, there may be spikes on 
the error function between two neighbouring sampling 
points. The proper value for the number of frequency grid 
points is given by A AI q N L= ⋅ ⋅  for a real number [3,6]q∈  
in [6]. The more grid points yield the more accurate final 
solution with a slower convergence rate. Convergence to a 
good solution can be accelerated by doing the optimization 
in the following steps: 

                                                           
5 In MATLAB, fminimax.m function can be used for this purpose. 
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Step 1: Start with k = 1. In the region of [0, ] [ , ]p sω ω π∪ , 
determine a uniform set 1 2{ , , , }dense Iω ω ωΩ = … , 
which is dense, and in the same frequency region, 
select an initial uniform set 0 1 2{ , , , }Jω ω ωΩ = … , 
which is sparse, with /100J I= ⎢ ⎥⎣ ⎦ . 

Step 2: Evaluate the absolute error function |E(Φ,ωj)| on 
denseΩ  and determine the grid points corresponding 

to the local maxima of this function. In the other 
words, find those ωj’s in denseΩ  for which 

1 1( , ) ( , ) ( , )j j jE E Eω ω ω− +Φ < Φ > Φ , (10) 

where 0 1( , ) ( , ) 0.JE Eω ω +Φ = Φ =  Store these grid 

points into newΩ  and set 1 .k k new−Ω = Ω ∪Ω  

Step 3: Solve the discrete minimax problem in Eq. (9) with 
the frequency points of kΩ  and refresh Φ vector. 

Step 4: If 1 ,k k−Ω = Ω  then stop.6 Otherwise, set k = k + 1 
and go to Step 2. 

This algorithm is ended when the number of grid points re-
mains the same between two consecutive iterations. 

4. NUMERICAL EXAMPLE 

In this section, the efficiency of the proposed technique is 
illustrated by means of an example taken from the literature. 

Consider the specifications [3, 5, 8]: ωp = 0.4π, ωs = 
0.402π, δp = 0.01, and δs = 0.001. For the optimum conven-
tional direct-form FIR filter, the minimum order to meet the 
given criteria is 2541, requiring 1271 multipliers and 2541 
adders when the coefficient symmetry is exploited. 

For the original one-stage FRM approach [3], the num-
ber of multipliers required in the implementation is mini-
mized by LA = 16. The minimum orders for HMa(z), HMc(z), 
and HA(z) to meet the given specifications are NMa = 70, NMc 
= 98, and NA = 162, respectively. The overall number of mul-
tipliers and adders for this design are 168 and 330, respec-
tively, that are 13 percent of those required by an equivalent 
conventional direct-form design (1271 and 2541). The over-
all filter order is 2690, which is only 6 percent higher than 
that of the direct-form design (2541). 

For the generalized one-stage FRM filter, according to 
Eq. (7a) and (7b), we have the possible intervals of LM and 
LA, such that 1 ≤ LM ≤ 2 and 3 ≤ LA ≤ 499. A search over 
these ranges leads to the minimum value of C = 52.23 with 
LM = 2 and LA = 26. For these selections, the overall filter is a 
Case A design with m = 5, θA = 0.4π, and φA = 0.452π. The 
best solution resulting when using the proposed design 
scheme is obtained by NMa = 20, NMc = 64, NE = 16, and NA = 
100. For this filter, the number of multipliers and adders are 
104 and 200, respectively, that are approximately 62 percent of 
those of the original one-stage design (168 and 330). The over- 

                                                           
6 |Ω| denotes the size of the set Ω. 

all filter order increases to 2744, which is only 8 percent of that 
of the direct-form filter. Some of the characteristics related to 
the filter designs using various techniques are summarized in 
Table 1. Here, Π  denotes the number of multipliers required 
to implement the overall filter. 

For the best design by using the proposed technique with 
LM = 2 and LA = 26, the overall magnitude response with the 
passband details is illustrated in Figure 3. Figure 4 and 5 
show the responses for HA(LAω) and 1 – HA(LAω) as well as 
HMa(LMω) and HMc(LMω), respectively. The magnitude re-
sponse for HE(ω) is depicted in Figure 6. As seen in Figure 5, 
the similarity of the responses for HMa(LMω) and HMc(LMω) is a 
remarkable observation. 

5. CONCLUSION 

In this paper, an existing two-step optimization algorithm, 
recently proposed for optimizing multistage FRM filters, is 
applied to the generalized one-stage FRM approach. Com-
pared to the earlier one-stage design schemes, this technique 
achieves further reduction in the arithmetic complexity of 
narrowband sharp FIR filters. 
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Figure 3 - Response for the best proposed overall filter for LM = 2 and 

LA = 26. 

 
Figure 4 - Responses for HA(LAω) (solid line) and 1 – HA(LAω) 

(dashed line) for LA = 26. 

 
Figure 5 - Responses for HMa(LMω) (solid line) and HMc(LMω) (dashed 

line) for LM = 2. 

 
Figure 6 - Response for HE(ω). 
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