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ABSTRACT

We address the problem of jointly optimizing linear transmit
and receive filters for a multi-user MIMO system, under the
assumption that all users have individual Minimum-Mean-
Square-Error (MMSE) requirements. Each user can perform
spatial multiplexing with several data streams (layers). All
users and layers are coupled by interference, so the choice
of filters is intricately interwoven with the power allocation
strategy. The design goal is to minimize the total power
subject to MMSE constraints. This results in a non-convex
problem formulation, for which we propose an iterative al-
gorithm. The iteration consists of alternating optimization of
powers, transmit filters and receive filters. We prove that the
total required power obtained by the algorithm is monotoni-
cally decreasing and converges to a limit.

1. INTRODUCTION

MMSE estimation and equalization plays an important role
in approaching the information-theoretic limits of linear
Gaussian channels [1]. Recently, it was shown in [2] that
the derivative of the mutual information (nats) with respect
to the signal-to-noise ratio (SNR) is equal to half the MMSE,
regardless of the input statistics. Moreover, it has been shown
in [3] that the interference resulting from MMSE equaliza-
tion can be considered as Gaussian distributed with zero
mean for large numbers of transmit and receiver antennas.
This makes it easy to derive other performance measures,
such as BER, spectral efficiency, etc.

MSE optimization problems have been studied widely
in the context of multipoint-to-point transmission (uplink).
Point-to-multipoint transmission (downlink), is more diffi-
cult to handle since all users are coupled by the transmit fil-
ters and powers. By setting up equivalent uplink and down-
link channels, it has been shown that under a total power con-
straint, any MSE point which can be achieved in the uplink,
can be achieved in the downlink as well [4, 5]. Thus, the
complicated downlink problems can be solved by focusing
on the equivalent uplink problems. Furthermore, this du-
ality makes it possible to optimize the transceivers in the
uplink and the downlink in an alternating manner, so that
computationally-efficient algorithms for transceiver design
can be exploited [6].

In this paper, we consider a multi-user MIMO wireless
communication system, where K independent receivers are
each equipped with M} antennas and the base station with
M, antennas. The transceiver design for sum-MSE mini-
mization was studied in [7, 8, 9] for uplink transmission and
in [5, 10] for downlink transmission. For multiuser trans-
missions, sum-MSE optimization is unfair to users with bad

channel states. Therefore, it is also interesting to guarantee
certain MSE requirements. The transceivers are optimized
with respect to the following criterion.

min P,y s.t. MSE, <e€g, Vk, (N

where P, is the total required transmit power and ¢y, is the
MSE requirement of the kth user.

We propose an iterative algorithm for problem (1), as-
suming that the targets are feasible. Each iteration consists of
optimizing the powers and filters in the uplink and downlink
alternately. We prove that the total required power obtained
by the algorithm decreases monotonically and converges. It
is observed that the initial values have no effect on the total
required power. Based on the dual region of the achievable
MSE values, the proposed algorithm is not only suitable for
the downlink transmission, but also for the uplink transmis-
sion.

2. UPLINK SUM-POWER MINIMIZATION WITH
FIXED TRANSMITTERS

In this section, we assume fixed transmitters and propose
an iterative algorithm which yields the power allocation that
achieves given MSE targets €;,...,ex with minimum total
power. The joint optimization of transmitters and receivers
will be studied later in Section 4.

2.1 Uplink Channel Model
Consider the uplink MIMO channel depicted in Fig 1, where
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Figure 1: Uplink MIMO channel

the kth transmitter is equipped with M} antennas, and the
receiver has M, antennas. The channel matrix is H =
[H,...,H k]|, where H; models the channel between the
kth user and the base station. Assume that a data vector
d™) of dimension M, < M} with independent, unity-power
components, i.e., E{d*)(d"*))H} = I, is transmitted from
the kth mobile to the base station. The total number of the
transmit data streams is Ny = ):kK:l M;.. Zero-mean white
Gaussian noise n ~ .4 (0,02 I) is considered. The data and
the noise are statistically independent. The transmit filters
T(k>, k =1,...,K, have unity-norm columns. The overall
power allocation over all layers (data streams) is a diagonal



matrix P = diag{ P("), ..., P")}. The total transmit power
of the kth user is p, = trace{P(k)}. The powers of all users
are collected in a vector p = [py, ..., pr]T. The receive filter
R=[R"NT, .. (R¥)T]T has unity-norm rows. We in-
troduce R = BR, where 8 = diag{8", ..., 3%V is a diag-
onal matrix. We collect all the transmit filters in a block diag-

onal matrix T = diag{T", ..., T'5)}. The estimated symbol
vector for the kth user is given by

K

~k _

d® = (P®)~1280 RI(Y HTO(PO) 2d; +n). ()
=1

It is known that with any fixed P and T, for linear signal
processing the MSE values of all users are minimized inde-
pendently by an MMSE filters

’" = gk gk)

K
= PO(TYE(H)E(Y HW H +621)7! vk, (3)
=1

where W/k = T(k)P(k)(T(k>)H, Vk, are transmit covari-

ances. With (2) and (3), the minimum MSE of the kth user
can be expressed as

MSE, = E{|d® —d™|?}

—~— K —~—
= My —trace{ H W HP (Y HW H +21)" }

I=1
@
We define K

fe(p,o2) = trace{HkaH,?(ZlelWlH{{ +O’%I)_l}

=1

= fr(p), ®)

where W, Vk, are normalized transmit covariances with
powers trace{W} =1, and p = [p1,... P, Prs1] =
[p1,...,pK,02]. Thus, the MSE value of the kth user is given
by

MSEy = My, — pi fx(p,02). (6)

In the next section we show that the function fi(p,o2)
fulfills the properties of monotonicity and scalability. This
facilitates an efficient iterative algorithm to find the optimal
power allocation p, which achieves the MSE targets ¢, Vk.

2.2 Monotonicity and Scalability

Theorem 1. The  function
fined in (5), fulfills the
Pl:  fix(p) is non-negative on RE

P2: fr(up) = pufr(p) for p € R
P3: frpW) < fu(p®@), ifp) > p@

Proof. P1 holds since the trace of a positive semidefinite ma-
trix is non-negative.

P2 also follows immediately from inspection of (5).

In order to show P3, define A .= H, W, H kH and let
p) > p®@ | thus there exists a p > 0 such that p(!) = p@) +
p. We define C(p) := Y5 p, HW HF +p, I Let
C,:=C(pWM), Cy:=C(p?), and C := C(p) for short,

fup)  as  de-
following  properties:

thenC; =C,+C. Using the Sherman-Morrison-Woodbury
formula for matrix inversion [11], we have

FelpV) = trace{A(Cz +é)—1}
- trace{Ac;l —A(CCT'Cr + Cz)*l}
< trace{AC;l} = fk(p(2>) . @)

Inequality (7) holds because the covariance matrices A, C,
and C are all Hermitian and positive semi-definite (p.s.d.).
It can be shown that 026’7102 is Hermitian and p.s.d. as
well. The inverse of a sum of p.s.d. matrices is p.s.d. Since
the product of two positive definite matrices has only positive
eigenvalues [11, p.465], the trace is always positive.

In order to prove P4, we define B :=Y; lelWleI.
Since B = B, there exists a decomposition B = Uxu”®,
with £ = diag{\1,..., A\, } > 0,and B~' =UZ'U#. We
have

fe(p) = trace{AU(A+ U%I)*IUH}

= trace{UHAU(A-i-UTZLI)*'}

M,
a
=Y —, ®)
=1 A +oy

where a; > 0 is the /th diagonal entry of U AU. Property
P4 follows from (8).

Notice, that P3 and P4 can also be shown by using the
framework of matrix-monotone functions.' O

2.3 Optimal Power Allocation

The optimization goal is to achieve the targets with minimum
total power, i.e.,

mianl st. MSE) <e,Vk. ©)
LA

From (6), we know that MSE targets ¢, are fulfilled if
Prfr(p,07) > My — €.

The following theorem gives an iterative algorithm which
solves the problem of (9).

Theorem 2. The following iteration converges component-
wise to the unique optimizer of the power minimization prob-

lem (9) pgﬂnﬂ) = (M —ex)/ fu (™, 07). (10)

Proof. Since the function fi(p) fulfills the properties P1-
P4. Thus, iteration (10) can be seen as a special case of
the generic fixed-point iteration proposed in [12]. See also
[13]. O
3. DOWNLINK POWER ALLOCATION AND
DUALITY

Consider the downlink system depicted in Fig. 2, which is
obtained by switching the role of the normalized transmit
and receiver filters in Section 2.1. The reason is that we
want to exploit the duality between the uplink and down-
link MSE regions. The filter R now acts as a transmit-

ter and (T(k))H , VEk, as receivers. The diagonal matrix

'The idea of this alternative proof is due to Eduard A. Jorswieck.
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Figure 2: Downlink MIMO channel

Q= diag{Q(l)7 s Q(K)} contains the transmission powers.
We assume that the quantities H, R, T and 3 are the same
as for the uplink model. The power allocation ), however,
may be different from the uplink allocation P. It is assumed
that both links fulfill the same sum power constraint, i.e.,
trace{Q} = trace{ P} < Pjs.

With the equivalent downlink/uplink channels, it has
been shown in [4, 5], that same MSE values ¢; = E{|cz7 —
di|2}, 1 <1 < N, can be achieved in both links.

Theorem 3. Given T, U, 3 and a total power limit P, the
same MSE values €1,...,en, can be achieved in the down-
link channel(Fig. 2) and uplink channel (Fig. I).

It should be noted that, although Theorem 3 shows that
the duality holds for the layer-MSE values (MSE value of
each layer), it implies that both links share the same user-
MSE (the MSE of each user) and total MSE achievable re-
gion as well, since these quantities are the sum of the layer-
MSE values.

One of the advantages of this duality is, that the down-
link MSE need not be optimized directly. The equivalent up-
link channel has a much more convenient structure, e.g., this
allows to express the sum-MSE as a convex function with
respect to the transmit covariance matrices [7, 8, 9], which
is not possible in the downlink. It has been shown in [4, 5]
that this duality can be exploited in order to derive optimal
downlink designs.

However, for the power minimization problem (1), the
MSE,..., MSEy are all coupled by the choice of the
transmit filter R, The situation is not better for the dual
uplink channel, where all users are coupled by the choice of
the filter T'. Thus, finding algorithmic solutions for (1) is not
obvious. But the transmitters and receivers can be optimized
in an alternating fashion, similar to a strategy used in [6] for
sum-MSE minimization. This iteration will be studied in the
following section.

4. JOINT TRANSCEIVER OPTIMIZATION

In this section, we propose an iterative algorithm to minimize
the total transmit power while maintaining per-user MSE re-
quirements by jointly optimize the powers, transmitters and
receivers.

First, in the uplink channel, for any given transmit co-
variance matrices W(k), Vk, the optimal power allocation p
is found by using approach (10). The transmit filter T™*) and
power allocation P¥) can be obtained by eigenvalue decom-
position TH PE(TENYH — p W) The optimal receive
filter R is given as MMSE filter (3), which minimizes the
MSE values.

Then, consider the dual downlink channel, for fixed R
and T, find the power allocation ) which achieve the same
MSE values as in the uplink channel. With the downlink

power allocation @ and transmitter R, update the receivers
B (T*N)T with

(k)

7" =17W" gk

= (HIRHQRH, +o21)" " (RPH,)TQ™ (11)

where 3 is a diagonal matrix and contains the column norms
(k)
of T" .
The algorithm is summarized in Table 1.
(-)(™) denotes the nth iteration step.

Superscript

Table 1 Algorithm for total power minimization with per-
user MSE requirements

1: initialize: choose arbitrary full rank transmit covariance
matrices W(l’o), e W (5.0 and maximal number of it-
erations 7max.

2: repeat

33 nen+l

4:  uplink channel:

e for given W(k’”_l), Vk, check the feasibility of
the MSE requirements. If feasible, find the opti-
mal uplink power allocation p'™ with (10), other-
wise re-adjust the MSE requirements.

e  re-adjust the MSE requirements according to the
number of active data streams (see remark).

e  compute T*7) and p*:7) by eigenvalue decom-
position T(k’">P(’“’")(T(k’">)H = pggn)W“”“l).
e update R<k’”), Vk and ,B(k’”>, VEk. with (3)
e  compute achieved MSE values of all layers.
5:  downlink channel:
e compute Q(”), which achieves the same layer
MSE values as in step 4 with the same total power
Piot(n) (see [6]).
e update T and B8, with (11).
e compute achieved MSE values of all layers.
6:  uplink channel:
e compute P("), which achieves the same layer
MSE values as in step 5 with the same total power
Ptot (n)
e update W) with

pkw(k,n) _ T(k,n)P(k:m) (T(k,n))H

7: until required accuracy is reached or n > npax

Theorem 4. The sum power Pyt (n) obtained by the above
algorithm is monotonically decreasing. The algorithm con-
verges to an optimum.

Proof. Consider iteration n, in step 4, for T*:")  and

P(’””, Vk, the user MSE targets €y,...,ex are achieved
with minimal total transmit power P, (n)(Theorem 2), i.e.,
MSE ) = ¢, V.

In step 5, first, the power allocation Q"™ ensures that the
same MSE values are achieved with the same total transmit
power P, (n). Then, the MSE values are further minimized

~(k.n . n,s
by the MMSE receivers T( >, Vk, ie., MSE,i steps) <

MSE ) = ¢, V.



In the next iteration n + 1, according to the MSE dual
region between the uplink and downlink, we know that the
same MSE values M SEé"’Step 5), Vk, can be achieved by
T, R™), ﬁ(”). Thus, by optimizing the power allocation
and the transmit filters, the total required power can be fur-
ther minimized, i.e.,

Piot(n+1) < Pior(n).
Therefore, we can conclude that the total required power
Pt (n) monotonically decreases with each iteration and con-
verges to a limit. 0

From a large number of simulations, we observe that re-
gardless of the initial values (if full rank matrices are chosen),
the algorithm always converges to the same total power. It is
conjectured that this algorithm would return the global op-
timum. Another observation is that the achieved layer-MSE
values depend on the initial values, i.e., with the same total
transmit power, the distribution of MSE values among the
layers is not unique.

Full rank initial matrices W (¥ ’0), Vk, are recommended,
since they have effect on the initial number of active data
streams. This influences the convergence behavior of the al-
gorithm. Unfavorable initial values can lead to a bad con-
vergence behavior. A recommended choice of the transmit-

ters W0V, are normalized identity matrices (trace equal
to 1). From observations, the proposed algorithm does con-
verge very fast during the first few iterations. Therefore, for
practical implementations, restricting the maximal number
of iterations is a good way to control the complexity of the
algorithm.

Another important issue is how to check the feasibility of
the given MSE requirements. This can be done in step 4. If
the powers are divergent, then the MSE requirements can be
determined to be infeasible. However, this method depends

on the choice of the filters W(k), Vk, which might lead to
wrong decisions of the feasibility.

Remark. Both power allocation and receiver optimization re-
sult in individual SINR for all layers. The transmitter is opti-
mized with respect to a “virtual dual power allocation” asso-
ciated with these SINRs. If one layer has a small SINR, then
also its virtual power will be small. In this way, receivers
and transmitters depend on each other. During the iteration
the power allocated to one user is distributed among the lay-
ers in an uneven fashion. It is even possible that the power
of one layer tends to zero. This will happen automatically
when the initially given number of layers is not favored by
the spatial structure of the propagation channel.

However, the sum-MMSE target of each user is usually
chosen for a given number of layers. Switching off users
means that the corresponding MSE value is decreased by the
number of deactivated data streams. As an example, assume
that user k has two active data streams, and the MSE target
is 1.2. With (4), MSEy, =2 —trace{Z}. If one layer is
switched off, then M SE}, = 1 —trace{Z}. Thus, the sum-
MSE is decreased and the targets are still fulfilled. But now
the MSE per layer is much better, so it is suggested to read-

(n+1)

just the targets in the following way: ¢, = ( number of

current active data streams) x egvn) /( number of previous ac-
tive data streams). This adjustment maintains the original
average performance requirement per layer.

Notice, that with Theorem (3) the same algorithm can be
used in order to optimize both uplink and downlink channels.

5. EXTENSION: MIN-MAX RELATIVE USER-MSE

The proposed iteration for power minimization can be ex-
tended to minimize the maximum relative MSE subject to a
total power constraint, i.e.,

min  max MSEy/e; st

t < Pmar 12
Q.T.UBI<k<K race{Q} < + (12)

where P, is the total transmit power limit.

With the same MSE targets, if the minimum power P, O’f
of (1) equals the total power limit P,,,;, then problem (12)
is equivalent to (1). One possible way to solve (12) is to
modify the uplink power allocation in Algorithm 1 (step 4)
by solving the problem of minimizing the balanced relative
MSE level for fixed W . This can be done by combining the
fixed point iteration of (10) and a bi-section approach [14]. In
particular, optimization (9) can be performed with the origi-
nal MSE targets. If the required total power is smaller than
the given power limit P, then the values of the effective
MSE targets are proportionably decreased; otherwise, they
are proportionably increased until the corresponding effec-
tive MSE targets &, Vk, are found. That is, MSE; = &,
Vk, are achieved with the total power P,,,,. This implies
that a minimum balanced relative level M SE) /& = -+ =
MSFEk [k = & /ex is achieved. The remaining steps are
the same as in Algorithm 1.

The bi-section strategy can only be as good as the under-
lying optimization strategy for power minimization. But if
the proposed algorithm for sum-power minimization returns
the global optimum (which remains to be shown), then also
the proposed min-max balancing algorithm will converge to
the global optimum.

6. SIMULATION RESULTS

The simulations are carried out under the assumption that
independent unity-energy data streams are transmitted and
the variance of the white Gaussian noise is 0.1. The channel
realizations are randomly chosen.

We first consider a MIMO system with five antennas at
the base station and three users each with two antennas. We
assume that the user MSE targets are ¢ = 0.6, e; = 0.4 and
e3 = 0.8. The convergence behavior is displayed in Fig. 3.
It can be observed that the required power decreases mono-
tonically and converges to a limit. The achieved MSE values
are shown in Fig. 4. We can see that the targets are fulfilled.
The darkly shadowed part denotes the MSE value of the first
layer and the lightly shadowed denotes the MSE value of the
second layer of each user.

Fig. 5 and Fig. 6 show a case when some layers can be
switched off. The original user MSE targets are set to be €] =
0.6, ¢ = 0.4 and €3 = 1.6. From the simulation, we observe
that after a few iterations, one layer of user 3 is switched off
(see Fig. 6). Then, the target for user 3 is adjusted to 0.8,
so that the required transmit power is further minimized (see
Fig. 5).

7. CONCLUSIONS

We have studied the problem of transceiver design for min-
imizing the total sum-power with user-MSE requirements
in multi-user MIMO systems. The proposed algorithm is
based on the monotonicity and scalability of the function
fx(p,02), which facilitates the iterative computation of the
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Figure 3: Iterative sum-power minimization by jointly optimizing
receivers and transmitters. Case 1: all layers are active. Parameters:
M, =5 M!=M;=M; =2

62=0.1
M=5; M'=M2-M3=2
r t t t

=,

IR INCINY
=4 M/=MZ=M’=2
*

*
081 FERkrwwrrrr

Total transmit power
s
o
T

Number of iterations

Figure 5: Iterative sum-power minimization by jointly optimizing
receivers and transmitters. Case 2: some layers are switched off.
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Figure 4: Achieved user MSE values by jointly optimizing re-
ceivers and transmitters. Case 1: all layers are active. Parameters:
M, =5 M} =M} =M} =2

optimal power allocation in the uplink. The duality between
uplink and downlink MSE regions is used to optimize trans-
mit filters and receive filters in an alternating way. The to-
tal required power monotonically decreases with each itera-
tion and converges to a limit. Future work will have to show
that the achieved convergence point is indeed the global op-
timum. This is suggested by numerical simulations, which
always showed convergence to the same optimum, indepen-
dent of the chosen initialization.

After finishing this paper, an alternative approach for
sum-power minimization was published in [15].
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