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ABSTRACT

Spectral estimation is a major component of obtaining high

quality speech in many speech dencising techniques.
Autoregressive  spectral  estimation using  Multitaper

Autoregressive data (ARMT) is a parametric approach that
generates AR  filter  coefficients from  multitaper
autocorrelation estimates. The ARMT proves to be a best fit
smooth curve to the mutitaper spectral estimates (MTSE)

becomes difficult. In [4], it has been shown thal 8 can be
parameterized successfully, resulting in an autessive (AR)
spectral estimate that is smoother than is thdtrefwavelet
shrinkage and has all the statistical advantageheoMTSE.
The ARMT method is also a low-computation altenetto
speech enhancement proposed in [8].
In this paper, we show that AR coefficients derifeazm

the non-parametric MT autocorrelation (MTAC) estieza[4]
generate a smooth tight-fitting curve (ARMT) to thE SE.

As such, it has very low high frequency bias ansl énen less
variance than the standard MTSE. This proves td4bea

method of reducing spectral estimation errors thsit
computationally less intensive than the waveleesholding
method [14] employed for the same purpose. We tisenthe
ARMT to derive the gain parameters of the optinstineator

[8] of enhanced speech.

In the next section, we review the subspace mefhpdf
signal enhancement. In section 3, we develop terighm of
adjusting gains derived from the ARMT parameteanssdction
4, we show results of speech denoised from addititigte
Gaussian noise, additive colored (AR) noises, apdl r
automotive noise. Conclusions follow in Section 5.

hence has very low high frequency bias and has even less
variance than the standard MTSE. As such, ARMT is a
smoother and less computationally intensive alternative to
wavelet domain reduction (denoising) of the MTSE error. In
this paper, the ARMT is used to derive the optimal gain
parameters in the signal subspace approach to reducing
environmental noise. Objective measures and informal
listening tests demonstrate that results are indistinguishable
from its successful predecessor that uses the non-parametric
approach for speech denoising.

1. INTRODUCTION

2. SHORT TIME SPECTRAL AMPLITUDE
Speech denoising methods of spectral subtraction, ESTIMATOR
minimum mean-square error (MMSE) [2] and signalspate
[1][2][5]1[8][13] are all non-parametric. They usé&ett signal
spectrum estimates related to the periodogram wihécte off
spectral leakage and bias with very high variahteltitaper
Spectral Estimation (MTSE) exchanges variance aasl &nd
achieves statistical stability by averaging diresgtectral

estimates over multiple tapers [12]. N-point discrete Fourier Transform matrix. Letting= GY
Recent work [8] has shown that speech enhancement be the linear estimator of, the error is defined as

reduction of environmental noise can be improvedubing X -X e+ : : —(C—
MTSE that has been refined and smoothed by Waveleéi X=X =éx +& where speech distortio, =(G-1)X

thresholding techniques [14]. The underlying idehibd these @nd residual noisg, =GID . The estimation operato is
techniques is to represent the log periodogransigmal” plus o 5 H 5 H
the “noise,” where the signal is the true spectamd “noise”  chosen to minimize botlsy = E(ex £x) and &g = E(ep &p) -
is the estimation error. Reducing spectral estiomagrrors The minimization problem can be solved with thddeing
leads to improvements in SNR estimates in noisyedpe constrained optimization problem:

frames [8] which are used in signal subspace metfibldfor

speech enhancement. Since the MTSE has no parameter

characterizing the nature of speech, adjustment itso

performance, for example by incorporating percepfactors,

If X andD are theN x1vectors containing spectral components

of the clean speech signal vect@and the noise vectar, then
the Fourier transform of the noisy speech signatorey can

be written asF "y =Y =X +D =F"x+F"d, whereF" is a
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where c is an integer.
The optimal
technique [14] satisfies the following equation

G(F"RF +uF"RyF)=F"RF 2)

where u is the Lagrange multiplier.

If Ry and R, are Toeplitz, F"R,F and F"R,F are

asymptotically diagonal [6] with diagonal elemergual to
power spectrum component§, (w) and S;(w) of the clean

speech vector x and noise vector d, respectivetyaAesult,
matrix G is also diagonal wittk™ diagonal g(k) and given
by

Vorio (K)

s
K) = -
9o NG

S0 + 415 (K)
where o (K) = %

M is a control parameter dependent to the noise.level
Hu [8] estimates ), (k) using the non-parametric of

®3)

is the a priori SNR at frequency k and

Multitaper Wavelet Denoising (MTW) spectral estimat
applied to estimat§ (w) andS;(w), and controls the
suppression level with the Lagrange multiplier lohsen
posterior SNR. In the next section, we provide her@ative
method of calculating this gain function using pagtric

method derived from MTSE. The proposed parametri

approach reduces the computational complexity whiko
achieving low variance estimates. Applying gaincfion g(k)
to the noisy speech spectrum results an optimahreréd
speech

3. POWER SPECTRAL ESTIMATION

3.1. Non-parametric approach for spectral estimation

Spectral estimation based on DFT is the most popula

approach due to its simplicity. However, it intraés a large
bias and variance as well as spectral leakage flllgrehosen

G obtained from using Kuhn-Tucker

orthogonal and are properly designed to preverkalga Most
commonly used tapers are discrete prolate sphéroida
sequences (dpss) [12] or sinusoidal window sequefit],
and other low-leakage combinations are given in [Bhe
multitaper spectrum estimator with K tapers is giby

1Kg 2
S (W) X DXk (W) (4)
k=0

where

N-1
X, (W) :ﬁz X[ Hexp(- jwn) 5)
n=0

X, (w) is the discrete-time Fourier transform (DTFT) of
data x[n] of a random process, multiplied by window
sequencey, [n] .

3.2. Proposed parametric approach

Linear predictive coding (LPC) is a well-known aefflective
technique for estimating the time-varying resonanoé the
vocal tract from speech signals. With this systins, possible
to independently control the strengths and freqiesnaf each
formant. For an AR process, a signdgh] is assumed to be

predictable by its past value and inpufn] with a gainG
and is given by
P

Xl =Y ax{n-K +Gi 1 (6)
k=1
This relationship can be expressed in terms ddiasfer
function as
X(z G
Har(2) = (2) (7)
W(2) YR
1-> az
k=1

cfn [3][4], it was suggested that the non-paramedicSE

given in(4) and(5) may be expressed as

S(@) = [[ dydEX ()X () A (@-y.w=&)  (®)
123
where
1RE .
A () =2 DV (@) ©)
k=0

V, (w) are the DTFTSs of the tapers. In time (or index) dom
the above relationship can be expressed by

tapers such as Hamming windows can help reducedesaind Where

bias. However, they do not reduce the variancéefspectral
estimate [9]. Multitaper spectral estimate redueasance in
exchange for a slight increase in bias. The biakiaton
estimator by a factor of 1/K [12] can be obtainednf the
average of the direct spectral estimates of datéipied with

K tapering windows. The tapers may be chosen tpaisvise

. N-1
riil = > M X m-n ay [mn] (10)
m=0
1 K-1
ag n[mn]=-= 3 vlmvm-n (11)
k=0

r[n] is the IDFT of S(w) . Given(10)and(11), the AR
filter coefficients in(7) can be estimated as follows:

a=R™Y (12)
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wherea=[a az...ap]T ,» R is the matrix of autocorrelation

estimatef[n,m|, andr =[f[1,0][2,0]..f[p,0]]" . The
solution can be easily computed with the Levinsamdin
algorithm [7] . The AR coefficients obtained frqfh2) are
used to generate AR spectrd(if) , which is used to estimate
the optimal gain estimation {3).

20

frq

Fig. 1. Periodogram of the enhanced speech obt&ioed
MTWT and MTAR compared with the original clean sgiee
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Fig. 2. Periodogram of the enhanced speech obt&ioed
MTWT and MTAR, with pre-emphasis filter, comparedhw
the clean speech.

4. RESULTS

noises, AR-4 process noise, and a recorded cag.nbie AR
process noise is created by filtering white noisth the AR
filter. The AR-4 filter is derived from an arbitgarchosen

speech frame where poles are in the location oddafnom
speech signal. The AR-3 filter is selected fromtable AR-
filter where the poles are not in the region ofmar speech
signal [10]. The audio is sampled at 8K Sample-Hhe
estimated spectral gains and denoised speech edtéiom
the proposed technique are compared to those eltdiom
the MTW and the auditory model incorporating spectr
subtraction (AD-SS) [13].

TABLE |

COMPARATIVE PERFORMANCE FOR SPEECH ENHANCEMENT INERMS OF
GLOBAL SNR AND SEGMENTAL SNR(SNR/SNR_SEG) FOR A SENTENCE
ADDITIVELY MIXED WITH DIFFERENT NOISE TYPES

White noise| AR-3 Noisg AR-4 Noise Car Noisg
Noisy -6.74/-8.17 | -6.76/-8.17| -6.6/-8.10 -6.86/-7.9
Speech
AD-SS 3.74/-3.01 3.80/-3.55 3.46/-3.63 4,90/-2.6
MTW 4,51/-3.30 4.49/-3.34 4.40/-3.30 7.50/-2.2]
ARMT 4,51/-3.34 4.49/-3.50 4.38/-3.37 7.42/-2.1
TABLE Il

COMPARATIVE PERFORMANCE FOR SPEECH ENHANCEMENT INERMS OF
MODIFIED SEGMENTAL SNR FORLO SENTENCESAVERAGE SEGMENTAL
SNR/AVERAGE LOWER BAND SNR AVERAGE UPPERBAND SNR

Male Speaker

Female Speaker

Noisy Speech | -2.20/0.95/-4.5 -1.58/-0.1B.26
MTW 1.82/2.89/-1.69 0.96/1.73/-2.97
ARMT 1.85/2.90/-1.78 0.98/1.75/-3.0
AD-SS 1.67/2.48/-1.59 0.65/1.25/-2.56

The initial result indicates that the proposed téghe and the
MTW may not estimate the speech spectrum well nttigh
frequency band as the result shown in Fig 1. Addél
improvement can be obtained by applying a pre-esiplidter
to the noisy signal before the AR coefficient estilon. The
improvement result is shown in Fig 2 where the echd
speech tracks closer to the clean speech signgieahigh
frequency band after applying a pre-emphasis filfEhe
improvement in the high frequency band is not sttiejg to the

noise types used in the experiment.

The objective test is calculated by using the GIG&NR and a
modified average Segmental SNBNR%y). The SNRg are

implemented in the frequency band so that the SHR e
calculated within the interested frequency. It banobtained

The experiment is conducted by using a clean speegly averaging Segmental SNR in the frequency dormweém M
additively mixed with 4 noise types: white noisdR8 process speech frames as follows:
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Fig. 3. Speech Spectrograms (a) Noisy speech signal
corrupted by Gaussian white, (b) Denoised speeptabi
using the ARMT method.
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Fig. 4. Speech Signal (a) Noisy speech signal ¢edip

by Gaussian white, (b) Denoised speech signal using

the ARMT method.

Table | presents the Global SNR aiBNR, of the speech

signal corrupted by different noise types and &f ¢enoised
speech signal obtained from the different denoiséatniques.
The highest SNR improvement is obtained from dengisar-
type noise. This may contribute to the propertiéshe car
noises that have most energy at the lower frequdrand.
These results indicate that the proposed techniggage work
well in the lower frequency bands.

More investigation on the performance in lower b&NR and
upper band SNR are conducted on the noisy spegoialsi
obtained from additively mixing with white Gaussiaoise.
The SNR results are average from 5 male speakets5an
female speakers. Table Il shows the performancethef
denoising techniques in the lower-band frequencg Hz)
and in the higher band (2 kHz-4 kHz) for both metel female
speakers. In the lower-band frequency, the SNRirndadafrom
both ARMT and MTW are higher than those obtainemimfr
AD-SS. However, the proposed method little outprenfo
MTW. The great improvement in quality is mainly ainied
with the male speakers. This may contribute tofdlcethat the
proposed spectral estimation of speech signal pasfdest
with low pitch speech signal spoken by male speaker

An informal listening test is conducted by askir@ listeners
to give a score for each sentence they listergrimg of being
more natural and having less distortion. The resisim the
subjective test indicate that the enhanced speeiEined from
MTW and ARMT are almost indistinguishable and aettdy
than those obtained from the AD-SS. In accordaritie Evdol
and Gunes if4], the spectral estimate obtained from ARMT is
smoother to that from MTW but nearly identical. Agesult,
the enhanced speech is almost indistinguishabledeet these
two approaches.

Since human perception to the audio distortion isrem
sensitive in the lower-band frequency, the AD-SSldss
preferable than those obtained from the proposetthade as
also supported by the objective test results shiowtable II.
Fig 3 presents the spectrogram of noisy speeclingotdrom
additive white Gaussian noise at 1 dB SNR and the
spectrogram of denoised speech using ARMT. Figesegnts
the same signals in the time domain. The distortom
residual noise in the proposed technique is muel tean
those obtained from the AD-SS. Moreover, no dishgb
musical noise is observed in the denoised speethined
from the proposed technique.

5. CONCLUSION

Quantitative and qualitative tests show that speech
enhancement using proposed ARMT spectral estimadss
better quality than the AD-SS, and is as good asMi'wW. A
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greater improvement is obtained in the lower fremyeregion
where most speech information is located. In adldjtithe
computation time of ARMT is much less than MTW. Qufe
the computational simplifications implemented i tARMT
is that the autocorrelation computation of windawgquation
(9) can be pre-computed off-line whereas the mialttppers
used in MTW computation has to be computed duttegrtin-

[13] Virag, N., “Single channel speech enhancement based
masking properties of the human auditory systentEH
Transactions on Speech and Audio Processing, 7+-1B76
1999.

[14] Walden, A.T., Percival, D.B. and E.J., McCoy, “Spem
estimation by wavelet thresholding of multitapetiraators,”
IEEE Trans. Signal Processing, 46, 3153-3165. 1998.

time. In addition, it is not necessary to perform Wavelet

Denoising as in Hu [8] since the spectrum obtaifrech the
ARMT incorporates spectrum smoothness as the nafuddR
process. ARMT also yields parameters for later rfncation
of the poles and zeros or spectral features toeamehihe
optimal result and higher speech quality. Furtieestigation
is possible to reduce computation complexity bycuaialting
spectral gains using other forms of parametergéusof the
direct computation in the spectral domain.
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