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ABSTRACT 
 
Spectral estimation is a major component of obtaining high 
quality speech in many speech denoising techniques. 
Autoregressive spectral estimation using Multitaper 
Autoregressive data (ARMT) is a parametric approach that 
generates AR filter coefficients from multitaper 
autocorrelation estimates. The ARMT proves to be a best fit 
smooth curve to the mutitaper spectral estimates (MTSE) 
hence has very low high frequency bias and has even less 
variance than the standard MTSE. As such, ARMT is a 
smoother and less computationally intensive alternative to 
wavelet domain reduction (denoising) of the MTSE error. In 
this paper, the ARMT is used to derive the optimal gain 
parameters in the signal subspace approach to reducing 
environmental noise. Objective measures and informal 
listening tests demonstrate that results are indistinguishable 
from its successful predecessor that uses the non-parametric 
approach for speech denoising. 

 

1. INTRODUCTION 
 

Speech denoising methods of spectral subtraction, 
minimum mean-square error (MMSE) [2] and signal subspace 
[1][2][5][8][13] are all non-parametric. They use direct signal 
spectrum estimates related to the periodogram which trade off 
spectral leakage and bias with very high variance. Multitaper 
Spectral Estimation (MTSE) exchanges variance and bias and 
achieves statistical stability by averaging direct spectral 
estimates over multiple tapers [12].  

Recent work [8] has shown that speech enhancement by 
reduction of environmental noise can be improved by using 
MTSE that has been refined and smoothed by wavelet 
thresholding techniques [14]. The underlying idea behind these 
techniques is to represent the log periodogram as “signal” plus 
the “noise,” where the signal is the true spectrum and “noise” 
is the estimation error. Reducing spectral estimation errors 
leads to improvements in SNR estimates in noisy speech 
frames [8] which are used in signal subspace methods [1] for 
speech enhancement. Since the MTSE has no parameters 
characterizing the nature of speech, adjustment to its 
performance, for example by incorporating perception factors, 

becomes difficult. In [4], it has been shown that MTSE can be 
parameterized successfully, resulting in an autoregressive (AR) 
spectral estimate that is smoother than is the result of wavelet 
shrinkage and has all the statistical advantages of the MTSE. 
The ARMT method is also a low-computation alternative to 
speech enhancement proposed in [8].  

In this paper, we show that AR coefficients derived from 
the non-parametric MT autocorrelation (MTAC) estimates [4] 
generate a smooth tight-fitting curve (ARMT) to the MTSE. 
As such, it has very low high frequency bias and has even less 
variance than the standard MTSE. This proves to be [4] a 
method of reducing spectral estimation errors that is 
computationally less intensive than the wavelet thresholding 
method [14] employed for the same purpose. We then use the 
ARMT to derive the gain parameters of the optimal estimator 
[8] of enhanced speech.  

In the next section, we review the subspace method [1] of 
signal enhancement. In section 3, we develop the algorithm of 
adjusting gains derived from the ARMT parameters. In section 
4, we show results of speech denoised from additive white 
Gaussian noise, additive colored (AR) noises, and real 
automotive noise. Conclusions follow in Section 5.  
 

2. SHORT TIME SPECTRAL AMPLITUDE 
ESTIMATOR 

 
If X andD are the 1N x vectors containing spectral components 

of the clean speech signal vectorx and the noise vectord , then 
the Fourier transform of the noisy speech signal vector y can 

be written as H H HF y Y X D F x F d= = + = + , where HF is a 

N-point discrete Fourier Transform matrix.  Letting X̂ GY=  
be the linear estimator ofX , the error is defined as 

ˆ
X DX Xε ε ε= − = +  where speech distortion ( )X G I Xε = −  

and residual noiseD G Dε = ⋅ . The estimation operator G is 

chosen to minimize both 2 ( )H
X X XEε ε ε
−

=  and 2 ( )H
D D DEε ε ε
−

= . 

The minimization problem can be solved with the following 
constrained optimization problem: 
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where c is an integer. 
The optimal G obtained from using Kuhn-Tucker 

technique [14] satisfies the following equation 
 

 ( )H H H
X D XG F R F F R F F R Fµ+ =  (2) 

 
where µ  is the Lagrange multiplier.  

    If XR  and DR  are Toeplitz, H
XF R F and H

DF R F  are 

asymptotically diagonal [6] with diagonal element equal to 
power spectrum components ( )xS w  and ( )dS w  of the clean 

speech vector x and noise vector d, respectively. As a result, 

matrix G is also diagonal with thk  diagonal ( )g k  and given 

by 

 
( )( )

( )
( ) ( ) ( )

priox

x d prio

kS k
g k

S k S k k

γ
µ γ µ

= =
+ ⋅ +

 (3) 

where 
( )

( )
( )

x
prio

d

S k
k

S k
γ = is the a priori SNR at frequency k and 

µ is a control parameter dependent to the noise level. 
Hu [8] estimates ( )prio kγ  using the non-parametric of 

Multitaper Wavelet Denoising (MTW) spectral estimation 
applied to estimate ( )xS w  and ( )dS w , and controls the 

suppression level with the Lagrange multiplier based on 
posterior SNR. In the next section, we provide an alternative 
method of calculating this gain function using parametric 
method derived from MTSE. The proposed parametric 
approach reduces the computational complexity while also 
achieving low variance estimates. Applying gain function g(k) 
to the noisy speech spectrum results an optimal enhanced 
speech 

 
 

3. POWER SPECTRAL ESTIMATION 
 
3.1. Non-parametric approach for spectral estimation 
 
Spectral estimation based on DFT is the most popular 
approach due to its simplicity. However, it introduces a large 
bias and variance as well as spectral leakage. Carefully chosen 
tapers such as Hamming windows can help reduce leakage and 
bias. However, they do not reduce the variance of the spectral 
estimate [9]. Multitaper spectral estimate reduces variance in 
exchange for a slight increase in bias. The bias reduction 
estimator by a factor of 1/K [12] can be obtained from the 
average of the direct spectral estimates of data multiplied with 
K tapering windows. The tapers may be chosen to be pairwise 

orthogonal and are properly designed to prevent leakage. Most 
commonly used tapers are discrete prolate spheroidal 
sequences (dpss) [12] or sinusoidal window sequences [11], 
and other low-leakage combinations are given in [3]. The 
multitaper spectrum estimator with K tapers is given by  

 
1

2

0

1
( ) ( )

K

mt k
k

S w X w
K

−

=
= ∑  (4) 

where 

 
1

0

1
( ) [ ] [ ]exp( )

N

k k
n

X w x n v n jwn
N

−

=
= −∑  (5) 

( )kX w is the discrete-time Fourier transform (DTFT) of 

data [ ]x n  of a random process nx  multiplied by window 

sequence [ ]kv n .  

 
3.2. Proposed parametric approach 
 
Linear predictive coding (LPC) is a well-known and effective 
technique for estimating the time-varying resonances of the 
vocal tract from speech signals. With this system, it is possible 
to independently control the strengths and frequencies of each 
formant. For an AR process, a signal [ ]x n  is assumed to be 

predictable by its past value and input [ ]w n  with a gain G  

and is given by 

 
1

[ ] [ ] [ ]
p

k
k

x n a x n k Gw n
=

= − +∑  (6) 

This relationship can be expressed in terms of a transfer 
function as  

 

1

( )
( )

( )
1

AR p
k

k
k

X z G
H z

W z
a z−

=

= =
−∑

 (7) 

In [3][4], it was suggested that the non-parametric MTSE 
given in (4) and (5) may be expressed as 

 ɵ *
,

,

( ) ( ) ( ) ( , )K NS d d X X A
γ ξ

ω γ ξ γ ξ ω γ ω ξ= − −∫∫ A  (8) 

where 

 
1

*
,

0

1
( , ) ( ) ( )

K

K N k k
k

A V V
K

γ ξ γ ξ
−

=
= ∑  (9) 

( )kV w are the DTFTs of the tapers. In time (or index) domain, 

the above relationship can be expressed by  

 [ ]
1

,
0

[ ] [ ] [ ] ,
N

K N
m

r n x m x m n m nα
−

=
= −∑ɵ  (10) 

where  

 [ ]
1

,
0

1
, [ ] [ ]

K

K N k k
k

m n v m v m n
K

α
−

=
= −∑  (11) 

 [ ]r nɵ  is the IDFT of ɵ( )S ω . Given (10) and (11), the AR 

filter coefficients in (7) can be estimated as follows: 

 1−=a R r  (12) 
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where 1 2[ ... ]Tpa a a=a , R  is the matrix of autocorrelation 

estimate ̂ [ , ]r n m , and ˆ ˆ ˆ[ [1,0] [2,0]... [ ,0]]Tr r r p=r . The 

solution can be easily computed with the Levinson-Durbin 
algorithm [7] . The AR coefficients obtained from (12) are 

used to generate AR spectra in (7) , which is used to estimate 

the optimal gain estimation in (3). 
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Fig. 1. Periodogram of the enhanced speech obtained from 
MTWT and MTAR compared with the original clean speech. 
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Fig. 2. Periodogram of the enhanced speech obtained from 
MTWT and MTAR, with pre-emphasis filter, compared with 
the clean speech. 
 
 

4. RESULTS 
 

The experiment is conducted by using a clean speech 
additively mixed with 4 noise types: white noise, AR-3 process 
noises, AR-4 process noise, and a recorded car noise. The AR 
process noise is created by filtering white noise with the AR 
filter. The AR-4 filter is derived from an arbitrary chosen 

speech frame where poles are in the location obtained from 
speech signal. The AR-3 filter is selected from a stable AR-
filter where the poles are not in the region of normal speech 
signal [10]. The audio is sampled at 8K Sample-Hz. The 
estimated spectral gains and denoised speech obtained from 
the proposed technique are compared to those obtained from 
the MTW and the auditory model incorporating spectral 
subtraction (AD-SS) [13]. 

 
TABLE I 

COMPARATIVE PERFORMANCE FOR SPEECH ENHANCEMENT IN TERMS OF 

GLOBAL SNR AND SEGMENTAL SNR (SNR/SNR_SEG) FOR A SENTENCE 

ADDITIVELY MIXED WITH DIFFERENT NOISE TYPES  
 

 White noise AR-3 Noise AR-4 Noise Car Noise 
Noisy 
Speech 

-6.74/-8.17 -6.76/-8.17 -6.6/-8.10 -6.86/-7.94 

AD-SS  3.74/-3.01 3.80/-3.55 3.46/-3.63 4.90/-2.69 

MTW 4.51/-3.30 4.49/-3.34 4.40/-3.30 7.50/-2.21 

ARMT 4.51/-3.34 4.49/-3.50 4.38/-3.37 7.42/-2.19 

 
 

TABLE II 
COMPARATIVE PERFORMANCE FOR SPEECH ENHANCEMENT IN TERMS OF 

MODIFIED SEGMENTAL SNR FOR 10 SENTENCES (AVERAGE SEGMENTAL 

SNR/AVERAGE LOWER BAND SNR, AVERAGE UPPERBAND SNR)  
 

 Male Speaker Female Speaker 

Noisy Speech  -2.20 / 0.95 / -4.5  -1.58 / -0.19 / -7.26 

MTW  1.82 / 2.89 / -1.69   0.96 / 1.73 / -2.97 

ARMT  1.85 / 2.90 / -1.78   0.98 / 1.75 / -3.0 

AD-SS  1.67 / 2.48 / -1.59   0.65 / 1.25 / -2.56 

 
The initial result indicates that the proposed technique and the 
MTW may not estimate the speech spectrum well in the high 
frequency band as the result shown in Fig 1. Additional 
improvement can be obtained by applying a pre-emphasis filter 
to the noisy signal before the AR coefficient estimation. The 
improvement result is shown in Fig 2 where the enhanced 
speech tracks closer to the clean speech signal at the high 
frequency band after applying a pre-emphasis filter. The 
improvement in the high frequency band is not subjected to the 
noise types used in the experiment.  
 
The objective test is calculated by using the Global SNR and a 

modified average Segmental SNR ( ave
segSNR ). The ave

segSNR  are 

implemented in the frequency band so that the SNR can be 
calculated within the interested frequency.  It can be obtained 
by averaging Segmental SNR in the frequency domain over M 
speech frames as follows:   
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Fig. 3. Speech Spectrograms (a) Noisy speech signal 
corrupted by Gaussian white, (b) Denoised speech signal 
using the ARMT method. 
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Fig. 4. Speech Signal (a) Noisy speech signal orrupted 
by Gaussian white, (b) Denoised speech signal using 
the ARMT method. 

 

Table I presents the Global SNR and segSNR of the speech 

signal corrupted by different noise types and of the denoised 
speech signal obtained from the different denoising techniques. 
The highest SNR improvement is obtained from denoising car-
type noise. This may contribute to the properties of the car 
noises that have most energy at the lower frequency band. 
These results indicate that the proposed technique may work 
well in the lower frequency bands.  
 
More investigation on the performance in lower band SNR and 
upper band SNR are conducted on the noisy speech signals 
obtained from additively mixing with white Gaussian noise. 
The SNR results are average from 5 male speakers and 5 
female speakers. Table II shows the performance of the 
denoising techniques in the lower-band frequency (0-2 kHz) 
and in the higher band (2 kHz-4 kHz) for both male and female 
speakers. In the lower-band frequency, the SNR obtained from 
both ARMT and MTW are higher than those obtained from 
AD-SS. However, the proposed method little outperforms 
MTW. The great improvement in quality is mainly obtained 
with the male speakers. This may contribute to the fact that the 
proposed spectral estimation of speech signal performs best 
with low pitch speech signal spoken by male speakers. 
 
An informal listening test is conducted by asking 10 listeners 
to give a score for each sentence they listen, in terms of being 
more natural and having less distortion. The results from the 
subjective test indicate that the enhanced speech obtained from 
MTW and ARMT are almost indistinguishable and are better 
than those obtained from the AD-SS. In accordance with Erdol 
and Gunes in [4], the spectral estimate obtained from ARMT is 
smoother to that from MTW but nearly identical. As a result, 
the enhanced speech is almost indistinguishable between these 
two approaches. 
 
Since human perception to the audio distortion is more 
sensitive in the lower-band frequency, the AD-SS is less 
preferable than those obtained from the proposed method, as 
also supported by the objective test results shown in table II. 
Fig 3 presents the spectrogram of noisy speech obtained from 
additive white Gaussian noise at 1 dB SNR and the 
spectrogram of denoised speech using ARMT. Fig 4 presents 
the same signals in the time domain. The distortion and 
residual noise in the proposed technique is much less than 
those obtained from the AD-SS. Moreover, no disturbing 
musical noise is observed in the denoised speech obtained 
from the proposed technique. 
 
 

5. CONCLUSION 
 
Quantitative and qualitative tests show that speech 
enhancement using proposed ARMT spectral estimates has 
better quality than the AD-SS, and is as good as the MTW. A 
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greater improvement is obtained in the lower frequency region 
where most speech information is located. In addition, the 
computation time of ARMT is much less than MTW. One of 
the computational simplifications implemented in the ARMT 
is that the autocorrelation computation of windows in equation 
(9) can be pre-computed off-line whereas the multiple tapers 
used in MTW computation has to be computed during the run-
time. In addition, it is not necessary to perform Wavelet 
Denoising as in Hu [8] since the spectrum obtained from the 
ARMT incorporates spectrum smoothness as the nature of AR 
process. ARMT also yields parameters for later modification 
of the poles and zeros or spectral features to achieve the 
optimal result and higher speech quality. Further investigation 
is possible to reduce computation complexity by calculating 
spectral gains using other forms of parameters instead of the 
direct computation in the spectral domain. 
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