
 

Abstract— This paper considers the application of Hidden 
Markov Models to the problem of tracking frequency lines in 
spectrograms of strongly non-stationary signals such as 
encountered in aero-acoustics and sonar where tracking 
difficulties arise from low SNR and large variances associated 
with spectral estimates. In the proposed method, we introduce a 
novel method to determine the observation (measurement) 
likelihoods by interpolation between local maxima. We also show 
that use of low variance AutoRegressiveMultiTaper (ARMT) 
spectral estimates results in improved tracking. The frequency 
line is tracked using the Forward-Backward and Viterbi 
algorithms. 

I. INTRODUCTION 

NE of the limiting factors restricting aircraft landings at 
major airports is the minimum spacing requirements due 

to vortex wake avoidance. If it can be shown that the 
separation requirements are too conservative, then it may be 
possible to increase the rate of landings on a given runway. 
During August/September 2003, NASA and the USDOT 
sponsored a wake acoustics test at the Denver International 
Airport. The central instrument of the test was a large 
microphone phased array. Different types of aircrafts were 
recorded during landing and the acoustic data obtained was 
stored. From acoustic data the spectrograms were generated 
using the technique of autoregressive (AR) spectral estimation 
from multitaper autocorrelation estimates [2]. A sample 
spectrogram obtained using this technique is shown in Fig. 1. 
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Fig. 1.  Example of a spectrogram 

 
The lines in the spectrogram bear crucial information about 

the nature of the vortex such as frequency, power and duration. 
Hence tracking of lines gives us the possibility to compare 
vortices generated by different flights of one type of aircraft 
and thus make a generalization about its characteristics. For 
this reason we have developed an efficient statistical method to 
track the frequency lines due to vortex in the lack of 
knowledge of their distribution and SNR. 

For our purpose of tracking the frequency lines we use the 
first order Hidden Markov Models. There are many 
applications of HMMs in different areas such as econometrics, 
neural networks, bayesian networks, pattern recognition, 
control systems and DNA sequences. 

This paper is organized as follows. We outline the steps in 
ARMT method and justify the reason why we choose it obtain 
the spectral estimate in section II. In section III the 
background of Hidden Markov Models is introduced. In 
section IV expressions for the quantities used in HMMs are 
developed and an algorithm to estimate the state sequence is 
introduced. Then we test the efficiency of our method using 
one real and one simulated signal. 

II.  ARMT  SPECTRAL ESTIMATION 

It is known that the covariance estimates have a strong effect 
on the performance of the AR spectral estimation. In our 
method the covariance estimates are obtained from the non-
parametric spectral estimates [2]. The inverse DTFT of MTSE 
(Multitaper Spectrum Estimate) is shown to yield low bias and 
consistent autocorrelation estimates. Furthermore the AR 
spectrum obtained from the MT autocorrelation estimates is a 
smoothed and denoised version of the MTSE. 

The smoothness property of the ARMT spectral estimate 
allows us to estimate the frequency track more efficiently by 
eliminating the redundant local maxima and thus reducing the 
set of nominees for the hidden state. This property is 
illustrated by comparing ARMT with another spectral 
estimation method (MTWT) which is also described in [2]. 
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Fig. 2.  Illustration of smoothness of ARMT spectral estimate 

 

III.  BACKGROUND OF HIDDEN MARKOV  MODELS 

The elements of the HMM theory are described in [5] and 
[6]. To summarize a (first order) Markov process is a 
stochastic model having discrete states in which the probability 
of being in any state at any time depends only on the state at 
the previous time. Let kx denote the state at time k. Then we 

have 

 ( ) ( )1 2 1 1, , ,k k k k kP x x x x P x x− − −=…  (3.1) 

A hidden Markov model (HMM) is a finite set of states, 
each of which is associated with a probability distribution. 
Transitions among the states are governed by a set of 
probabilities called transition probabilities. In a particular state 
an outcome or observation can be generated, according to the 
associated probability distribution. It is only the outcome, not 
the state visible to an external observer and therefore states are 
hidden to the outside; hence the name Hidden Markov Model. 

In order to define an HMM completely, the following 
elements are needed 
M : The number of states of the model 
N : The number of observation symbols in the alphabet 
A set of state transition probabilities { }jiA a=  

 ( )1 , 1 ,ji k ka P x i x j i j M−= = = ≤ ≤  (3.2) 

A probability distribution in each of the states, ( ){ }i kB b z=  

 ( ) ( ) , 1i k k kb z P z x i i M= = ≤ ≤  (3.3) 

where kz  is defined as the observation vector at time k . 

The initial state distribution { }iπ π= , where 

 ( )1 , 1i P x i i Mπ = = ≤ ≤  (3.4) 

There are two important assumptions on the HMMs. 
The transition probabilities are independent of the time at 

which the transitions take place. Mathematically this can be 
expressed as: 

 ( ) ( )1 1 2 21 1k k k kP x i x j P x i x j− −= = = = =  (3.5) 

for any 1k  and 2k . 

The second assumption which is known as the output 
independence assumption states that the current observation is 
statistically independent of the previous observations. 

Consider the sequence of observations ( )1, ,K KZ z z= … , then 

by the assumption we have: 

 ( ) ( )1 2
1

, , ,
K

K K k k
k

P Z x x x P z x
=

= ∏…  (3.6) 

IV.  APPLICATION OF HMM  TO FREQUENCY LINE 

TRACKING 

Consider a smaller portion of the spectrogram in Fig. 1 that 
contains a frequency line. The new image is given in Fig. 4.  

The colors represent the variation of the spectral power with 
time and frequency. Spectral power is given in dB and the 
color scale for spectral powers is given on the right of the 
figure. 

Our purpose is to track the frequency line which has the 
highest consistency and probability of observation given a 
suitable definition of the HMM parameters. That is, we are 
trying to estimate the sequence of unknown 

frequencies { }1, ,K KX x x= … . Next we derive meaningful 

expressions for the elements defined in section II. 
We denote the state at time instant k  with i where it can 

take values in the range 1, ,M… . First we choose a suitable 

model to describe the state transitions. It is meaningful to 
describe the change of line frequency with time as a random 
walk. By this assumption the difference between two 
consecutive frequencies obeys a normal distribution, i.e., 

( )2
1 ~ 0,k kx x N σ−− . The transition probabilities can be 

formulated as follows: 

 ( )
( )2

22
1 2

, 1 ,
2

i j
j

ji k k

c
a P x i x j e i j Mσ

πσ

−

−= = = = ≤ ≤ (4.1) 

where jc  is a scaling constant such that  

 ( )1
1

1
M

k k
i

P x i x j−
=

= = =∑  (4.2) 

which is a result of the total probability theorem. 
The transition probabilities are stored in the matrix A  

which is given by 

 1j jMA a a

 
 
 
  

⋮ ⋯ ⋮

≜ ⋯

⋮ ⋯ ⋮

 (4.3) 

Note that the rows of A  add up to one. 
The most crucial step is defining the probability distribution 

of the states or in other words the observation likelihoods. Let 
us denote the dB power of the spectrogram at time k  and 

frequency i  by ( ),S k i . In [7] and [8] the authors derive the 

observation likelihoods by taking into account the power of all 
the frequencies. In our case there is a high amount of noise in 
the lower frequencies and therefore using the methods where 
all the frequencies are involved will lead to undesired results. 
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In our method we offer a different scheme where the local 
maxima are involved along with interpolation techniques. The 
procedure to construct the observation likelihood matrix B  is 
as follows.  

1. Find the local maxima of ( ),S k i  for each k . Denote 

the number of local maxima located at time k  by kn  

and let ( )kL m  be the set of local maxima frequencies at 

time k  where 1 km n≤ ≤ . 
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Fig. 3.  ( ),S k i  for 100k =  and its local maxima 

2. Interpolate the local maxima: Start from 1k = and for 
each k  do the following:  
For each m  check if the set 

( ) ( ){ }, ,k kL m L mσ σ− +      …  contains an element of 

the set 1kL +  where     means “largest integer less 

than”. If not check if the same set contains an element 
of the set 2kL + . If it contains, find an element, say 

( )2kL m+ ′  that is in the interval then add a frequency to 

the set 1kL +  which is calculated by rounding 

( ) ( )( )2 2k kL m L m+ ′ +  to the nearest integer. At the end 

we will have a new set of frequencies for each k . Let us 
denote this new set as kL′ . 

3. Calculate the observation likelihoods as follows: 

 ( ) ( )
( )
( )
,

, if 

0, otherwise

k
i k k k

S i k
i L

b z P z x i S k


′∈= = = 




 (4.4) 

where ( )S k  is a scaling constant such that 

 ( )
1

1
M

k k
i

P z x i
=

= =∑  (4.5) 

The matrix B  is constructed using observation likelihoods 
calculated above. 

 

( )

( )

1 k

M k

b z

B

b z

 
 =  
  

⋯ ⋯

⋮ ⋮ ⋮

⋯ ⋯

 (4.6) 

 
The initial state distribution is assumed to be uniform since 

we don’t have any prior information regarding the initial 
states. 

 ( )1

1
, 1i P x i i M

M
π = = = ≤ ≤  (4.7) 

Now that we have all the elements that we need we can 
calculate the state estimates. The probabilities 

 ( ) ( )k k Ki P x i Zγ = =  (4.8) 

can be used to compute the estimate of kx  defined as follows 

 ( ){ }
1, ,

ˆ arg maxk k K
i M

x P x i Z
=

= =
…

 (4.9) 

In order to calculate ( )k iγ  we use the Forward-Backward 

algorithm. We define the forward and backward probabilities 

kα  and kβ  as follows: 

 
( )
( )1

,

, ,

k k k

k k K k

P x i Z

P z z x i

α

β +

= =

= =…

 (4.10) 

Using the following recursions  

 

( ) ( ) ( )

( ) ( ) ( )

1
1

1 1
1

, 2, ,

, 1, ,1

M

k i k ji k
j

M

k j k ij k
j

i b z a j k K

i b z a j k K

α α

β β

−
=

+ +
=

= =

= = −

∑

∑

…

…

 (4.11) 

Then ( )k iγ  can be calculated using 

  ( ) ( ) ( )
( ) ( )

1

k k
k M

k k
j

i i
i

j j

α β
γ

α β
=

=
∑

 (4.12)

The forward and backward probabilities are initialized as 
follows: 

 
( )

( ) ( ) ( )1 1

1, 1, ,

, 1, ,

K

i

i i M

i b z i i M

β
α π

= =

= =

…

…

 (4.13) 

A second algorithm that can be used to compute the estimate 
of kx  is the Viterbi algorithm. We define the quantity 

 
( ) ( ){ }

1
1max , , ,

0, , 1, 2, ,
k

k k k k
X

i P X x i Z

i M k K

δ
−

−= =

= − =… …

 (4.14) 

which can be recursively computed by 

 ( ) ( ){ } ( )

( ) ( ){ }
1

1

0, , 1, 2, ,

max

arg max

k k ji i k
j I

k k ji
j I

i M k K

i j a b z

i j a

δ δ

φ δ

−∈

−
∈

= − =

 =



=


… …

 (4.15) 

We need to initialize the variables ( )1 iδ  and ( )1 iφ  to start 

the recursion. The proper initialization of these variables is 
given as  
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( ) ( )

( )
1

1

0, , 1,
0

i i
i M

i

δ π
φ

 == −  =
…  (4.16) 

Then we can obtain the estimated sequence 

{ }1
ˆ ˆ ˆ, ,K KX x x= …  using the backward recursion 

 ( )1 1ˆ ˆ , 1, ,1k k kx x k Kφ + += = − …  (4.17) 

Now we have two methods to compute the estimate ˆ
KX . In 

general these two methods should give the same results, 
however because of the nature of our data we can have 
different estimates from two algorithms. In this case we need 
to choose the best of the estimates to continue further 
processing. Consider, for example the estimates for 
spectrogram in Fig. 4 found using both algorithms. The 
estimates are given in Fig. 5.  
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Fig. 4.  Smaller spectrogram image obtained from spectrogram in 

Fig. 1 containing a perceivable frequency line. 
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Fig. 5.  Frequency line estimates for the spectrogram in Fig. 4. 

using both FB and Viterbi algorithms 

As we see in the figure, for this case, the Viterbi algorithm is 
clearly the one that gives a better result, since its line is 
“smoother” compared to the FB estimate. In order to make it 
clear which estimate is better we need to define a general 
measure for the smoothness of a line. Here’s the method we 

developed in order to measure the smoothness of a line. 

First of all we decompose the estimate using L level wavelet 
transformation using one of the standard wavelet filters (we 
used db8 filter in our calculations) and calculate its 
approximation and detail coefficients. Then in order to obtain 
an approximation for our estimate we set the detail coefficients 
to zero and leave the approximation coefficients untouched. 
Applying wavelet reconstruction to the new set of coefficients 
will give us an approximation of our line. The approximates 
thus obtained for the estimates in Fig. 5 are given as black 
lines in Fig. 6. 
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Fig. 6.  Approximations for the estimates in Fig. 5.  

In order to determine which estimate is smoother, we simply 
calculate the variances of the differences between the estimates 
and their approximations. In this example the variance of the 
difference is less for the Viterbi algorithm, and hence we 
decide to continue further processing with the estimate found 
using the Viterbi algorithm.  

Using the aforementioned methods we estimate the 
frequency path in time, the plots of two spectrograms and their 
respective frequency line estimates are shown in the following 
figures. Fig. 4 is a spectrogram of a real signal whereas Fig. 8 
is the spectrogram of a logarithmic chirp signal corrupted with 
high amount of Gaussian noise (-12.3 dB SNR). 
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Fig. 7.  Estimated frequency line for the spectrogram in Fig. 4. 
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Fig. 8.  Test signal generated using chirp with additive Gaussian 

noise (SNR -12.3 dB). 
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Fig. 9.  Estimated frequency line for the spectrogram in Fig. 8. 

V. CONCLUSION 

We addressed the problem of HMM based line extraction 
from spectrograms. The algorithms we developed provide us 

with satisfying results both for real and simulated data. The 
challenge of having no prior information about the SNR the 
data is efficiently overcome by our method. The problems of 
multiple line tracking and estimation of birth and death of 
tracks were under investigation at the time this paper was 
submitted.  
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