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Abstract— This paper considers the application of Hidden
Markov Models to the problem of tracking frequency lines in
spectrograms of strongly non-stationary signals sl as
encountered in aero-acoustics and sonar where traitig
difficulties arise from low SNR and large variancesassociated
with spectral estimates. In the proposed method, wtroduce a
novel method to determine the observation (measuresnt)
likelihoods by interpolation between local maximaWe also show
that use of low variance AutoRegressiveMultiTaper ARMT)
spectral estimates results in improved tracking. Th frequency
line is tracked using the Forward-Backward and Vitebi
algorithms.

. INTRODUCTION

NE of the limiting factors restricting aircraft ldimgs at

major airports is the minimum spacing requiremehis
to vortex wake avoidance. If it can be shown thia¢ t
separation requirements are too conservative, itheray be
possible to increase the rate of landings on angrumway.

During August/September 2003, NASA and the USDO

sponsored a wake acoustics test at the Denveméitenal
Airport. The central instrument of the test was aagé
microphone phased array. Different types of aitsrafere
recorded during landing and the acoustic data oéthivas
stored. From acoustic data the spectrograms waneraged
using the technique of autoregressive (AR) speestimation
from multitaper autocorrelation estimates [2]. Amgde
spectrogram obtained using this technique is shiowkig. 1.
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Fig. 1. Example of a spectrogram

60 70

The lines in the spectrogram bear crucial infororatibout

the nature of the vortex such as frequency, powerdaration.
Hence tracking of lines gives us the possibilitycmmpare
vortices generated by different flights of one tygfeaircraft
and thus make a generalization about its charatitexi For
this reason we have developed an efficient stegisthethod to
track the frequency lines due to vortex in the lagk
knowledge of their distribution and SNR.

For our purpose of tracking the frequency linesuse the
first order Hidden Markov Models. There are many
applications of HMMs in different areas such asnecoetrics,
neural networks, bayesian networks, pattern reciogni
control systems and DNA sequences.

This paper is organized as follows. We outline gteps in
ARMT method and justify the reason why we chooszbttin
the spectral estimate in section Il. In section the
background of Hidden Markov Models is introducedah.
section IV expressions for the quantities used MM$ are

eveloped and an algorithm to estimate the stajaesee is
ntroduced. Then we test the efficiency of our methusing
one real and one simulated signal.

II. ARMT SPECTRALESTIMATION

It is known that the covariance estimates haveamgteffect
on the performance of the AR spectral estimatian.our
method the covariance estimates are obtained frmmon-
parametric spectral estimates [2]. The inverse DOFMTSE
(Multitaper Spectrum Estimate) is shown to yield lbias and
consistent autocorrelation estimates. Furthermdre AR
spectrum obtained from the MT autocorrelation estés is a
smoothed and denoised version of the MTSE.

The smoothness property of the ARMT spectral eséma
allows us to estimate the frequency track moreciefiitly by
eliminating the redundant local maxima and thusiced the
set of nominees for the hidden state. This propesty
illustrated by comparing ARMT with another spectral
estimation method (MTWT) which is also describelih
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Comparison of multitaper with wavelet thresholding and multitaper with AR
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Ill. BACKGROUNDOFHIDDEN MARKOV MODELS
The elements of the HMM theory are described ingbdl

[6]. To summarize a (first order) Markov process d@s tying to

stochastic model having discrete states in whietptiobability

of being in any state at any time depends onlyhenstate at

The second assumption which is known as the output
independence assumption states that the curreatwa®n is
statistically independent of the previous obseorsi

Consider the sequence of observatids=(z,...,z, ), then
by the assumption we have:

P(Z¢]%. %0 % ) = DP(zk|xk) (3.6)

IV. APPLICATIONOFHMM TO FREQUENCYLINE
TRACKING

Consider a smaller portion of the spectrogram @ Eithat
contains a frequency line. The new image is givelig. 4.

The colors represent the variation of the spegialer with
time and frequency. Spectral power is given in di8l she
color scale for spectral powers is given on thétrigf the
figure.

Our purpose is to track the frequency line whicls tize
highest consistency and probability of observatgiven a
suitable definition of the HMM parameters. That uwge are
estimate the sequence of unknown

frequenciesX, ={x,...,x.}. Next we derive meaningful

the previous time. Let, denote the state at time k. Then wexpressions for the elements defined in section Il.

have

P (%] %1 X211 X) = P(% ] X ) (3.1)

A hidden Markov model (HMM) is a finite set of stat
each of which is associated with a probability rdisition.

We denote the state at time instdntwith i where it can
take values in the rangk...,M . First we choose a suitable
model to describe the state transitions. It is rmednl to
describe the change of line frequency with timeaaandom
walk. By this assumption the difference between two

Transitions among the states are governed by aobet consecutive frequencies obeys a normal distribytioe.,

probabilities called transition probabilities. Ipparticular state

an outcome or observation can be generated, aogotadlithe

xk—xk,1~N(0,Jz). The transition probabilities can be

associated probability distribution. It is only thatcome, not formulated as follows:

the state visible to an external observer and fberestates are

hidden to the outside; hence the name Hidden Makkodel.

In order to define an HMM completely, the following

elements are needed

M : The number of states of the model

N : The number of observation symbols in the alphabet
A set of state transition probabilities={a}

a; =P(% =i[x,=j), 1<i,jsM (3.2)
A probability distribution in each of the stateB={b (z}
b (z)=P(z|% =i), 1<i<M (3.3)
where z, is defined as the observation vector at tikne
The initial state distributionr={7} , where
7T =P(x =i), 1<isM (3.4)

There are two important assumptions on the HMMs.

The transition probabilities are independent of tinee at
which the transitions take place. Mathematicallig ttean be
expressed as:

P(%, =il =1)=P(%, =i[x,=])
for any k, andk, .

(3.5)

YA
c, W
| e 20°

a, =P(x =i|x,=j)= =" 1<i,j <M (4.2)
wherec; is a scaling constant such that
M
> P(x =[x =j)=1 (4.2)
i=1

which is a result of the total probability theorem.
The transition probabilities are stored in the matA
which is given by

i1 ajM (4-3)

Note that the rows oA add up to one.

The most crucial step is defining the probabilitstidbution
of the states or in other words the observatioalililbods. Let
us denote the dB power of the spectrogram at tkmand
frequencyi by S(k,i). In [7] and [8] the authors derive the
observation likelihoods by taking into account gmoaver of all
the frequencies. In our case there is a high amoiunbise in

the lower frequencies and therefore using the naistivthere
all the frequencies are involved will lead to uricegsresults.
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In our method we offer a different scheme whereltioal bl(zk)
maxima are involved along with interpolation techrés. The _l . .
A ) . B=|: : : (4.6)
procedure to construct the observation likelihoaairin B is
as follows. - by (2)

1. Find the local maxima ofS(k,i) for eachk. Denote

The initial state distribution is assumed to befam since
we don’'t have any prior information regarding thatial
and letL, (m) be the set of local maxima frequencies atates.

the number of local maxima located at tirkeby n,

time k wherelsms<n,.

local maxima at k=100

mzp(nzi)zﬁ, 1<isM (4.7)

*; ° ‘ ‘ Now that we have all the elements that we need ave c
40 4 calculate the state estimates. The probabilities
35 . yk(i)zp(xk:i|ZK) (4.8)
30 | can be used to compute the estimate,ofiefined as follows
< 2 | % :argn’:ﬂa){P(xk :i|ZK)} (4.9)
%; 20 1 In order to calculatey, (i) we use the Forward-Backward
‘78“ 15 1 algorithm. We define the forward and backward philitées
3 1 | a, andg, as follows:
a, =P(x =i,Z
] | «=P(x =1.Z) | @10
. | B =P(Zea 2| % =i)
Using the following recursions
5 L L L L L L
0 50 100 150 200 250 300 350 . M .
Frequency index (i) a, (|) =b| (Zk)zajiak—l( J), k=2,...,K
Fig. 3. S(k,i) for k =100 and its local maxima y = (4.11)
2. Interpolate the local maxima: Start frokn=1and for B (') =ij (zk+1)a1jﬁk+1(j), k=K-1...,1
eachk do the following: N _
For each m check it the set Theny (i) can be calculated using
- i a, (i i
{Le(m)-]o]...... (m)+| o} contains an element of y(i) == (1) B (i) (412
the setL,,, where | | means “largest integer less >a (i)B (i)
than”. If not check if the same set contains amelat o = o
of the setL,,,. If it contains, find an element, SanyI'II'OhV(:S.forward and backward probabilities are initietl as
L., (M) that is in the interval then add a frequency to Bc(i)=1 i=1...M
the set L., which is calculated by rounding a,()=b () (i), i=1...M (4.13)
(Lo (M) + L, (m)) /2 to the nearest integer. At the end A second algorithm that can be used to computestimate
we will have a new set of frequencies for ekchLet us  Of X, is the Viterbi algorithm. We define the quantity
denote this new set ds . 3 ()= rQaX{P(Xk—l X =i ,zk)} ,
3. Calculate the observation likelihoods as follows: . - (4.14)
s(i k i=0,...,M-1, k=2,..K
_ L ifioL, which can be recursively computed by
b (z)=P(z% =i)=1 S(k) (4.4) i=0..M-1 k=2,.K
0, otherwise : .
Jk(l):n?Dalx{Jk—l(J)aji}h(Zk) (4.15)

where S(k) is a scaling constant such that

@(i)=argmma>{5kfl(1)aji}

M
2. P(z]% =i)=1 (4.5)
i1 We need to initialize the variableg (i) and g (i) to start

The matrix B is constructed using observation likelihood

he recursion. The proper initialization of thesaiables is
calculated above.

given as
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(4.16)

i=0,..,M-1, {Q(i)_:”(i)
a(i)=0
Then the
Xy ={%,...,%} using the backward recursion
% =@ (K1), k=K-1..,1
Now we have two methods to compute the estin‘)é};e In

we can obtain estimated

(4.17)

developed in order to measure the smoothnessiné a |

First of all we decompose the estimate using Lllesaelet

sequendeansformation using one of the standard waveledrdi (we

used db8 filter in our calculations) and calculats
approximation and detail coefficients. Then in eortteobtain
an approximation for our estimate we set the detzfficients
to zero and leave the approximation coefficientsouched.
Applying wavelet reconstruction to the new set eéfficients

Eeneral tt;ese two ;ne:]hods shoul? glvedthe sameltsqeiL\Ni” give us an approximation of our line. The apgmates
owever because of the nature of our data we ca® Ny o nhiained for the estimates in Fig. 5 are giasrblack

different estimates from two algorithms. In thisseave need
to choose the best of the estimates to continuéheur
processing. Consider, for example the estimates

spectrogram in Fig. 4 found using both algorithriiie
estimates are given in Fig. 5.
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Fig. 4. Smaller spectrogram image obtained froecspgram
Fig. 1 containing a perceivable frequency line.
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Fig. 5. Frequency line estimates for the spectnogn Fig. 4.
using both FB and Viterbi algorithms

As we see in the figure, for this case, the Vitalgorithm is
clearly the one that gives a better result, sirtseline is
“smoother” compared to the FB estimate. In ordemtke it
clear which estimate is better we need to defingeaeral
measure for the smoothness of a line. Here’s thiodewe

lines in Fig. 6.
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Fig. 6. Approximations for the estimates in Fig. 5

In order to determine which estimate is smoother silnply
calculate the variances of the differences betweemrstimates
and their approximations. In this example the vargaof the
difference is less for the Viterbi algorithm, andnbe we
decide to continue further processing with thenest found
using the Viterbi algorithm.

Using the aforementioned methods we estimate the
frequency path in time, the plots of two spectroggand their
respective frequency line estimates are shownerfdatowing
figures. Fig. 4 is a spectrogram of a real signiaéngas Fig. 8

is the spectrogram of a logarithmic chirp signatgpted with

high amount of Gaussian noise (-12.3 dB SNR).
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Fig. 7. Estimated frequency line for the spectangin Fig. 4.
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Fig. 8. Test signal generated using chirp withitade Gaussian
noise (SNR -12.3 dB).
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Fig. 9. Estimated frequency line for the spectaogin Fig. 8.

V. CONCLUSION

We addressed the problem of HMM based line exwacti

from spectrograms. The algorithms we developed igeous

with satisfying results both for real and simulatata. The
challenge of having no prior information about 8RR the
data is efficiently overcome by our method. Thebtems of
multiple line tracking and estimation of birth adéath of
tracks were under investigation at the time thipegpawas
submitted.
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